JPS5815199B2 - Ammonia - Google Patents

Ammonia

Info

Publication number
JPS5815199B2
JPS5815199B2 JP50065425A JP6542575A JPS5815199B2 JP S5815199 B2 JPS5815199 B2 JP S5815199B2 JP 50065425 A JP50065425 A JP 50065425A JP 6542575 A JP6542575 A JP 6542575A JP S5815199 B2 JPS5815199 B2 JP S5815199B2
Authority
JP
Japan
Prior art keywords
ammonia nitrogen
bed
bod
zero
limestone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50065425A
Other languages
Japanese (ja)
Other versions
JPS51141774A (en
Inventor
広瀬道郎
大谷光伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP50065425A priority Critical patent/JPS5815199B2/en
Publication of JPS51141774A publication Critical patent/JPS51141774A/en
Publication of JPS5815199B2 publication Critical patent/JPS5815199B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 本発明は廃水中のアンモニア性窒素を速かに且つ安定し
て除去する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for rapidly and stably removing ammonia nitrogen from wastewater.

水中の有機物に起因する酸素要求量はいわゆるBOD値
として重要な水質の汚染度を示す指標であるが、さらに
アンモニア性窒素も酸素消費をひき起こし、また亜硝酸
性の窒素となって残存する故に重要な汚染物質であり、
有機性酸素要求量とともに看過しえないものである。
Oxygen demand due to organic matter in water is the so-called BOD value, which is an important indicator of the degree of water pollution, but ammonia nitrogen also causes oxygen consumption and remains as nitrous nitrogen. is an important pollutant,
Along with organic oxygen demand, this cannot be overlooked.

一方上水源に多量のアンモニア性窒素が混入した場合に
は、通常前塩素添加による所謂ブレークポイントクロリ
ネーション法で処理するが、この場合、塩素消費が増大
するのみならず、有害なりロルアミンが多量に副生ずる
などの問題が指摘されている。
On the other hand, when a large amount of ammonia nitrogen is mixed into a water source, it is usually treated by the so-called breakpoint chlorination method, which involves adding chlorine beforehand, but in this case, not only does chlorine consumption increase, but also a large amount of harmful loramine is produced. Problems such as side effects have been pointed out.

従来水中のアンモニア性窒素の除去としては大きく分け
て、以下の4つの方法が提案されている。
Conventionally, the following four methods have been proposed for removing ammonia nitrogen from water.

■ アンモニアストリッピング法 ■ ブレークポイントクロリネーション法■ イオン交
換法(吸着法) ■ 生物学的硝化法 である。
■ Ammonia stripping method ■ Breakpoint chlorination method ■ Ion exchange method (adsorption method) ■ Biological nitrification method.

しかしながらこれらの方法はそれぞれ大きな欠点を有し
、抜本的な技術改良の必要性があった。
However, each of these methods has major drawbacks, and there is a need for drastic technical improvements.

即ちアンモニアストリッピング法では、空中へのアンモ
ニアガスの飛散で大気汚染の恐れがあり、かつ除去効率
が特に低温では著しく低下する。
That is, in the ammonia stripping method, there is a risk of air pollution due to the scattering of ammonia gas into the air, and the removal efficiency decreases significantly, especially at low temperatures.

また装置上も多量に用いるアルカリなどによる目づまり
などトラブルが多いとされている。
It is also said that there are many problems with the equipment, such as clogging due to the large amount of alkali used.

ブレークポイントクロリネーション法では、15〜20
分の短時間に処理できるが高濃度アンモニアの場合には
、塩素の消費が莫大となりコスト的な問題があり、かつ
残留するクロルアミンの毒性が強くかえってアンモニア
性窒素よりも生物や人畜に有害である。
In the breakpoint chlorination method, 15 to 20
However, in the case of highly concentrated ammonia, the consumption of chlorine is enormous, which poses a cost problem, and the residual chloramine is highly toxic and is even more harmful to living things and humans than ammonia nitrogen. .

