JPS58158336A - Cylinder number controllable engine - Google Patents

Cylinder number controllable engine

Info

Publication number
JPS58158336A
JPS58158336A JP4054082A JP4054082A JPS58158336A JP S58158336 A JPS58158336 A JP S58158336A JP 4054082 A JP4054082 A JP 4054082A JP 4054082 A JP4054082 A JP 4054082A JP S58158336 A JPS58158336 A JP S58158336A
Authority
JP
Japan
Prior art keywords
cylinder
cylinders
clutch
fuel
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4054082A
Other languages
Japanese (ja)
Inventor
Shizuo Ishizawa
石澤 静雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP4054082A priority Critical patent/JPS58158336A/en
Publication of JPS58158336A publication Critical patent/JPS58158336A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To reduce output loss, and to improve fuel cost by setting up clutches among the crankshafts of each cylinder of a multicylinder engine and interrupting the supply of fuel to partial cylinders on light load while declutching the clutches of the cylinders. CONSTITUTION:Each piston 18-21 of the cylinders G-I, the supply of fuel thereto is interrupted and operation thereof rests on light load, and the cylinder J operated at all times is connected to the crankshaft 23 through several connecting rod. The crankshaft 23 is divided into four in response to the number of the cylinders, and connected through the clutches 26-28 among respective cylinder. A control circuit 34 inputs the number of revolution, load, crank angles, etc., and interrupts the supply of fuel into the cylinders G-I in a light load region on the basis of these signals while declutching the clutches 26-28. The operation of the pistons of cylinders under suspension can be stopped, output loss in case of the operation of partial cylinders is reduced, and fuel cost can be improved.

Description

【発明の詳細な説明】 この発明は、エンジン軽負荷域で一部気筒の作動を休止
させて部分気筒運転を行う気筒数制御エンジンに関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cylinder number control engine that performs partial cylinder operation by suspending operation of some cylinders in a light engine load range.

一般に、エンジンを高い負荷状態で運転すると、燃費が
良好になる傾向があシ、このため多気筒エンジンにおい
て、エンジン負荷の小さいと−きに、一部気筒への燃料
の供給を遮断して作動を休止させ、この分だけ残シの稼
動側気筒の負荷を相対的に高め、全体として軽負荷域の
燃費を改善するようにし九気筒数制御エンノ/が考えら
れた1本出願人が先に提案したこの鴇のエンジン(例え
ば特開55−151131号)を第1図に示すと、気筒
A−Cは燃料噴射弁a〜Cから常時燃料が供給される稼
動側気筒て、これに対して気筒D−Fは後述するように
エンジン軽負荷域やアイドリング時に燃料噴射弁d−f
からの燃料が連断され作動を休止する休止側気筒を示す
In general, fuel efficiency tends to improve when an engine is operated under a high load, so when the engine load is low, multi-cylinder engines are operated by cutting off the fuel supply to some cylinders. The applicant first devised a system to control the number of nine cylinders by stopping the engine, relatively increasing the load on the remaining active cylinders, and improving fuel efficiency in the light load range as a whole. When this proposed engine (e.g. Japanese Patent Laid-Open No. 55-151131) is shown in Figure 1, cylinders A-C are active cylinders that are constantly supplied with fuel from fuel injection valves a-C. Cylinder D-F is the fuel injector d-f when the engine is in a light load range or when idling, as described later.
This shows a cylinder on the idle side where fuel is disconnected from the engine and the operation is suspended.

吸気通路lは、この場合絞弁2の下流にて稼動側気筒A
−Cに接続する稼動gjjg&気違路3と、休止側気筒
D−Fに接続する休止側吸気通路4に分岐している。
In this case, the intake passage 1 is connected to the working cylinder A downstream of the throttle valve 2.
It is branched into an operating gjjg & mad passage 3 connected to -C, and an inactive intake passage 4 connected to the inactive cylinder DF.

このうち、休止側吸気通路4の上流部には、新気遮断弁
5が介装され、上記気筒D−Fの作動体止時に制御回路
15からの指令によシ、該吸気通路4を閉じ休止側気筒
D−Fへの新気の流入を遮断する。
Of these, a fresh air cutoff valve 5 is interposed in the upstream part of the intake passage 4 on the idle side, and closes the intake passage 4 according to a command from the control circuit 15 when the operating body of the cylinders D-F is stopped. The flow of fresh air into the cylinder D-F on the idle side is cut off.

一方、排気通路6も、稼動側気筒A−Cに接続する稼動
側排気通路7と、休止側気筒D−FK接続する休止側排
気通路8とに途中まで分岐するが、このうち休止側排気
通路8は排気還流通路9を介して新気遮断弁5下流の休
止側吸気通路4と結はれている。
On the other hand, the exhaust passage 6 also branches halfway into an operating exhaust passage 7 that connects to the operating cylinders A-C and an idle exhaust passage 8 that connects the idle cylinders D to FK. 8 is connected to the idle-side intake passage 4 downstream of the fresh air cutoff valve 5 via an exhaust gas recirculation passage 9.

