JPS5814849B2 - Manufacturing method for high Young's modulus steel - Google Patents

Manufacturing method for high Young's modulus steel

Info

Publication number
JPS5814849B2
JPS5814849B2 JP9786279A JP9786279A JPS5814849B2 JP S5814849 B2 JPS5814849 B2 JP S5814849B2 JP 9786279 A JP9786279 A JP 9786279A JP 9786279 A JP9786279 A JP 9786279A JP S5814849 B2 JPS5814849 B2 JP S5814849B2
Authority
JP
Japan
Prior art keywords
less
rolling
temperature
steel
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9786279A
Other languages
Japanese (ja)
Other versions
JPS5623223A (en
Inventor
誠 佐藤
利昭 土師
研 金谷
紘 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9786279A priority Critical patent/JPS5814849B2/en
Publication of JPS5623223A publication Critical patent/JPS5623223A/en
Publication of JPS5814849B2 publication Critical patent/JPS5814849B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 本発明は高ヤング率鋼材の製造法に係り、更に詳しくは
熱間圧延と圧延後の熱処理条件をコントロールすること
により、圧延直角方向のヤング率を改善し、かつ圧延方
向の鋼材の加工性を良好ならしめた鋼材の製造法に関す
る。
Detailed Description of the Invention The present invention relates to a method for producing high Young's modulus steel, and more specifically, by controlling hot rolling and post-rolling heat treatment conditions, the Young's modulus in the direction perpendicular to rolling is improved, and rolling This invention relates to a method for manufacturing steel materials that improves the workability of steel materials in different directions.

一般に鋼を冷間加工すると集合組織が発達し、方向性が
出ることが知られており、これに伴って冷延鋼板などで
はヤング率も若干変動することが知られている。
It is generally known that when steel is cold-worked, the texture develops and directionality appears, and it is known that the Young's modulus of cold-rolled steel sheets and the like changes slightly as a result of this.

従って鋼のヤング率はほ; 210 0 0 Ky/m
an2で一定であると従来考えられていたが、鋼材の製
造法によって若干かえうろことが明らかになった。
Therefore, Young's modulus of steel is 210 0 0 Ky/m
It was previously thought that the value was constant at an2, but it has become clear that it changes slightly depending on the manufacturing method of the steel material.

しかし、熱間加工材においては、高温であるため、2,
3の集合組織の形成が報告されてはいるが、ヤング率を
積極的に高める方法は未だ提案されていない。
However, because of the high temperature of hot-processed materials, 2.
Although the formation of No. 3 texture has been reported, no method has yet been proposed to actively increase Young's modulus.

また、α鉄の単結晶のヤング率は当然方向性をもち、〔
100〕方向(立方体の辺)で1 3,5 0 0K?
/mm2, ( 1 1 1 )方向(立方体の対角線
)で2 9,0 0 0 Kp/朋2,(110)方向
(面の対角線:で2 1, 6 0 0 K?/m7n
2であるとされている。
In addition, the Young's modulus of a single crystal of α-iron naturally has directionality;
100] direction (side of the cube) 1 3,5 0 0K?
/mm2, 29,000 Kp in the (111) direction (diagonal of the cube)/21,600 Kp in the (110) direction (diagonal of the surface)/m7n
It is said to be 2.

しかし、実用鋼材では完全に方向性を統一することは熱
間加工鋼材では不可能視されている。
However, in practical steel materials, it is considered impossible to completely unify the directionality in hot-worked steel materials.

本発明者らは圧延条件と圧延後の熱処理とヤング率の関
%について検討した結果、圧延ままではヤング率の方向
性はそれ程大きくなく、標準値210 0 0 K9/
m7rL2に比し、それ程変りないが、圧延後適切な熱
処理を行なうことにより、圧延直角方向のヤング率を約
10%程度向上させる方法を開発した。
The present inventors investigated the relationship between rolling conditions, post-rolling heat treatment, and Young's modulus, and found that the directionality of Young's modulus is not so large in the as-rolled state, and the standard value is 210 0 0 K9/
Although it is not much different than m7rL2, we have developed a method to improve the Young's modulus in the direction perpendicular to rolling by about 10% by performing appropriate heat treatment after rolling.

