JPS58154484A - Method for converting laser beam - Google Patents

Method for converting laser beam

Info

Publication number
JPS58154484A
JPS58154484A JP56182393A JP18239381A JPS58154484A JP S58154484 A JPS58154484 A JP S58154484A JP 56182393 A JP56182393 A JP 56182393A JP 18239381 A JP18239381 A JP 18239381A JP S58154484 A JPS58154484 A JP S58154484A
Authority
JP
Japan
Prior art keywords
laser beam
reflecting mirror
annular
mirror
converting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56182393A
Other languages
Japanese (ja)
Inventor
Tomio Unno
海野 富男
Ryutaro Jinbo
神保 龍太郎
Masatoshi Inagaki
正寿 稲垣
Shigeru Takahashi
茂 高橋
Masaru Fujita
優 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP56182393A priority Critical patent/JPS58154484A/en
Publication of JPS58154484A publication Critical patent/JPS58154484A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0734Shaping the laser spot into an annular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors

Abstract

PURPOSE:To obtain a toric laser beam having optional diameters by reflecting a solid laser beam with a reflecting mirror having a circular conical convex face. CONSTITUTION:A solid laser beam 2 is converted to a toric laser beam 4 by the 1st reflecting mirror 8 of a circular conical shape assuming an angle alpha from the point where a plane 7 assuming 45 deg. to the optical axis intersects with the central axis of the beam 2. The selection of the beam 4 is accomplished without changing optical parts by moving the 2nd reflecting mirror 9 parallel in the direction of an arrow 10 in the central axis direction of the beam reflected from the mirror 8. To convert the same to a larger diameter, the mirror 9 is moved in the direction of the arrow 10 on the central axis of the beam reflected from the mirror 8 to condense the beam with a toric codenser lens 11 where the focuses of the lenses intersect, whereby the beam is irradiated to a circumferential joint part and joining such as brazing, soldering, welding or the like is accomplished.

Description

【発明の詳細な説明】 本発明は中実レーザビームから円環状レーザビームへの
変換方法に係り、特に反射鏡を使用した光学系を使用し
て任意の直径の円環状レーザビームを得る変換方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for converting a solid laser beam into an annular laser beam, and more particularly, a conversion method for obtaining an annular laser beam of an arbitrary diameter using an optical system using a reflecting mirror. Regarding.

中実レーザビームから円環状レーザビームへの変換方法
は第1図に示す様なレンズやプリズムを組合せた方法が
とられている。第1図はレーザビーム発振器1からの中
実レーザビーム2が円錐状透明板(プリズム)3f:通
過して円環状レーザビーム4となり集光レンズ5によっ
て円周溶接部6に集光される。この方法では集光レーザ
ビームをテフォーカスして円周溶接部にレーザビームを
照射するため、円周溶接部の直径が大きくなると、声璋
のためのエネルギー密度が低下して溶接できなくなる。
A method for converting a solid laser beam into an annular laser beam uses a combination of lenses and prisms as shown in FIG. In FIG. 1, a solid laser beam 2 from a laser beam oscillator 1 passes through a conical transparent plate (prism) 3f and becomes an annular laser beam 4, which is focused onto a circumferential welding part 6 by a condenser lens 5. In this method, a focused laser beam is telefocused to irradiate the circumferential weld with the laser beam, so if the diameter of the circumferential weld increases, the energy density for welding decreases and welding becomes impossible.