この排気還流通路9の途中には、排気還流弁12が介装
され、新気遮断弁5が閉じるとほぼ同時に制御回路15
からの指令で三方向電磁弁lOが切換り機関吸入負圧が
ダイヤフラム装置11に伝達されると、その負圧に応じ
て該還流通路9を開き、休止側気筒D−Fに排気の一部
を還流させる。これによシ、気筒D−Fの作動体止時に
っま多部分気筒運転時に休止側吸気通路4内を弱火気圧
に保ち、休止側気筒D−Fにおけるいわゆるポンピング
ロスを低減して、一層の燃費の改善を図っている。
An exhaust gas recirculation valve 12 is interposed in the middle of this exhaust gas recirculation passage 9, and almost at the same time when the fresh air cutoff valve 5 closes, a control circuit 15
When the three-way solenoid valve lO is switched in response to a command from the engine and engine suction negative pressure is transmitted to the diaphragm device 11, the recirculation passage 9 is opened in response to the negative pressure, and a portion of the exhaust gas is transferred to the cylinders D-F on the idle side. Reflux. As a result, when the actuating body of cylinders D-F is stopped, the inside of the intake passage 4 on the idle side is kept at a low flame pressure during multi-cylinder operation, and so-called pumping loss in the idle side cylinders D-F is reduced, resulting in further improvement. Efforts are being made to improve fuel efficiency.

また、排気通路6には空燃比センf13と、その下流に
排気浄化用の三元触媒14とが配置されてお)、空燃比
センサ13の検出信号は制御回路15へ送られる。
Further, an air-fuel ratio sensor f13 and a three-way catalyst 14 for purifying exhaust gas are arranged downstream of the air-fuel ratio sensor f13 in the exhaust passage 6), and a detection signal from the air-fuel ratio sensor 13 is sent to a control circuit 15.

そして、制御回路15は、エアフローメータ16からの
吸入空気量信号と図示しない回転数センサからの信号に
もとづき基本的な燃料噴射量を演算し、これを空燃比検
出信号に応じて補正し、理論空燃比の混合比が得られる
ように気筒A−Fに対応して設けた燃料噴射弁a −f
の燃料噴射量をフィードバック制御する。
Then, the control circuit 15 calculates the basic fuel injection amount based on the intake air amount signal from the air flow meter 16 and the signal from the rotation speed sensor (not shown), corrects this according to the air-fuel ratio detection signal, and Fuel injection valves a-f are provided corresponding to cylinders A-F to obtain the air-fuel mixture ratio.
Feedback control of fuel injection amount.

他方、制御回路15は、例えば吸入空気量信号などから
判断してエンジン軽負荷域やアイドリンク時には、前述
したように新気遮断弁5を閉じ排気還流弁12を開くと
共に、燃料噴射弁d−fを全閉保持する指令を出し、休
止側気筒D−Fへの燃料供給をカットしてその作動を停
止させる。
On the other hand, the control circuit 15 closes the fresh air cutoff valve 5 and opens the exhaust recirculation valve 12, as described above, when the engine is in a light load range or when the engine is idling, for example, as judged from the intake air amount signal. A command is issued to keep cylinder f fully closed, and the fuel supply to cylinders D-F on the inactive side is cut to stop its operation.

この場合、遮断弁5を閉じることで、稼動側気筒A−C
では、絞弁2を通過した新気の全量が吸入され吸気量が
2倍になることから、これに対応して燃料噴射弁a −
eからの噴射量も2倍にするように、回路15内で噴射
定数が切換えられる。
In this case, by closing the shutoff valve 5, the working cylinders A-C
In this case, the entire amount of fresh air that has passed through the throttle valve 2 is taken in, and the amount of intake air is doubled, so the fuel injection valve a -
The injection constant is switched within the circuit 15 so that the amount of injection from e is also doubled.

これによシ、稼動側気筒A−Cの負荷を相対的に高め、
燃費効率のすぐれた領域で作動させるのである。
As a result, the load on the working cylinders A-C is relatively increased,
It operates in an area with excellent fuel efficiency.

このようにして、軽負荷域等で部分気筒運転を行い、燃
費の改善を図っている。
In this way, partial cylinder operation is performed in light load ranges, etc., and fuel efficiency is improved.

