JPS58158338A - Controller for knocking of internal-combustion engine with supercharger - Google Patents

Controller for knocking of internal-combustion engine with supercharger

Info

Publication number
JPS58158338A
JPS58158338A JP57040746A JP4074682A JPS58158338A JP S58158338 A JPS58158338 A JP S58158338A JP 57040746 A JP57040746 A JP 57040746A JP 4074682 A JP4074682 A JP 4074682A JP S58158338 A JPS58158338 A JP S58158338A
Authority
JP
Japan
Prior art keywords
knocking
control valve
combustion engine
supercharger
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57040746A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Ito
嘉康 伊藤
Toshio Suematsu
末松 敏男
Yuji Takeda
武田 勇二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57040746A priority Critical patent/JPS58158338A/en
Publication of JPS58158338A publication Critical patent/JPS58158338A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To avoid the abnormal temperature rise of exhaust gas by providing a control valve increasing the flow sectional area of a bypass for suction air when knocking is generated in the supercharging region of the internal-combustion engine. CONSTITUTION:A suction path 1 is provided with an airflow meter 13, a compressor 15 for the supercharger 14, a throttle valve 16 and a surge tank 17, and an exhaust path 9 is provided with the turbine 19 of the supercharger. The bypass 21 for suction air connects a section upper than the compressor 15 and the surge tank 17, and its flow sectional area is controlled by a control valve 22. When knocking is generated in the supercharging region of an internal combustion engine, the opening of the control valve 22 increases, and the pressure of a suction pipe is lowered. Accordingly, the abnormal temperature rise of exhaust gas is avoided, the damage of exhaust system devices is prevented positively, and knocking can be obviated.

Description

【発明の詳細な説明】 本発明は、内燃機関の過給域におけるノッキングを防止
できる過給機付き内燃機関のノック制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a knock control device for a supercharged internal combustion engine that can prevent knocking in the supercharging region of the internal combustion engine.

従来のノック制御装置は、点火時期の進角)辻を増減す
ることのみによりノッキングを回避しつつ機関出力を増
大しているが、点火時期を遅らせると排気ガス温度が上
昇し、過給機のタービン等の排気系に設けられている装
置が損壊するおそれがあった。
Conventional knock control devices avoid knocking and increase engine output by increasing or decreasing the ignition timing advance, but if the ignition timing is delayed, the exhaust gas temperature rises and the turbocharger There was a risk that equipment installed in the exhaust system of the turbine etc. would be damaged.

本発明の目的は、排気ガス温度の上昇を伴うことなくノ
ッキングを回避することができる、過給機付き内燃機関
のノック制御装置を提(J(することである。
An object of the present invention is to provide a knock control device for a supercharged internal combustion engine that can avoid knocking without increasing exhaust gas temperature.

この目的を達成するために本発明によれば、過給機のコ
ンプレッサと吸気絞り弁とを設けられている吸気通路部
分に対して並列に設けられている吸入空気バイパス通路
を利用する。この吸入空気バイパス通路は本来、アイド
リンク運転を安定に維持するためにアイドリンク回転速
度を制御するものとして設けられているが本発明では、
内燃機関の過給域においてノッキングが生じると、吸入
空気バイパス通路の流通断面積が増大され、吸気管圧力
が低下される。一般にはノッキング回避のために吸入空
気バイパス通路の流通断面積の増大は点火時期の進角量
の減少と並行して行なわれる。吸気管圧力が低下される
ので、点火時期の進角量の減少は小さくてもよく、排気
ガス温の異常な上昇は回避できる。
To achieve this objective, the invention makes use of an intake air bypass passage which is arranged parallel to the part of the intake passage in which the compressor of the supercharger and the intake throttle valve are provided. This intake air bypass passage is originally provided to control the idle link rotation speed in order to maintain stable idle link operation, but in the present invention,
When knocking occurs in the supercharging region of the internal combustion engine, the flow cross-sectional area of the intake air bypass passage increases, and the intake pipe pressure decreases. Generally, in order to avoid knocking, the flow cross-sectional area of the intake air bypass passage is increased in parallel with the reduction in the amount of advance of the ignition timing. Since the intake pipe pressure is reduced, the reduction in the amount of advance of the ignition timing may be small, and an abnormal rise in exhaust gas temperature can be avoided.