イオン交換法は確実に高速にアンモニアを除去する点で
は前2者に優るが簡易脱着がなく、一般には脱着剤を多
量に使用するので濃縮された脱着アンモニア性窒素を含
む廃液の処置に困る。
The ion exchange method is superior to the former two in that it reliably removes ammonia at high speed, but it does not allow easy desorption and generally requires a large amount of desorbent, making it difficult to treat waste liquid containing concentrated desorbed ammonia nitrogen.

生物学的硝化法は硝化菌としてニトロソモナス(Nit
rosomonas)、ニトロバクタ−(Nitr−o
bacter)が有効であるが、これらの硝化菌の世代
時間が長く(30時間位)、また水質変動に弱い。
The biological nitrification method uses Nitrosomonas (Nit
rosomonas), Nitrobacter (Nitro-o
bacter) are effective, but the generation time of these nitrifying bacteria is long (about 30 hours) and they are vulnerable to changes in water quality.

このために活性汚泥法では長時間曝気による方法がとら
れることがあるが、平均滞留時間が15時間程度と極め
て長く、かつ返送汚泥の濃縮が極めて困難であり汚泥濃
縮槽が大きくなる。
For this reason, in the activated sludge method, a method using aeration for a long time is sometimes used, but the average residence time is extremely long, about 15 hours, and it is extremely difficult to thicken the returned sludge, resulting in a large sludge thickening tank.

一方汚泥の保持時間を長くするために0床の口材表面に
付着させる接触酸化法が考案されているが、やはり処理
原水のアンモニア性窒素の変動に対しては不安定であり
、短時間に安定な処理水を得ることは困難である(世代
時間に対して水質の変動時間が短い場合には本質的に変
動に追いつけない本発明者らは、イオン交換法の完全迅
速除去という利点を生かしつつ薬剤を用いない無害な生
物学的硝化法の利点を併せ持った方法について鋭意研究
を進めた結果、硝化菌を吸着剤表面に活性な状態で生育
させつつアンモニア性窒素の吸着と酸化(硝化)による
脱着を同時に行なわせることによって達成できることを
見い出し、本発明に到達した。
On the other hand, in order to prolong the retention time of sludge, a contact oxidation method has been devised in which the sludge is deposited on the surface of the mouth material of the zero bed, but it is still unstable due to fluctuations in ammonia nitrogen in the treated raw water and cannot be used in a short time. It is difficult to obtain stable treated water (if the fluctuation time of water quality is short compared to the generation time, it is essentially impossible to keep up with the fluctuations). As a result of intensive research into a method that combines the advantages of a harmless biological nitrification method without the use of chemicals, we have succeeded in adsorbing and oxidizing ammonia nitrogen (nitrification) while actively growing nitrifying bacteria on the adsorbent surface. They have discovered that this can be achieved by simultaneously carrying out attachment and detachment, and have arrived at the present invention.

すなわち、本発明は天然ゼオライトまたは合成ゼオライ
トと石灰石とを含有する口材で0床を構成し、当該0床
にアンモニア性窒素とBOD成分を含有する廃水を流通
させ、口材表面に硝化菌を保持する制御された生物層被
膜を形成せしめ、アンモニア性窒素の吸着補集と同時に
定常的酸化によって0床の吸着(イオン交換)機能を持
続させることを特徴とする廃水からアンモニア性窒素を
除去する方法である。
That is, in the present invention, a zero bed is configured with a mouth material containing natural zeolite or synthetic zeolite and limestone, and wastewater containing ammonia nitrogen and BOD components is passed through the zero bed, and nitrifying bacteria are grown on the surface of the mouth material. Ammoniacal nitrogen is removed from wastewater by forming a controlled biolayer film that retains the ammoniacal nitrogen, and maintaining zero-bed adsorption (ion exchange) function through constant oxidation while simultaneously adsorbing and collecting ammoniacal nitrogen. It's a method.