しかしながら、この従来例にあっては、通常運転(全気
筒運転)ならびに部分気筒運転(かかわらず、各気筒A
−Fのピストン(図示しない)がクランク軸(図示しな
い)を介して互いに連動し往復動するようになっている
ため、例えば部分気筒運転時に、前述したように休止側
気筒D〜Fへ排気の一部を還流させれば休止側気筒D 
−Ii”におけるポンピングロスを良く低減することが
できるものの、休止側気筒D−Fのピスト/摺動による
機械的な摩擦損失を抑えることは困難であった。
However, in this conventional example, normal operation (all cylinder operation) and partial cylinder operation (regardless of whether each cylinder A
-F pistons (not shown) are interlocked with each other via the crankshaft (not shown) and reciprocate, so during partial cylinder operation, for example, the exhaust gas is transferred to the idle cylinders D to F as described above. If part of it is recirculated, the cylinder D on the idle side
Although the pumping loss in the cylinder D-Ii" can be well reduced, it is difficult to suppress the mechanical friction loss caused by the piston/sliding of the cylinder D-F on the idle side.

この摩擦損失は、特にエンジン回転数が上昇するにした
がって著しく増大し、その結果出方ロスを招くという問
題があった。
This friction loss significantly increases especially as the engine speed increases, resulting in a problem in that it causes a loss in output.

また、休止側気筒D−Fに排気を還流させていると、排
気中に含まれるカー?ン、オイル等が圧縮、膨張をくシ
返すうちに徐々に変質、劣化して粘着性を帯びるように
なシ、これが吸排気系を汚したル、ひどいときには燃料
噴射弁等の噴射口を閉塞し、部分気筒運転がら全気筒運
転に復帰後正常な運転を阻害しかねないという心配があ
った。
Also, if the exhaust gas is recirculated to the cylinders D-F on the idle side, the amount of car contained in the exhaust gas? As fuel, oil, etc. go through compression and expansion, they gradually change in quality, deteriorate, and become sticky.This can contaminate the intake and exhaust system, and in severe cases can block the injection ports of fuel injection valves, etc. However, there was concern that normal operation could be disrupted after returning from partial cylinder operation to full cylinder operation.

この発明は、このような問題点に着目してなされたもの
で、各気筒の間にて、ピストンの動力を回転力として取
出すクランク軸を、クラッチを介して接続し、エンジン
の軽負荷域では、一部気筒への燃料供給を遮断じてその
作動を休止させると共に、これに対応するクラッチの結
合を解除して当該休止気筒におけるピストンの作動を停
止させることによシ、部分気筒運転を行い、休止気筒の
摩擦損失とポンピング損失を減らし上記問題点の解決を
図った気筒数制御エンソンの提供を目的とする。
This invention was made with attention to these problems, and a crankshaft that extracts the power of the piston as rotational force is connected between each cylinder via a clutch, and in the light load range of the engine, the crankshaft is connected between each cylinder. , performing partial cylinder operation by cutting off fuel supply to some cylinders to suspend their operation, and disengaging the corresponding clutches to stop the operation of the pistons in the idle cylinders; The object of the present invention is to provide a cylinder number control engine that solves the above problems by reducing friction loss and pumping loss of idle cylinders.

以下、本発明を図面に基づいて説明する。第2図は、本
発明の一実施例を示す構成断面図で、4気筒エンジンに
適用した例である。
Hereinafter, the present invention will be explained based on the drawings. FIG. 2 is a sectional view showing an embodiment of the present invention, which is an example applied to a four-cylinder engine.

まず構成を説明すると、図中17はエンジン本体、G−
Iは後述するようにエンジン軽負荷域でそれぞれ燃料噴
射弁(図示しない)からの燃料供給が速断され作動を休
止する気筒、これに対してJは常時燃料噴射弁からの燃
料と新気とが供給され作動を継続する気筒で、これら各
気筒G−Jのピストン18〜21は各々コンロッド22
を介してクランク軸23に連結されている。
First, to explain the configuration, 17 in the figure is the engine body, G-
As will be described later, I indicates a cylinder in which the fuel supply from the fuel injection valve (not shown) is quickly cut off and the operation is suspended in the engine light load range, whereas J indicates a cylinder in which fuel from the fuel injection valve and fresh air are constantly supplied. The pistons 18 to 21 of each of these cylinders G-J are connected to connecting rods 22, which are supplied to the cylinders and continue to operate.
It is connected to the crankshaft 23 via.

クランク軸23は、ピストン18〜21にかかる燃焼圧
力を回転力に変換し、出力軸241411からミッショ
ン25等を介して各部へと伝達するが、この場合クラン
ク軸23は気筒数に対応して4分割され、各気筒G−J
の間にてそれぞれクラッチ26〜28を介して接続され
る4 クラッチ26〜28は、電磁式のものが用いられ、例え
ば第3図に示すように、ドライブ側(クランク軸23の
出力軸24に近い@)の軸端に形成されたクラッチディ
スク29に対して、トリシン側軸端のホイール30に取
付けられたプレッシャープレート31がスプリング32
によって抑圧されることによシ、結合し同期回転する。
The crankshaft 23 converts the combustion pressure applied to the pistons 18 to 21 into rotational force, and transmits it from the output shaft 241411 to each part via the transmission 25, etc. In this case, the crankshaft 23 has four rotational forces corresponding to the number of cylinders. Divided, each cylinder G-J
The four clutches 26 to 28, which are connected to each other via clutches 26 to 28, are of an electromagnetic type, for example, as shown in FIG. The pressure plate 31 attached to the wheel 30 at the shaft end on the Trishin side is connected to the spring 32 against the clutch disc 29 formed at the shaft end near @).
As a result of being suppressed by , they combine and rotate synchronously.