図面を参照して本発明の詳細な説明する。The present invention will be described in detail with reference to the drawings.

エアクリーナから吸入された空気は吸気通路1を通って
吸気弁2から機関本体3の燃焼室4へ導かれる。燃焼室
4はシリンダヘッド5、シリンダブロック6、およびピ
ストン7により画定され、燃焼室4の混合気は燃焼後、
排気弁8かも排気通路9へ導かれる。吸気通路1には上
流から順番にエアフローメータ13、過給機(ターボチ
ャージャ) 14のコンプレッサ15、絞り弁16、お
よびサージタンク17が設けられ、排気通路9には過給
機のタービン19が設けられている。
Air taken in from an air cleaner passes through an intake passage 1 and is guided from an intake valve 2 to a combustion chamber 4 of an engine body 3. The combustion chamber 4 is defined by a cylinder head 5, a cylinder block 6, and a piston 7, and after combustion, the air-fuel mixture in the combustion chamber 4 is
The exhaust valve 8 is also led to the exhaust passage 9. The intake passage 1 is provided with an air flow meter 13, a compressor 15 of a turbocharger 14, a throttle valve 16, and a surge tank 17 in order from upstream, and the exhaust passage 9 is provided with a turbocharger turbine 19. It is being

コンプレッサ15はタービン19の回転により駆動され
る。吸入空気バイパス通路21はコンプレッサ15より
上流の個所とサージタンク17とを接続し、制御弁22
により流通断面積を制御される。
Compressor 15 is driven by rotation of turbine 19 . The intake air bypass passage 21 connects a portion upstream of the compressor 15 and the surge tank 17, and connects the surge tank 17 with the control valve 22.
The flow cross section is controlled by

制御弁22はソレノイド23へ供給されるパルスのデユ
ーティ比に関係して弁体24の位置を変更するので、吸
入空気バイパス通路の流通断面積はほぼ連続的に変化可
能である。排気バイパス通路28はタービン19を有す
る排気通路部分に対して並列に設けられ、排気バイパス
弁29により流通断面積を制御される。空気圧式アクチ
ュエータ30は通路31を介して送られてくる過給圧に
関係して排気バイパス弁29の開度を制御する。燃料噴
射弁33は各吸気管に設けられて入力電気パルスに応動
して燃料を吸気ポートへ向けて噴射する。気筒判別セン
サ34および回転角センサ35は配電器38の軸の回転
からクランク角を検出する。気筒判別センサ34および
回転角センサ35はクランク角がそれぞれ7200およ
び3cP変化するごとにパルスを1個発生する。機関回
転速度Nは回転角センサ35かものへカパルスから求め
られる。点火装置400点火電流は配電器38を通って
点火プラグ41へ送られる。ノックセンサ44は、シリ
ンダブロック6に取付けられ、ノッキングを検出する。
Since the control valve 22 changes the position of the valve body 24 in relation to the duty ratio of the pulses supplied to the solenoid 23, the flow cross-sectional area of the intake air bypass passage can be changed almost continuously. The exhaust bypass passage 28 is provided in parallel to the exhaust passage portion including the turbine 19, and its flow cross-sectional area is controlled by an exhaust bypass valve 29. The pneumatic actuator 30 controls the opening degree of the exhaust bypass valve 29 in relation to the boost pressure sent through the passage 31. A fuel injection valve 33 is provided in each intake pipe and injects fuel toward the intake port in response to an input electric pulse. The cylinder discrimination sensor 34 and the rotation angle sensor 35 detect the crank angle from the rotation of the shaft of the power distributor 38. The cylinder discrimination sensor 34 and the rotation angle sensor 35 generate one pulse each time the crank angle changes by 7200 and 3 cP, respectively. The engine rotational speed N is determined from the rotation angle sensor 35 and the pulses. Ignition device 400 ignition current is sent to spark plug 41 through power distributor 38 . Knock sensor 44 is attached to cylinder block 6 and detects knocking.