そこで、新たに、円周溶接部の直径に適合する透明板及
び集光レンズを製作する必要がある。新しい光学系を組
込んだ場合は光学系の光軸合せの調整作業を必要として
段取りに手間がかかる。また、レンズやプリズムを1吏
用した光学系″′ 1 は部品表面からの反射や吸収によるレーザエネルギーの
ロスが太きい。円環状に集光したレーザビームで円周溶
接する場合は大出力のレーザビームが使用されるためレ
ーザビームの吸収によってレンズやプリズムを破損した
り、ダメージを与えて照射レーザパワが変動する原因と
なることがある。
Therefore, it is necessary to newly manufacture a transparent plate and a condensing lens that match the diameter of the circumferential weld. When a new optical system is installed, it is necessary to adjust the optical axis alignment of the optical system, which takes time and effort. In addition, an optical system that uses a single lens or prism has a large loss of laser energy due to reflection or absorption from the component surface.When performing circumferential welding with a laser beam focused in an annular shape, high output power is required. Since a laser beam is used, absorption of the laser beam may cause damage to lenses and prisms, causing fluctuations in the irradiation laser power.

本発明の目的は発振器からの中実レーザビームを反射鏡
によって任意の直径の円環状レーザビームにに候する方
法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for converting a solid laser beam from an oscillator into an annular laser beam having an arbitrary diameter using a reflecting mirror.

本発明は中実レーザビーム島光路に対而して組入れた第
1反射鏡によって反射した円環状レーザビームを受ける
第2反射鏡が中実レーザビーム光軸を捷たからない様に
配置し、第2反射鏡を円環状レーザビームの光軸上で平
行移動することによって任意の直径の円環状レーザビー
ムを得る方法である。また第1反射鏡からの円環状レー
ザビーム・の光軸と中実レーザビームの光軸を直交させ
ることにより、中実レーザビームに平行な同芯円の円環
状レーザビームを中実レーザビームと同じ方向に変換で
きる。さらに、第1反射鏡または第2□ 反射鏡に集光性をもたせることにより第2反射鏡を介し
て円環状レーザビーム′f:来光し円周状の接合部のろ
う付、はんだ付、溶接などができる。
In the present invention, the second reflecting mirror that receives the annular laser beam reflected by the first reflecting mirror incorporated in the optical path of the solid laser beam island is arranged so as not to deviate the optical axis of the solid laser beam. This is a method of obtaining an annular laser beam with an arbitrary diameter by moving two reflecting mirrors in parallel on the optical axis of the annular laser beam. In addition, by orthogonalizing the optical axis of the annular laser beam from the first reflecting mirror and the optical axis of the solid laser beam, a concentric annular laser beam parallel to the solid laser beam can be made into a solid laser beam. can be converted in the same direction. Furthermore, by giving the first reflecting mirror or the second □ reflecting mirror a light-condensing property, the annular laser beam 'f: enters through the second reflecting mirror, brazing or soldering the circumferential joint. Can do things like welding.