このプレッシャープレート31の周囲に配置されたマグ
ネット33が、制御回路34の指令によシ通′直され励
磁されると、前記スプリング32に抗してプレッシャー
プレー)31が後退し、その結合が解除される。
When the magnet 33 disposed around the pressure plate 31 is recirculated and energized by a command from the control circuit 34, the pressure plate 31 retreats against the spring 32, and the connection is released. be done.

また、この解除後プレッシャープレート31とクラッチ
ディスク29との結合が常に同位置で行われるように、
位置決めのためのセンサとして、     ′プレッシ
ャープレー)31の外側面に電磁ヒンクアツプ35が、
出力軸24に固定されたフライホイール36の外局にク
ランク角検出器37が設置される。
Further, after this release, the pressure plate 31 and the clutch disc 29 are always connected at the same position.
As a sensor for positioning, an electromagnetic hinge up 35 is installed on the outer surface of the 'pressure play) 31.
A crank angle detector 37 is installed at an outer station of a flywheel 36 fixed to the output shaft 24.

これらのセンサは、プレッシャープレート310回転位
置と気筒Jのクランク角を検出し、それぞれ信号を制御
回路34に送る。そして、後述するクラッチ26〜28
の結合時には、各々対応する信号に応じて所定のクラン
ク角(相対的な角度)になると、マグネット33への通
電が断たれる。
These sensors detect the rotational position of the pressure plate 310 and the crank angle of the cylinder J, and send signals to the control circuit 34, respectively. Clutches 26 to 28, which will be described later,
When the magnets 33 are coupled, when a predetermined crank angle (relative angle) is reached in accordance with the respective corresponding signals, the power to the magnet 33 is cut off.

なお、第3図中38はクランクヅヤーナルを示し、谷ク
ラッチ26〜28に瞬接して設置されるほか、クランク
クース39の両側にも設けられる。
Incidentally, 38 in FIG. 3 indicates a crank joint, which is installed in instant contact with the valley clutches 26 to 28, and is also provided on both sides of the crank shaft 39.

一方、吸気通路lの上流部には、エンジンの吸入空気量
を検出するエアフローメータ16(@負荷状態検出手段
)と、絞弁2の開度よシ加速状態を検出する絞弁開度セ
ンサ4oが設けられる。
On the other hand, in the upstream part of the intake passage l, there is an air flow meter 16 (@load state detection means) that detects the intake air amount of the engine, and a throttle valve opening sensor 4o that detects the opening and acceleration state of the throttle valve 2. will be provided.

この雨検出信号は、図示しない回転センサ(軽負荷状態
検出手段)からの信号(例えばイグニッションコイルか
らの点火信号)と共に、前記制御回路34に送られる。
This rain detection signal is sent to the control circuit 34 together with a signal (for example, an ignition signal from an ignition coil) from a rotation sensor (light load state detection means) not shown.

そして、制御回路34は、これらの信号に基づき、軽負
荷域では気筒G〜■に対応する燃料噴射弁を順次全閉保
持し、燃料の供給を遮断すると共に、これに応じて各ク
ラッチ26〜28の断続を行う。
Based on these signals, the control circuit 34 sequentially holds the fuel injection valves corresponding to the cylinders G to G fully closed in the light load range, cuts off the fuel supply, and accordingly closes the fuel injection valves corresponding to the cylinders G to G. Perform 28 interruptions.

具体的には、エンジンの負荷、回転数が最小のときには
、気筒G〜■への燃料供給を全て遮断し、かつ気筒■と
Jの間のクラッチ28を切離す。負荷、回転数がいくら
か上昇すると、気筒G 、 flへの燃料供給を遮断し
、前記クラッチ28を結合する一方、気筒Hと■の間の
クラッチ27を切離す。
Specifically, when the load and engine speed of the engine are at their minimum, all fuel supply to cylinders G to (2) is cut off, and the clutch 28 between cylinders (2) and J is disengaged. When the load and rotational speed rise somewhat, the fuel supply to cylinders G and fl is cut off, and the clutch 28 is engaged, while the clutch 27 between cylinders H and (2) is disengaged.