・電子制御装置45は、エアフローメータ13等から人
力信号に基づ℃・て燃料噴射量および点火時期等を算出
し、燃料噴射弁33等へ出力信号を送る。
- The electronic control unit 45 calculates the fuel injection amount, ignition timing, etc. based on human input signals from the air flow meter 13 etc., and sends output signals to the fuel injection valve 33 etc.

第2図は電子制御装置45の詳細なブロック図である。FIG. 2 is a detailed block diagram of the electronic control unit 45.

エアフローメータ13のアナログ出力電圧はバッファ4
8、マルチプレクサ49、およびA口(アナログ/デジ
タル)変換器50を介して入出力ポート51へ送られる
。ノックセンサ44のアナログ出力電圧は入力回路52
およびA/D変換器53を通って入出力ポート54へ送
られる。気筒判別センサ34および回転角センサ35の
パルスは整形回路55を介して入出力ポート54へ送ら
れる。吸入空気バイパス通路21の流通断面積を制御す
る制御弁22は出力ポート56のパルス信号を駆動回路
57を介して受ける。点火装置40は出力ポート58の
パルス信号を駆動回路59を介して受ける。
The analog output voltage of the air flow meter 13 is the buffer 4.
8, a multiplexer 49, and an A-port (analog/digital) converter 50 to an input/output port 51. The analog output voltage of the knock sensor 44 is input to the input circuit 52.
and is sent to the input/output port 54 through the A/D converter 53. Pulses from the cylinder discrimination sensor 34 and the rotation angle sensor 35 are sent to the input/output port 54 via the shaping circuit 55. A control valve 22 that controls the flow cross-sectional area of the intake air bypass passage 21 receives a pulse signal from an output port 56 via a drive circuit 57. Ignition device 40 receives a pulse signal from output port 58 via drive circuit 59 .

燃料噴射弁33は出力ポートロ0のパルスを駆動回路6
1を介して受ける。人出力ポート51,54、出力ポー
ト56 、58 、60、RAM 66、ROM 67
、およびCPU68はパス69により互いに接続されて
いる。
The fuel injection valve 33 sends the pulse of the output port 0 to the drive circuit 6.
Receive via 1. Human output ports 51, 54, output ports 56, 58, 60, RAM 66, ROM 67
, and CPU 68 are connected to each other by a path 69.

CPU68はクロック70からクロックパルスを受ける
CPU 68 receives clock pulses from clock 70.

第3図は本発明の実施するプログラムのフローチャート
である。ステップ75ではアイドリンク回転速度制御期
間か否かを判別し、判別結果が正であればステップ83
へ進み、否であれはステップ76へ進む。アイドリンク
回転速度制御期間であれば実際の機関回転速度が目標回
転速度となるように制御弁22の開度を帰還制御する。
FIG. 3 is a flowchart of a program executed by the present invention. In step 75, it is determined whether or not it is the idle link rotation speed control period, and if the determination result is positive, step 83
If not, proceed to step 76. In the idle link rotational speed control period, the opening degree of the control valve 22 is feedback-controlled so that the actual engine rotational speed becomes the target rotational speed.

すなわちアイドリンク回転速度制御を行なう。That is, idle link rotational speed control is performed.