以下、本発明の一実施例を第2図、第3図により説明す
る。第2図は中実レーザビーム2を第1反射鏡8により
円環状し〜ザビーム4に変形し、中実レーザビーム2と
同じ方向に第2反射鏡9により断面で同心円形の円環状
レーザビームに変形し1円環状集光レンズ11によって
円環状東光ビ〜ム12として円周接合部に照射し、ろう
付、はんだ付、溶接などの接合をする方法を示す。すな
わち、中実レーザビーム2は光軸と45度をなす平面7
と中実レーザビーム2の中心軸との交点よりαの角度を
なす円錐形の第1反射鏡8によって円環状レーザビーム
4に変換される。第1反射鏡8からの反射した円環状レ
ーザビーム4は平行でなく、エネルギー密着分布が不均
等なので、第1反射鏡8と対をなす第2反射鏡9を第1
反射鏡8から反射した円環状レーザビーム4の光軸上で
、第1反射鏡8で仮定した45度の平面と平行な平面に
第1反射鏡と同じαの角度を有する様に凹形円錐状の第
2反射鏡9の鏡面(第1反射鏡8の鏡面と平行な而)全
反射したレーザビームに対而して設けて第2反射鏡9か
らの反射ビームを平行な円芯円の円環状レーザビーム4
に変形した。円環状レーザビーム4の直径の選択は第1
反射鏡8カ・らの反射ビームの中心軸方向の矢印15の
方向に第2反射鏡9を平行移動することによって光学部
品全変換する′ことなく行うことができた。第2図の点
線は大径への集光状態を示す。大径への変換は第1反射
鏡8からの反射ビームの中心軸上の矢印15方向に第2
反射鏡9を動かしレンズ焦点が交差する円環状の集光レ
ンズ11で集光し円周状接合部に照射し、ろう付、はん
だ付、溶接などの接合が出来た。円環状レーザビームの
直径を変えた場合の光軸合せは第2反射鏡9と円環状集
光レンズ11を一体化することにより調量なしでも使用
できた。第1反射鏡8と第2反射鏡9の角度aは10度
以下の範囲が好適であった。第3図は中実レーザビーム
の中心軸と30贋をなす平面15とβの角度をなす円錐
形鏡面の第1反射鏡8からの反射光を受ける集光反射鏡
14と円環状集光ビーム12とその円周溶接部13を示
す。すなわち、曲面を有する集光反射鏡14を中天レー
ザビーム2の光路外の位置に配して第1反射鏡8と集光
反射鏡14との2個の反射説の組合せのみで円周接合し
たものである。円周接合部の直径に適合する円環状レー
ザビーム4の直径選定は第2図同様に第1反射鏡8カ・
ら反射した円環状レーザビーム4の中心軸上を集光反射
鏡14を平行移動調整することで適合した。なお第1反
射鏡8のβ角度は10度以下で適用した。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 3. In FIG. 2, a solid laser beam 2 is transformed into an annular shape by a first reflecting mirror 8 and transformed into the beam 4, and then a toroidal laser beam with a concentric circular cross section is produced by a second reflecting mirror 9 in the same direction as the solid laser beam 2. A method is shown in which a circular Toko beam 12 is transformed into a circular condenser lens 11 to irradiate the circumferential joint portion, and the joint is performed by brazing, soldering, welding, or the like. That is, the solid laser beam 2 lies on a plane 7 that makes a 45 degree angle with the optical axis.
The solid laser beam 2 is converted into an annular laser beam 4 by a conical first reflecting mirror 8 that forms an angle α from the intersection of the solid laser beam 2 and the central axis of the solid laser beam 2. The annular laser beam 4 reflected from the first reflecting mirror 8 is not parallel and the energy adhesion distribution is uneven, so the second reflecting mirror 9 that is paired with the first reflecting mirror 8 is
On the optical axis of the annular laser beam 4 reflected from the reflecting mirror 8, a concave cone is formed on a plane parallel to the 45-degree plane assumed by the first reflecting mirror 8 so as to have the same angle α as the first reflecting mirror. The mirror surface of the second reflecting mirror 9 (parallel to the mirror surface of the first reflecting mirror 8) is provided in opposition to the totally reflected laser beam, so that the reflected beam from the second reflecting mirror 9 is reflected by a parallel circular center circle. Annular laser beam 4
transformed into. The diameter of the annular laser beam 4 is selected in the first step.
By moving the second reflecting mirror 9 in parallel in the direction of the arrow 15, which is the direction of the central axis of the reflected beam from the reflecting mirrors 8, this could be done without completely converting the optical components. The dotted line in FIG. 2 indicates the state of condensing light to a large diameter. The conversion to a larger diameter is performed by moving the second mirror in the direction of the arrow 15 on the central axis of the reflected beam from the first reflecting mirror 8.
By moving the reflecting mirror 9 and condensing the light with the annular condensing lens 11 whose lens focal points intersect, the light was irradiated onto the circumferential joint, and joining by brazing, soldering, welding, etc. was achieved. By integrating the second reflecting mirror 9 and the annular condensing lens 11, alignment of the optical axis when the diameter of the annular laser beam is changed can be performed without adjustment. The angle a between the first reflecting mirror 8 and the second reflecting mirror 9 was preferably within a range of 10 degrees or less. FIG. 3 shows a condenser reflector 14 that receives reflected light from a first reflector 8 having a conical mirror surface that forms an angle β with a plane 15 that is 30 degrees square with the central axis of a solid laser beam, and a toroidal condensed beam. 12 and its circumferential weld 13 are shown. That is, the condensing reflector 14 having a curved surface is arranged at a position outside the optical path of the mid-height laser beam 2, and the circumference is joined only by the combination of the two reflection theory, the first reflector 8 and the condensing reflector 14. This is what I did. The diameter of the annular laser beam 4 that matches the diameter of the circumferential joint is selected by selecting the first reflecting mirror 8 as shown in Figure 2.
This was achieved by adjusting the condensing reflector 14 to move in parallel on the central axis of the annular laser beam 4 reflected by the laser beam. Note that the β angle of the first reflecting mirror 8 was set to 10 degrees or less.