そして、負荷、回転数がさらに上昇し、軽負荷域の上限
領域になると、気筒Gへの燃料供給のみ遮断し、クラッ
チ27を結合する一方、気筒GとHの間のクラッチ26
を切離す。これにより、軽負荷域では、負荷等に応じて
1気筒から3気筒の稼動による部分気筒運転を行うと共
に、休止気筒におけるピストン18,19.20の作動
が停止されるのである。
When the load and rotation speed further increase and reach the upper limit of the light load range, only the fuel supply to cylinder G is cut off and the clutch 27 is engaged, while the clutch 27 between the cylinders G and H is connected.
Separate. As a result, in the light load range, partial cylinder operation is performed by operating one to three cylinders depending on the load, etc., and the operation of the pistons 18, 19, 20 in the idle cylinders is stopped.

他方、軽負荷域を越える領域では、各気筒G〜Jへ燃料
が供給され、かつ全クラッチ26〜28を結合して全気
筒運転が行われる。ま九、負荷、回転数が低下すると、
上記とは逆の制御がなされる。
On the other hand, in a region exceeding the light load region, fuel is supplied to each cylinder G to J, and all clutches 26 to 28 are engaged to perform an all cylinder operation. 9. When the load and rotation speed decrease,
Control is performed in the opposite manner to that described above.

第4図に、負荷、回転数に対する各運転領域を示す。FIG. 4 shows each operating range with respect to load and rotation speed.

なお、負荷、回転数が急激に変化した場合、例えば加速
時等には、前記絞弁開度センサ40等からの信号に応答
して、1気筒(あるいは2気筒)運転から直接全気筒運
転へ移行させることもある。
Note that when the load or rotational speed changes suddenly, for example during acceleration, one cylinder (or two cylinder) operation is directly changed to all cylinder operation in response to a signal from the throttle valve opening sensor 40, etc. It may also be transferred.

このように構成したので、一部気筒への燃料供給が遮断
されその作動が休止する部分気筒運転時には、休止気筒
のピストンの作動も停止される。
With this configuration, during partial cylinder operation in which fuel supply to some cylinders is cut off and their operations are suspended, the operation of the pistons in the idle cylinders is also stopped.

したがって、休止気筒において、ピストン摺動による摩
擦損失の発生は防止され、また空気を吸い込むことがな
いから、ポンピングロスを解消することができる。
Therefore, in the cylinder at rest, friction loss due to piston sliding is prevented, and since no air is sucked in, pumping loss can be eliminated.

その結果、部分気筒運転時の出力ロスが大幅に低減され
ると共に、一層燃費の向上を図ることができる。
As a result, output loss during partial cylinder operation is significantly reduced, and fuel efficiency can be further improved.

しかも、軽負荷域では、負荷、回転数の運転条件に応じ
て、1気筒から3気筒の部分気筒運転を行っているため
、常に稼動気筒を最も効率の良い領域で作動することが
でき、よシ燃費の改善効果は大きいのである。
Furthermore, in the light load range, partial cylinder operation is performed for one to three cylinders depending on the operating conditions such as load and rotation speed, so the operating cylinders can always be operated in the most efficient range. The effect of improving fuel efficiency is significant.

なお、1気筒〜3気筒運転時では、全気筒運転時と比べ
てトルク変動が増加するが、この場合クランク軸23に
一体形成するバランサーを適宜選定し、あるいはクラン
ク軸23とは別にバランスシャフトを設け、駆動するこ
とによシ、これを抑制することは可能である。
Note that during 1- to 3-cylinder operation, torque fluctuations increase compared to when all cylinders are operated, but in this case, a balancer that is integrally formed with the crankshaft 23 should be selected appropriately, or a balance shaft that is separate from the crankshaft 23 should be installed. It is possible to suppress this by providing and driving.

またクランク軸23を連結する各クラッチ26〜28の
結合時には、まず半クラツチ状態で前記位置決めを行い
、その後完全に結合してから休止気筒の作動(燃焼)を
行うようにすれば、確実となり、さらにこのときクラッ
チ26〜28を機械的に固定することもできる。
Furthermore, when each of the clutches 26 to 28 connecting the crankshaft 23 is engaged, it is possible to ensure that the positioning is first performed in a half-clutch state, and then the operation (combustion) of the idle cylinder is performed after the clutches are fully engaged. Furthermore, at this time, the clutches 26 to 28 can also be mechanically fixed.

次に、第5図〜第7図は、本発明の他の実施例であシ、
部分気筒運転時に、休止気筒G〜工への燃料供給を遮断
する手段として、これらに対応す  :る燃料噴射弁を
全閉保持すると同時に、当該休止気筒G−Iの吸排気弁
41.42の作動を停止し、全閉状態を保つように構成
したものである。
Next, FIGS. 5 to 7 show other embodiments of the present invention.
During partial cylinder operation, as a means to cut off the fuel supply to the idle cylinders G-I, the corresponding fuel injection valves are held fully closed, and at the same time, the intake and exhaust valves 41 and 42 of the idle cylinders G-I are held fully closed. It is configured to stop operation and maintain a fully closed state.