ステップ76では機関が過給域にあるか否かを判別し、
判別結果が正であればステップ77へ進み、否であれば
ステップ80へ進む。機関の単位回転当たりの吸入空気
流量Q/N (ただしQは吸入空気流量、Nは機関回転
速度)、したがって機関負荷が所定値以上であれば機関
は過給域期間となる。アイドリンク期間でも過給域期間
でもなければステップ80において制御弁220開度を
学習値とする。この学習値はアイドリンク期間に機関回
転速度が目標回転速度となるように制御弁22の開度を
学習制御して求めた値である。したがって非過給域期間
からアイドリンク期間へ移行する時に、機関回転速度は
目標アイドリンク回転速度へ円滑に移行する。ステップ
77ではノックセンサ44からの入力信号からノッキン
グが発生したか否かを判別し、ノッキングが発生したな
らばステップ81へ進み、ノッキングが発生していなけ
ればステップ82へ進む。ステップ81では制御弁22
は全開(最大開度)にされる。
In step 76, it is determined whether the engine is in the supercharging region,
If the determination result is positive, the process proceeds to step 77; if not, the process proceeds to step 80. The intake air flow rate per unit rotation of the engine is Q/N (where Q is the intake air flow rate and N is the engine rotational speed). Therefore, if the engine load is above a predetermined value, the engine is in the supercharging region period. If it is neither the idle link period nor the supercharging period, the opening degree of the control valve 220 is set as a learned value in step 80. This learning value is a value obtained by learning and controlling the opening degree of the control valve 22 so that the engine rotation speed becomes the target rotation speed during the idle link period. Therefore, when transitioning from the non-supercharging period to the idle link period, the engine rotation speed smoothly transitions to the target idle link rotation speed. In step 77, it is determined from the input signal from the knock sensor 44 whether or not knocking has occurred. If knocking has occurred, the process proceeds to step 81; if knocking has not occurred, the process proceeds to step 82. In step 81, the control valve 22
is fully opened (maximum opening).

したがって絞り弁16より下流の吸気通路部分がコンプ
レッサ15より上流の吸気通路部分へ連通され、過給が
解除される。ステップ82では制御弁22を全開にして
過給を継続する。ステップ81゜82では一般に制御弁
220開度制御だけでなく、点火時期の制御も合わせて
行ない、ノッキングの抑制および機関出力の向上を図る
。ノッキングが発生すると吸気管圧力が低下されるので
、点火時期の進角量の減少は小さくてよく、排気ガス温
度の上昇による排気系の装置の損壊は防止できる。
Therefore, the portion of the intake passage downstream of the throttle valve 16 is communicated with the portion of the intake passage upstream of the compressor 15, and supercharging is canceled. In step 82, the control valve 22 is fully opened to continue supercharging. In steps 81 and 82, generally not only the opening degree of the control valve 220 is controlled but also the ignition timing is controlled in order to suppress knocking and improve the engine output. When knocking occurs, the intake pipe pressure is reduced, so the reduction in the amount of advance of the ignition timing may be small, and damage to the exhaust system equipment due to a rise in exhaust gas temperature can be prevented.

このように本発明によれば、吸入空気バイパス通路の流
通断面積の増減により、排気ガス温度の上昇に因る排気
系装置の損壊を確実に回避じつつノッキングを防止する
ことができる。
As described above, according to the present invention, by increasing or decreasing the flow cross-sectional area of the intake air bypass passage, it is possible to prevent knocking while reliably avoiding damage to the exhaust system device due to a rise in exhaust gas temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のノック制御装置を含む過給機付き内燃
機関を示す図、第2図は第1図の電子制御装置のブロッ
ク図、第3図は本発明を実施するプログラムのフローチ
ャートである。 1・・・吸気通路′、3・・・機関本体、14・・・過
給機、15・・・コンプレッサ、16・・絞り弁、21
・・・吸入空気バイパス通路、22・・・制御弁、44
・・・ノックセンサ、45・・・電子制御装置。 特許出願人  トヨタ自動車工業株式会社代理人弁理土
中平 治
FIG. 1 is a diagram showing a supercharged internal combustion engine including a knock control device of the present invention, FIG. 2 is a block diagram of the electronic control device of FIG. 1, and FIG. 3 is a flowchart of a program implementing the present invention. be. 1... Intake passage', 3... Engine body, 14... Supercharger, 15... Compressor, 16... Throttle valve, 21
...Intake air bypass passage, 22...Control valve, 44
...Knock sensor, 45...Electronic control device. Patent applicant Osamu Donaka, Patent attorney, Toyota Motor Corporation