本発明によれば、中実レーザビームから平行な同芯Hの
円環状レーザビームを得ることができるので集光光学系
の位置に制限がなく自由な形状の集光光学系を使用でき
る。また、光学系の距離の移動によって円環状レーザビ
ームの直径を任意に選択できるので直径変更と光軸アラ
イメントが容易である。
According to the present invention, since a parallel concentric annular laser beam can be obtained from a solid laser beam, there is no restriction on the position of the focusing optical system, and a freely shaped focusing optical system can be used. Furthermore, since the diameter of the annular laser beam can be arbitrarily selected by moving the distance of the optical system, changing the diameter and aligning the optical axis are easy.

第1反射鏡の鏡面に曲率をもたせることによっても円環
状集光ビームが得られる。
An annular condensed beam can also be obtained by providing a curvature to the mirror surface of the first reflecting mirror.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のレーザビーム変換方法を説明する概略構
成図、第2図、第3図は本発明の一実施例を説明する断
面概略構成図である。 2・・・中実レーザビーム、4・・・円環状レーザビー
ム、8・・・第1反射鏡、9・・・第2反射鏡、10・
・・第2反射鏡移動方向、11・・・円環状集光レンズ
、13・・・第1図 省2図
FIG. 1 is a schematic block diagram explaining a conventional laser beam conversion method, and FIGS. 2 and 3 are cross-sectional schematic diagrams explaining an embodiment of the present invention. 2... Solid laser beam, 4... Annular laser beam, 8... First reflecting mirror, 9... Second reflecting mirror, 10...
...Second reflecting mirror movement direction, 11...Annular condensing lens, 13...Fig. 1 Ministry of Fig. 2

Claims (1)