吸排気弁41 、42  (43、44)は、共通カム
シャフト45の回転によシカム46がタペット47を上
下し、これに応動してロッカーアーム48が回動するこ
とにより開閉される。そして、この例では、ロッカーア
ーム48上に取付けたブツシュ49を、電磁アクチュエ
ータ50の駆動(後退動作)によシレパー51を介して
矢印の方向へ回転し、ロッカーアーム48の支点を伸側
にずらずことによ如、その作動を停止させる。このとき
、吸排気弁41.42はリターンスプリング52によシ
全閉に保たれる。
The intake and exhaust valves 41, 42 (43, 44) are opened and closed by the rotation of the common camshaft 45, which causes the cam 46 to move up and down on the tappet 47, and in response to this, the rocker arm 48 rotates. In this example, the bushing 49 mounted on the rocker arm 48 is rotated in the direction of the arrow by the electromagnetic actuator 50 (backward movement) via the sillper 51, and the fulcrum of the rocker arm 48 is shifted to the extension side. Zukoto stops its operation. At this time, the intake and exhaust valves 41 and 42 are kept fully closed by the return springs 52.

この電磁アクチュエータ50は、休止気筒即ち気筒G−
Iに対応する吸排気弁41.42ごとに設置され、その
駆動はそれぞれ制御回路34からの指令によシコントロ
ールされる。具体的には、例えば気筒Gへの燃料が遮断
され、気筒GとHの間のクラッチ26が切離されるとき
には、この休止気筒Gに対応する吸排気弁41.42が
全閉状態となるように、その電磁アクチュエータ50に
指令が出される。気筒G〜工がすべて休止するときには
、全電磁アクチュエータ50に指令が出され、対応する
吸排気弁41.42がすべて全閉状態に保たれる。
This electromagnetic actuator 50 operates in a dormant cylinder, that is, in a cylinder G-
They are installed for each intake/exhaust valve 41, 42 corresponding to I, and their driving is controlled by commands from the control circuit 34, respectively. Specifically, for example, when fuel is cut off to cylinder G and the clutch 26 between cylinders G and H is disengaged, the intake and exhaust valves 41 and 42 corresponding to the inactive cylinder G are fully closed. Then, a command is issued to the electromagnetic actuator 50. When all cylinders G to G are stopped, a command is issued to all electromagnetic actuators 50, and all the corresponding intake and exhaust valves 41, 42 are kept fully closed.

即ち、前記実施例と同じく軽負荷域では、負荷に応じて
l気筒から3気筒の部分気筒運転を行うが、この際休止
気筒の吸排気弁41.42を全閉に保つ。これによれば
、休止気筒を新気が通シ抜けたシ、あるいは排気が奴気
側に逆流すること等防止できる。また、燃料供給系統を
一つにすることができ、気化器方式にも適用で自るとい
う利点がある。
That is, in the light load range, as in the embodiment described above, partial cylinder operation is performed for 1 cylinder to 3 cylinders depending on the load, but at this time, the intake and exhaust valves 41 and 42 of the idle cylinders are kept fully closed. According to this, it is possible to prevent fresh air from passing through the dormant cylinders or the exhaust gas from flowing back to the cold air side. Further, there is an advantage that the fuel supply system can be integrated into one, and that it can also be applied to a carburetor system.

第8図は、同じく本発明の他の実施例であシ、部分気筒
運転時に、休止気筒の吸排気弁を全閉するかわシに、各
気筒G−Jに対応して分割される吸気通路1の吸気マニ
ホールド53〜55に、ノ々タフライ製の遮断弁56〜
58を設置し、適時閉じるように構成している。
FIG. 8 shows another embodiment of the present invention, in which intake passages are divided corresponding to each cylinder GJ to fully close the intake and exhaust valves of the idle cylinders during partial cylinder operation. 1 intake manifolds 53 to 55, shutoff valves 56 to 56 manufactured by Notafly are installed.
58 is installed and is configured to close at the appropriate time.

速断弁56〜58は、それぞれダイヤフラム装置59〜
61に連結され、制御回路34からの指令で各々の電磁
弁62〜64が切換シパキュームタンク65内の機関吸
入負圧が伝達されると全閉し、その開閉は前記吸排気弁
41.42と同様にコントロールされる。
The quick-release valves 56 to 58 are diaphragm devices 59 to 58, respectively.
61, and in response to a command from the control circuit 34, each of the electromagnetic valves 62 to 64 is fully closed when the engine suction negative pressure in the switching pump tank 65 is transmitted, and the opening and closing thereof is controlled by the intake and exhaust valves 41. It is controlled in the same way as 42.