Claims (1)

【特許請求の範囲】 l 過給機のコンプレッサと吸気絞り弁とを設けられて
いる吸気通路部分に対して並列に吸入空気バイパス通路
が設けられ、この吸入空気バイパス通路の流通断面積を
制御する制御弁を備えている過給機付き内燃機関のノッ
キング防IL装置において、内燃機関の過給域でノッキ
ングが生じると、制御弁の開度が増大して吸気管圧力を
下げることを特徴とする、過給機付き内燃機関のノッキ
ング防止装置。 2 内燃機関の過給域でノッキングが生じると制御弁が
最大開度まで開くことを特徴とする特許請求の範囲第1
項記載のノッキング防止装置。
[Scope of Claims] l An intake air bypass passage is provided in parallel to the intake passage portion where the compressor and intake throttle valve of the supercharger are provided, and the flow cross-sectional area of this intake air bypass passage is controlled. A knocking prevention IL device for a supercharged internal combustion engine equipped with a control valve is characterized in that when knocking occurs in the supercharging region of the internal combustion engine, the opening degree of the control valve increases to lower intake pipe pressure. , anti-knocking device for internal combustion engines with superchargers. 2. Claim 1, characterized in that when knocking occurs in the supercharging region of the internal combustion engine, the control valve opens to its maximum opening.
Anti-knocking device as described in section.
JP57040746A 1982-03-17 1982-03-17 Controller for knocking of internal-combustion engine with supercharger Pending JPS58158338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57040746A JPS58158338A (en) 1982-03-17 1982-03-17 Controller for knocking of internal-combustion engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57040746A JPS58158338A (en) 1982-03-17 1982-03-17 Controller for knocking of internal-combustion engine with supercharger

Publications (1)

Publication Number Publication Date
JPS58158338A true JPS58158338A (en) 1983-09-20

Family

ID=12589192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57040746A Pending JPS58158338A (en) 1982-03-17 1982-03-17 Controller for knocking of internal-combustion engine with supercharger

Country Status (1)

Country Link
JP (1) JPS58158338A (en)

Similar Documents

Publication Publication Date Title
US4633844A (en) Ignition timing control for a supercharged engine
JPS6321009B2 (en)
JP5447696B2 (en) Control device for an internal combustion engine with a supercharger
JPS63105266A (en) Ignition timing and supercharging pressure control device for multi-cylinder internal combustion engine
JP5531987B2 (en) Control device for an internal combustion engine with a supercharger
US4489688A (en) Control for idle speed control valve
JP3302719B2 (en) Control device for engine with turbocharger
JP6914591B2 (en) Internal combustion engine control device
JPS58158338A (en) Controller for knocking of internal-combustion engine with supercharger
JPS6329043A (en) Internal combustion engine controller
JPS58158337A (en) Controlling method for suction air bypass passage of internal-combustion engine with supercharger
WO2018051609A1 (en) Turbocharger-equipped engine and method for operaing turbocharger-equipped engine
CN112664336B (en) Boost pressure setting device
US10876483B2 (en) Control device for internal combustion engine
JPH066901B2 (en) Engine supercharger
JP2007085199A (en) Idle rotation control apparatus for internal combustion engine
JPH07301121A (en) Fuel injection control device for diesel en gine with supercharger
JP2023012247A (en) Controller for internal combustion engine
JPS6183483A (en) Control device for internal combustion engine with knocking preventing type supercharger
JPS62199926A (en) Knocking controller for internal combustion engine associated with supercharger
JPH01318A (en) supercharged engine
JP2638872B2 (en) Ignition timing control device for vehicle speed control
JPH03279626A (en) Supercharge pressure controller for two-cycle internal combustion engine
JP2521040B2 (en) Engine intake system
JPH04325717A (en) Intake air control device of internal combustion engine with supercharger