【特許請求の範囲】 1、中実レーザビームを円環状レーザビームに変換する
方法において、前記中実レーザビームを凸型円錐面の第
1反射鏡で反射させて円環状に変換するとともに、該円
環状ビームの直径が該ビームの進行方向に広がるように
したことを特徴とするレーザビームの変換方法。 2、前記円環状ビームを中天レーザビームをまたがらな
い様に反射させる特許請求の範囲第1項記載のV−ザビ
ームの変換方法。 3、前記第1反射鏡の頂点を中実レーザビームの中心軸
に一致させ、その鏡面の角度が鏡面の頂点で中実レーザ
ビームと45匿をなす平面から等角度に配置されている
特許請求の範囲第1項記載のV−ザビームの変換方法。 4、前記第1反射鏡の鏡面が中実レーザビームの中心軸
と45度の平面となす角度を10度以下にした特許請求
の範囲第3項記載のレーザビームの変換方法。 5、前記円環状ビームを凹型円錐面の第2反射鏡により
反射させ真直な円環状ビームに変換する特許請求の範囲
第1項又は第2項記載のV−ザビームの変換方法。 6、前記第2反射鏡が第1反射鏡の頂点で仮定した中実
レーザビームに対面して45度をなす平面繞から反射す
る中実レーザビームの中心軸方向に平行移動させて円環
状レーザビームの直径を調整する特許請求の範囲第5項
記載のレーザビームの変換方法。 7、第2反射鏡の鏡面が円環状の焦点を有する曲率の鏡
面を有する特許請求の範囲第5項記載のレーザビームの
変換方法。 8、前記真直な円環状ビームを円環状を保ち来光させる
特許請求の範囲第5項記載のレーザビームの変換方法。
[Claims] 1. A method for converting a solid laser beam into an annular laser beam, which includes converting the solid laser beam into an annular shape by reflecting it on a first reflecting mirror having a convex conical surface, and converting the solid laser beam into an annular laser beam. A method for converting a laser beam, characterized in that the diameter of the annular beam is expanded in the direction in which the beam travels. 2. The V-the-beam conversion method according to claim 1, wherein the annular beam is reflected so as not to straddle the mid-height laser beam. 3. A patent claim in which the apex of the first reflecting mirror is aligned with the central axis of the solid laser beam, and the angle of the mirror surface is equiangular from a plane that is 45 degrees secluded from the solid laser beam at the apex of the mirror surface. The method for converting the V-the-beam according to item 1. 4. The laser beam conversion method according to claim 3, wherein the mirror surface of the first reflecting mirror makes an angle of 10 degrees or less with the central axis of the solid laser beam and a 45 degree plane. 5. The V-the-beam conversion method according to claim 1 or 2, wherein the annular beam is reflected by a second reflecting mirror having a concave conical surface and converted into a straight annular beam. 6. The second reflecting mirror faces the assumed solid laser beam at the apex of the first reflecting mirror and moves in parallel in the direction of the central axis of the solid laser beam reflected from a plane that forms an angle of 45 degrees to form an annular laser. 6. A method of converting a laser beam according to claim 5, wherein the diameter of the beam is adjusted. 7. The laser beam conversion method according to claim 5, wherein the mirror surface of the second reflecting mirror has a curvature having an annular focal point. 8. The method for converting a laser beam according to claim 5, in which the straight annular beam is made to come while maintaining its annular shape.
JP56182393A 1981-11-16 1981-11-16 Method for converting laser beam Pending JPS58154484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56182393A JPS58154484A (en) 1981-11-16 1981-11-16 Method for converting laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56182393A JPS58154484A (en) 1981-11-16 1981-11-16 Method for converting laser beam

Publications (1)

Publication Number Publication Date
JPS58154484A true JPS58154484A (en) 1983-09-13

Family

ID=16117529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56182393A Pending JPS58154484A (en) 1981-11-16 1981-11-16 Method for converting laser beam

Country Status (1)