このようにしても、新気および排気の流入、流出を防止
でき、もちろん燃費の向上が図れる。なお、各実施例は
、4気筒エンジンへの適用例を示したが、3気筒エンソ
ンや6気筒エンジン等にも容易に適用されることは明白
である。
Even in this case, the inflow and outflow of fresh air and exhaust gas can be prevented, and of course, fuel efficiency can be improved. Although each embodiment shows an example of application to a 4-cylinder engine, it is obvious that the present invention can also be easily applied to a 3-cylinder engine, a 6-cylinder engine, etc.

以上説明した通シ、本発明によれば、各気筒のピストン
が、共通のクランク軸に連結された多気筒工ンノシにお
いて、エンノンの軽負荷状態t−m出する手段と、各気
筒の間でクランクの結合を解除するクラッチと、出力軸
側のクランクに対応する気筒を除く他の気筒への少なく
とも燃料供給を遮断する手段とを設け、前記軽負荷域で
クラッチを解離すると共に、結合が解除されたクランク
に対応する気筒への燃料(もしくは燃料と新気と排気)
を遮断するようにしたので、休止気筒におけるピストン
の作動を停止でき、部分気筒運転時の出力ロスを減じて
一層の燃費の改善を図ることができる。また、各気筒に
対応してクラッチを設けたので、負荷、回転数に応じて
1気筒運転から全気筒運転まで行うことができ、常に燃
焼効率を最良に維持して機関性能を高めることができる
という効果がある。
As described above, according to the present invention, in a multi-cylinder engine in which the pistons of each cylinder are connected to a common crankshaft, there is a means for outputting the light load state t-m of the ennon, and a link between each cylinder. A clutch for disengaging the crank and a means for cutting off at least fuel supply to other cylinders other than the cylinder corresponding to the crank on the output shaft side are provided, and the clutch is disengaged in the light load range and the coupling is released. Fuel (or fuel, fresh air, and exhaust) to the cylinder corresponding to the crank
Since the piston is shut off, the operation of the piston in the idle cylinder can be stopped, and the output loss during partial cylinder operation can be reduced, thereby further improving fuel efficiency. In addition, since a clutch is provided for each cylinder, it is possible to operate from one cylinder to all cylinders depending on the load and rotation speed, thereby always maintaining optimal combustion efficiency and improving engine performance. There is an effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の構成断面図、第2図は本発明の実施
例を示す構成断面図、第3図はその部分断面図、第4図
は負荷、回転数に対して設定された各気筒数運転領域を
示すグラフ、第5図は本発明の他の実施例を示す構成断
面図、第6図の(イ)。 Oo)、第7図の0)、(ロ)はそれぞれ第5図の部分
詳細断面図と部分斜視図、第8図は同じく本発明の他の
実施例を示す構成断面図である。 l・・・吸気通路、2・・・絞弁、6・・・排気通路、
16・・・エアフローメータ、17・・・エンジン本体
、18〜21・・・ピストン、23・・・クランク軸、
24    ゛・・・出力111.26〜28・・・ク
ラッチ、34・・・制御回路、35・・・電磁ピックア
ップ、37・・・クランク角検出器、41・・・・吸気
弁、42・・・排気弁。 特許出願人  日産自動車株式会社 第6図(イ) 第7図(イ) 第6図(ロ) 第7 図 (ロ)
Fig. 1 is a sectional view of a conventional device, Fig. 2 is a sectional view of an embodiment of the present invention, Fig. 3 is a partial sectional view thereof, and Fig. 4 shows various settings for load and rotation speed. FIG. 5 is a graph showing the cylinder number operating range, and FIG. 6 is a cross-sectional view showing another embodiment of the present invention. Oo), 0) and (b) in FIG. 7 are a detailed partial sectional view and a partial perspective view of FIG. 5, respectively, and FIG. 8 is a structural sectional view showing another embodiment of the present invention. l... Intake passage, 2... Throttle valve, 6... Exhaust passage,
16... Air flow meter, 17... Engine body, 18-21... Piston, 23... Crankshaft,
24 ゛... Output 111. 26-28... Clutch, 34... Control circuit, 35... Electromagnetic pickup, 37... Crank angle detector, 41... Intake valve, 42...・Exhaust valve. Patent applicant Nissan Motor Co., Ltd. Figure 6 (a) Figure 7 (a) Figure 6 (b) Figure 7 (b)

Claims (1)