本発明の0床を構成する口材には、吸着剤として天然ま
たは合成のゼオライトを含有せしめることが必要である
The mouth material constituting the zero bed of the present invention must contain natural or synthetic zeolite as an adsorbent.

口材としては、吸着剤に加えて砂利等を適宜用いること
ができる。
As the mouth material, gravel or the like can be used as appropriate in addition to the adsorbent.

また口床内のpHをたえず一定の幅(pH=7〜9)に
保つために吸着剤とともに石灰石を混合することが必要
であり、吸着剤に対して数%〜50%混合しておくこと
が極めて好ましい。
In addition, it is necessary to mix limestone with the adsorbent in order to constantly maintain the pH in the mouth floor at a constant range (pH = 7 to 9), and it is necessary to mix limestone with the adsorbent at a ratio of several to 50%. is extremely preferred.

廃水中に有機性汚染物によるBODが多い場合には、吸
着剤の表面にBOD酸化菌が支配的になり硝化菌が駆逐
されるとともに厚い生物層が吸着剤表面を覆いつくすた
めにアンモニア性窒素が除去できなくなる。
When there is a lot of BOD due to organic pollutants in wastewater, BOD oxidizing bacteria become dominant on the surface of the adsorbent, nitrifying bacteria are expelled, and a thick biological layer covers the surface of the adsorbent, resulting in ammonia nitrogen. cannot be removed.

従って吸着剤表面の生物相のコントロールがきわめて重
要であり、BOD負荷は0.4kg BOD/m8日以
下であることが特に好ましい。
Therefore, control of biota on the surface of the adsorbent is extremely important, and it is particularly preferable that the BOD load is 0.4 kg BOD/m8 days or less.

なお、kgBOD/m3日は、0床の容積基準での除去
BODの負荷で示す。
In addition, kgBOD/m3 day is expressed as the load of removed BOD based on the volume of 0 bed.

上述のように、吸着剤表面に生物層が厚く付着すると吸
着性能が低下するので、薄い活性な硝化菌の層を付着さ
せること、即ち制御された生物層被膜を形成せしめるこ
とが必要である。
As mentioned above, when a thick biological layer is attached to the adsorbent surface, the adsorption performance decreases, so it is necessary to attach a thin layer of active nitrifying bacteria, that is, to form a controlled biological layer coating.

本発明方法の実施に際しては、口床内を好気性に保つた
めに口床内にたえず溶存酸素(DO)を供給すべく直接
0床下部から曝気するか、ポンプ循環を行なうことが重
要である。
When carrying out the method of the present invention, it is important to aerate directly from the bottom of the zero bed or to perform pump circulation to constantly supply dissolved oxygen (DO) to the oral floor in order to keep the inside of the oral floor aerobic. .

本発明方法によれば、原水のアンモニア性窒素が大きく
変動しても短時間に完全に除去でき、またほぼ一定の速
度で硝化、脱着できるのでアンモニアの吸着性を維持す
ることが可能となる。
According to the method of the present invention, even if the ammonia nitrogen in raw water fluctuates greatly, it can be completely removed in a short time, and nitrification and desorption can be performed at a substantially constant rate, making it possible to maintain ammonia adsorption.

実施例 1、比較例 1 平均粒径1cmの天然ゼオライトのカラムに石灰石を5
%添加した0床と石灰石を添加しない0床およびNaO
HでpHを7〜8にコントロールした0床のそれぞれの
下部から曝気したものについて比較した。
Example 1, Comparative Example 1 5 limestones were placed in a natural zeolite column with an average particle size of 1 cm.
% added 0 bed and 0 bed without limestone addition and NaO
Comparisons were made between aeration from the bottom of each 0 bed whose pH was controlled to 7 to 8 with H.