Country Link
JP (1) JPS58154484A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249813A (en) * 1987-03-21 1988-10-17 ヘレウス・インスツルメンツ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Beam guide optical system for laser beam
US5690845A (en) * 1994-10-07 1997-11-25 Sumitomo Electric Industries, Ltd. Optical device for laser machining
EP1666188A2 (en) * 2004-12-01 2006-06-07 Fanuc Ltd Laser processing device with a light gathering member for irradiating the workpiece with a shape other than a one-point like profile, i.e. like a circle or a ring
US7265314B2 (en) * 2004-07-27 2007-09-04 Snecma Method and apparatus for laser welding using a CW laser beam combined with a pulsed laser beam
JP2009021476A (en) * 2007-07-13 2009-01-29 Disco Abrasive Syst Ltd Wafer dividing method
WO2013051424A1 (en) * 2011-10-07 2013-04-11 株式会社ブイ・テクノロジー Device for laser-machining glass substrate
CN103619527A (en) * 2011-05-11 2014-03-05 株式会社V技术 Lens and laser processing device equipped with same
CN105458493A (en) * 2014-09-30 2016-04-06 发那科株式会社 Laser processing apparatus
EP3088165A4 (en) * 2015-02-25 2017-02-01 Technology Research Association For Future Additive Manufacturing Optical processing head, optical processing device, and optical processing method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087317B2 (en) * 1987-03-21 1996-01-29 ヘレウス・インスツルメンツ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Beam guiding optical device for laser beam
JPS63249813A (en) * 1987-03-21 1988-10-17 ヘレウス・インスツルメンツ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Beam guide optical system for laser beam
US5690845A (en) * 1994-10-07 1997-11-25 Sumitomo Electric Industries, Ltd. Optical device for laser machining
US7265314B2 (en) * 2004-07-27 2007-09-04 Snecma Method and apparatus for laser welding using a CW laser beam combined with a pulsed laser beam
EP1666188A2 (en) * 2004-12-01 2006-06-07 Fanuc Ltd Laser processing device with a light gathering member for irradiating the workpiece with a shape other than a one-point like profile, i.e. like a circle or a ring
EP1666188A3 (en) * 2004-12-01 2006-08-16 Fanuc Ltd Laser processing device with a light gathering member for irradiating the workpiece with a shape other than a one-point like profile, i.e. like a circle or a ring
JP2009021476A (en) * 2007-07-13 2009-01-29 Disco Abrasive Syst Ltd Wafer dividing method
CN103619527A (en) * 2011-05-11 2014-03-05 株式会社V技术 Lens and laser processing device equipped with same
US9310531B2 (en) 2011-05-11 2016-04-12 V-Technology Co., Ltd. Lens and laser processing apparatus equipped with the lens
JP2013082580A (en) * 2011-10-07 2013-05-09 V Technology Co Ltd Laser processing apparatus for glass substrate
WO2013051424A1 (en) * 2011-10-07 2013-04-11 株式会社ブイ・テクノロジー Device for laser-machining glass substrate
CN105458493A (en) * 2014-09-30 2016-04-06 发那科株式会社 Laser processing apparatus
US9656349B2 (en) 2014-09-30 2017-05-23 Fanuc Corporation Laser processing apparatus capable of increasing focused beam diameter
CN105458493B (en) * 2014-09-30 2017-10-27 发那科株式会社 Laser processing device
EP3088165A4 (en) * 2015-02-25 2017-02-01 Technology Research Association For Future Additive Manufacturing Optical processing head, optical processing device, and optical processing method
US10369661B2 (en) 2015-02-25 2019-08-06 Technology Research Association For Future Additive Manufacturing Optical processing head, optical machining apparatus, and optical processing method

Similar Documents

Publication Publication Date Title
JPH0412039B2 (en)
JP2866267B2 (en) Optical drawing apparatus and optical drawing method for wafer substrate
US20060186098A1 (en) Method and apparatus for laser processing
US5574601A (en) Optical beam expander
JPH11501738A (en) Laser scanner with reflective optics
JPS58154484A (en) Method for converting laser beam
JPS6448692A (en) Multifocusing laser beam condensing device
US7297898B2 (en) Laser processing machine
JPH01191801A (en) Condenser lens
CN214602523U (en) Integral annular belt laser welding device
JPS63108318A (en) Laser working device
CN111975215A (en) Laser processing apparatus and method
CN112643199A (en) Annular laser welding device
US5347401A (en) Reflecting telescope and its production process
JPH0722685A (en) Focus composition method of beam and its focus composition device
JP3423420B2 (en) Point condensing lens and solar condensing device using the same
JPS63157123A (en) Linear beam optical system
JP2800006B2 (en) Laser device
CN220196600U (en) Composite laser and laser processing system
CN110488398A (en) It is a kind of to obtain adjustable bifocal free-form surface lens
IL44645A (en) Method and system for illuminating a target
CN111975216B (en) Multi-beam laser processing device and method
JPH10135571A (en) Optical condensing system of semiconductor laser
JPH0241607Y2 (en)
JPS63285502A (en) Condenser lens for laser