【特許請求の範囲】 1 各気筒のピストンが、共通のクランク軸に連、晴さ
れた多気筒エーンジンにおいて、エンノンの軽負荷状態
を検出する手段と、各気筒の間でクランクの結合を解除
するクラッチと、クラッチを介して出力め伝達が解除さ
れ九気筒への燃料供給を遮断する手段とを設け、前記軽
負荷域でクラッチを解離すると共に、出力伝達が解除さ
れた気筒への燃料供給を遮断する制御回路を備えたこと
を特徴とする気筒数制御エンジン。 2、 クラッチは、その接続がつねに同位置で行われる
よう位置決めの丸めのセンサを装備する特許請求の範囲
第1項記載の気筒数制御エンジン。 3、 クラッチは、電磁式クラッチである特許請求の範
囲第1Mないし第2項記載の気筒数制御エンノン。 4、制御回路は、出力軸側クランクから最も離れた位置
のクラッチから負荷に応じて順々に断続し、同じく対応
する気筒への燃料供給を遮断する特許請求の範囲第1項
〜第3項のいずわかに記載の気筒数制御エンジン。
[Scope of Claims] 1. In a multi-cylinder engine in which the pistons of each cylinder are connected to a common crankshaft, a means for detecting a light load state of an ennon and a method for releasing the coupling of the crank between each cylinder. A clutch and a means for cutting off fuel supply to nine cylinders when output transmission is released through the clutch are provided, and the clutch is disengaged in the light load range and fuel supply to the cylinders from which output transmission is released is provided. A cylinder number control engine characterized by being equipped with a control circuit that shuts off. 2. The cylinder number control engine according to claim 1, wherein the clutch is equipped with a positioning rounding sensor so that the clutch is always connected at the same position. 3. The cylinder number control engine according to claims 1M to 2, wherein the clutch is an electromagnetic clutch. 4. The control circuit sequentially connects and disconnects the clutch located farthest from the output shaft side crank according to the load, and also cuts off the fuel supply to the corresponding cylinder.Claims 1 to 3 The cylinder number control engine described in Izuka.
JP4054082A 1982-03-15 1982-03-15 Cylinder number controllable engine Pending JPS58158336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4054082A JPS58158336A (en) 1982-03-15 1982-03-15 Cylinder number controllable engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4054082A JPS58158336A (en) 1982-03-15 1982-03-15 Cylinder number controllable engine

Publications (1)

Publication Number Publication Date
JPS58158336A true JPS58158336A (en) 1983-09-20

Family

ID=12583278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4054082A Pending JPS58158336A (en) 1982-03-15 1982-03-15 Cylinder number controllable engine

Country Status (1)

Country Link
JP (1) JPS58158336A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142465A1 (en) * 2007-05-24 2008-11-27 Kralik Peter Tamas Internal combustion engine and method for controlling the operation of the same
EP2067961A1 (en) * 2007-12-05 2009-06-10 Ford Global Technologies, LLC Coupling device
KR102074901B1 (en) * 2018-09-28 2020-02-07 현대오트론 주식회사 Engine control system and the operating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142465A1 (en) * 2007-05-24 2008-11-27 Kralik Peter Tamas Internal combustion engine and method for controlling the operation of the same
EP2067961A1 (en) * 2007-12-05 2009-06-10 Ford Global Technologies, LLC Coupling device
CN101451580A (en) * 2007-12-05 2009-06-10 福特环球技术公司 Coupling device
US7685988B2 (en) 2007-12-05 2010-03-30 Ford Global Technologies, Llc Coupling device for split in-line engine
KR102074901B1 (en) * 2018-09-28 2020-02-07 현대오트론 주식회사 Engine control system and the operating method

Similar Documents

Publication Publication Date Title
US6523504B2 (en) Control system for controlling variable valve type internal combustion engine
US20070107680A1 (en) Control apparatus and method for four-stroke premixed compression ignition internal combustion engine
US4494502A (en) Idling controller of variable displacement engine
US20060060166A1 (en) Combined exhaust restriction and variable valve actuation
JPS60113007A (en) Control device of intake and exhaust valve in internal- combustion engine
KR100815035B1 (en) Valve gear control device of internal combustion engine
JPH0663458B2 (en) Cycle convertible engine
US6964270B2 (en) Dual mode EGR valve
JPS58158336A (en) Cylinder number controllable engine
JP3494049B2 (en) Blow-by gas reduction device for variable valve engine
JPS6036736A (en) Engine designed to be capable of changing the number of cylinders to be operated
JPS58190507A (en) Variable driving apparatus for internal-combustion engine
JPH0134284B2 (en)
JPH059610B2 (en)
JPH0544528B2 (en)
JPH0619807Y2 (en) Engine scavenger
JP2001295673A (en) Internal combustion engine having split intake system
JPS595846A (en) Four-cylinder internal combustion engine
JPS60150407A (en) Engine valve timing controlling device
JPH06248916A (en) Valriable valve timing device of internal combustion engine
JPH0379534B2 (en)
JPS6287628A (en) Vibration damping device for cylinder number controlling engine
JPS58185953A (en) Multicylinder engine
JPS6299642A (en) Vibration damping device for cylinder number control engine
JPS622138B2 (en)