結果を第1図に示す。ゼオライトのみの場合(図中の3
)に比較して、石灰石を併用した場合(図中の1)のア
ンモニア性窒素の除去率の向上は著しい。
The results are shown in Figure 1. In the case of zeolite only (3 in the diagram)
), the ammonia nitrogen removal rate is significantly improved when limestone is used in combination (1 in the figure).

これはpHの安定化とCaCO3に因るCO2供給に依
って硝化菌の生育に好ましい環境が保持されることによ
る相乗効果に起因すると考えられる。
This is thought to be due to the synergistic effect of maintaining a favorable environment for the growth of nitrifying bacteria through pH stabilization and CO2 supply from CaCO3.

NaOHでpHをコントロールした場合(図中の2)に
も若干の除去率の向上が認められるが、石灰石を併用し
た場合にははるかに及ばない。
A slight improvement in the removal rate is also observed when the pH is controlled with NaOH (2 in the figure), but it is far less than when limestone is used in combination.

なお石灰石を50%以上添加した場合には、全く添加し
ない場合よりも除去率は低下した。
Note that when 50% or more of limestone was added, the removal rate was lower than when no limestone was added at all.

実施例 2− 平均粒径1crLの天然ゼオライトめカラムに石灰石を
5%添加した0床に下部曝気を行ない廃水を通した。
Example 2 - A natural zeolite column with an average particle size of 1 crL was loaded with 5% limestone in a 0 bed with bottom aeration and wastewater was passed through it.

−ケ月運転後に廃水中のBOD負荷を0.1.0.2.
0.3.0.5および0.7kg BOD/m8日と変
えてテストした結果を第2図に示す。
- After several months of operation, reduce the BOD load in wastewater to 0.1.0.2.
The results of testing with 0.3, 0.5 and 0.7 kg BOD/m 8 days are shown in Figure 2.

テスト開始までは、約1ケ月0.1 kgBOD/m”
日で連続運転したカラムをそれぞれ用いている。
0.1 kgBOD/m for about 1 month until the start of the test.”
Each column was operated continuously for several days.

処理原水中のアンモニア性窒素は20ppmで一定に供
給した。
Ammonia nitrogen in the treated raw water was constantly supplied at 20 ppm.

BOD負荷0.4kgBOD/m8日以下とすることが
アンモニア性窒素の除去効果の維持にとって好ましいこ
とが理解される。
It is understood that a BOD load of 0.4 kg BOD/m 8 days or less is preferable for maintaining the ammonia nitrogen removal effect.

なお図中の4,5,6,7,8は各々BOD負荷が0.
1.0.2.0.3.0.5.0.7kgBOD/m3
日の場合に対応する。
Note that 4, 5, 6, 7, and 8 in the figure each have a BOD load of 0.
1.0.2.0.3.0.5.0.7kgBOD/m3
Corresponds to the case of days.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は種々の処理条件によるアンモニア
性窒素の除去率の経口変化を示す。 1;石灰石を併用した場合、2;NaOHで中和した場
合、3;ゼオライトのみの場合、4;BOD負荷=0.
1 kgBOD/m3日の場合、5;BOD負荷=0.
2kgBOD/m3日の場合、6;BOD負荷=0.3
kgBOD/m3日の場合、7;BOD負荷=0.5
kgBOD/m3日の場合、8;BOD負荷=0.7k
gBOD/m3日の場合。
Figures 1 and 2 show the oral variation in ammonia nitrogen removal rate with various treatment conditions. 1; When limestone is used in combination; 2; When neutralized with NaOH; 3; When zeolite alone is used; 4; BOD load = 0.
For 1 kgBOD/m3 days, 5; BOD load = 0.
For 2kgBOD/m3 days, 6; BOD load = 0.3
For kgBOD/m3 days, 7; BOD load = 0.5
For kgBOD/m3 days, 8; BOD load = 0.7k
For gBOD/m3 days.

Claims (1)

【特許請求の範囲】[Claims] 1 天然ゼオライトまたは合成ゼオライトと石灰石とを
含有する口材で0床を構成し、当該0床にアンモニア性
窒素とBOD成分を含有する廃水を流通させ、口材表面
に硝化菌を保持する制御された生物層被膜を形成せしめ
、アンモニア性窒素の吸着補集と同時に定常的酸化によ
って0床の吸着機能を持続させることを特徴とする廃水
からアンモニア性窒素を除去する方法。
1 A zero bed is constructed with a mouth material containing natural zeolite or synthetic zeolite and limestone, and wastewater containing ammonia nitrogen and BOD components is passed through the zero bed to create a controlled system that retains nitrifying bacteria on the surface of the mouth material. 1. A method for removing ammonia nitrogen from wastewater, which is characterized by forming a biological layer film and maintaining zero-bed adsorption function through constant oxidation and adsorption collection of ammonia nitrogen.
JP50065425A 1975-06-02 1975-06-02 Ammonia Expired JPS5815199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50065425A JPS5815199B2 (en) 1975-06-02 1975-06-02 Ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50065425A JPS5815199B2 (en) 1975-06-02 1975-06-02 Ammonia

Publications (2)

Publication Number Publication Date
JPS51141774A JPS51141774A (en) 1976-12-06
JPS5815199B2 true JPS5815199B2 (en) 1983-03-24

Family

ID=13286692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50065425A Expired JPS5815199B2 (en) 1975-06-02 1975-06-02 Ammonia

Country Status (1)

Country Link
JP (1) JPS5815199B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951765A (en) * 1972-06-19 1974-05-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951765A (en) * 1972-06-19 1974-05-20

Also Published As

Publication number Publication date
JPS51141774A (en) 1976-12-06

Similar Documents

Publication Publication Date Title
WO2000077171A1 (en) Method of high-concentration culture of nitrifying bacteria or denitrifying bacteria contained in activated sludge, culture promoter to be used in high-concentration culture method of nitrifying bacteria, and mehtod of weight loss treatment of activated sludge
JP4578278B2 (en) Sewage treatment apparatus and treatment method
EP0530226B1 (en) Method for removing nitrogen from an aqueous solution
CN100445366C (en) Nitrobacteria culture promoter
CN100445365C (en) Nitrobacteria culture promoter
JPH05169090A (en) Device for supplying nitrification bacteria in biological activated carbon treatment tower
KR20140091997A (en) Continuous removal of perchlorate and nitrate using enriched sulfur-oxidizing microorganisms
JPS6336898A (en) Immobilized bacteria capable of oxidizing nh4+ contained in sewage to nitrous acid and treatment using same
Coventry et al. The conditioning of a chloramine treated water supply for biological purposes
JPS5815199B2 (en) Ammonia
JPS6317513B2 (en)
WO2020255957A1 (en) Water purification material and water purification method using same
KR19980074499A (en) Wastewater Treatment Carrier, Manufacturing Method Thereof And Wastewater Treatment Method Using The Carrier
WO2002046104A1 (en) High-density adsorbents of bacteria, closed circulatory system containing the same for fish farming and fish fry culture and fishes fed by using this system
JP2002159985A (en) Microorganism stuck carrier and waste water treatment method using the same
WO2015012700A1 (en) New hybrid biodegradable polymer for efficient nitrogen and phosphate reduction
JP2554687B2 (en) Biological nitrogen removal method
JPH04104900A (en) Functional agent for improving organic sludge decomposition sediment
JPH04334593A (en) Advanced water treatment system and method for starting up the same
JP2004008923A (en) Metal supported microorganism-immobilized carrier and treatment method for nitrogen-containing wastewater
KR830002326B1 (en) Wastewater Treatment Method
JPS586558B2 (en) Sewage treatment method
JPH0564793A (en) Water purifying treatment device
JP3002592B2 (en) Biological water treatment method for wastewater containing N ▲ H4 ▼ -N
KR920009788B1 (en) Carbon absorbent filter and biological waste water treating method by it