すなわち本発明は、化学成分としてco.2o%以下、
810.01〜]..0%, Mn 0.3 〜2.0
%, A,! 0.00 1〜0.20%,NO.02
0%以下を含み、又はこれに更にその他の合金元素とし
てNi , Cr ,Mo ,Cu,W,P,Co,V
,Nb,Ti ,Zr ,Ta,Hf 、希土類元素、
Y ,Ca,M.!9,Te,Se,Bを1種以上合計
で45%以下含む鋼を、その鋼のAcl変態点〜125
0゜C間に加熱し、圧延加工する際に、圧延中の一部で
2相域(オーステナイト+フエライト)圧延を行ない、
Ar3温度以下での加工圧下率を初期厚みの少なくとも
5%以上にとり、圧延仕上後300゜Cまでの冷却速度
が15°C/秒以下となるよう冷却し、次いで700゜
C以下の温度で焼戻すか、又は前記冷却に次いで室温な
いしは600’C以下での成形加工を行なう場合には、
ヤ3温度以下での圧延加工直角方向を部材の供用主応力
方向にとることを特徴とする高ヤング率鋼材の製造法で
ある。
That is, the present invention uses co. 2o% or less,
810.01~]. .. 0%, Mn 0.3 ~ 2.0
%、A、! 0.00 1-0.20%, NO. 02
Contains 0% or less, or further includes other alloying elements such as Ni, Cr, Mo, Cu, W, P, Co, V
, Nb, Ti, Zr, Ta, Hf, rare earth elements,
Y., Ca., M. ! 9. Steel containing one or more types of Te, Se, and B in a total of 45% or less has an ACl transformation point of ~125
When heating to 0°C and rolling, rolling is performed in a two-phase region (austenite + ferrite) in a part of the rolling process,
The working reduction rate at Ar3 temperature or lower is at least 5% of the initial thickness, and after finishing rolling, the material is cooled so that the cooling rate up to 300°C is 15°C/sec or less, and then it is sintered at a temperature of 700°C or lower. When returning or performing molding at room temperature or below 600'C after the cooling,
This is a method for producing a high Young's modulus steel material, which is characterized in that the direction perpendicular to the rolling process at a temperature of 3 or lower is taken as the service principal stress direction of the member.

以下本発明について詳細に説明する。The present invention will be explained in detail below.

先ず本発明の効果を十分発揮させるためには、鋼の化学
成分と後の変態組織を制御する必要がある。
First, in order to fully exhibit the effects of the present invention, it is necessary to control the chemical composition of the steel and the subsequent transformed structure.

C量については比較的高温域で(α+γ)2相域とし、
2相域圧延を容易にし、かつ変形抵抗を少なくするため
0.20%以下でなければならない。
Regarding the amount of C, it is assumed to be in the (α + γ) two-phase region in a relatively high temperature range.
It must be 0.20% or less to facilitate rolling in the two-phase region and to reduce deformation resistance.

Siについては鋼の脱酸元素として必要であり、かつフ
エライト形成元素として、また強度増加元素として有用
であるが、1.0%を超えるときは鋼の加工性を害する
Si is necessary as a deoxidizing element for steel, and is useful as a ferrite-forming element and as an element for increasing strength, but when it exceeds 1.0%, it impairs the workability of steel.

また0.01%未満では脱酸効果が不十分なため0.0
1〜1.0%でなければならない。
In addition, if it is less than 0.01%, the deoxidizing effect is insufficient, so 0.0% is less than 0.01%.
Must be 1-1.0%.

Mnも鋼の脱酸成分元素として必要であり、0.3%未
満では鋼の清浄度を低下し加工性を害する。
Mn is also necessary as a deoxidizing component element of steel, and if it is less than 0.3%, the cleanliness of the steel decreases and the workability is impaired.

またMnは変態温度を下げるので過量になると2相域圧
延温度が下がりすぎ変形抵抗の上昇をきたす。
Furthermore, since Mn lowers the transformation temperature, if the amount is excessive, the rolling temperature in the two-phase region will drop too much and the deformation resistance will increase.

したがってMnについては0.3〜2.0%に限定する
Therefore, Mn is limited to 0.3 to 2.0%.

ALおよびNについてはアルミ窒化物による鋼の細粒化
のほか、圧延過程での固溶、析出により、鋼の結晶方位
の整合および再結晶に有効な働きをさせるために添加す
る。
AL and N are added to make the steel grain finer with aluminum nitride, and also to have an effective effect on matching the crystal orientation and recrystallization of the steel through solid solution and precipitation during the rolling process.

しかし添加量が少ないときにはその効果がなく、過量の
場合には鋼のしん性を悪くするのでAlについては0.
0 0 1〜0.201 % , Hについては0.0
20%以下とする。
However, if the amount added is small, there is no effect, and if the amount is excessive, the toughness of the steel will deteriorate, so 0.
0 0 1~0.201%, 0.0 for H
20% or less.

次に合金元素を添加する場合には圧延時変態組織との関
%で、変態温度を下げすぎると2相域圧延での変形抵抗
が急上昇し、圧延加工がむずかしくなる。
Next, when adding an alloying element, if the transformation temperature is lowered too much, the deformation resistance in two-phase region rolling increases rapidly, making rolling difficult.

よって合金元素の添加量としては、Nl,i Cr,M
o,Cu,W,P,Co,V,Nb,Ti,Zr,Ta
,Hf、希土類元素、Y,Ca,Mg,Te,Se,B
を1種以上添加してよいが、合計で4.5clo以下に
抑える。
Therefore, the amount of alloying elements added is Nl, i Cr, M
o, Cu, W, P, Co, V, Nb, Ti, Zr, Ta
, Hf, rare earth elements, Y, Ca, Mg, Te, Se, B
One or more types may be added, but the total amount should be limited to 4.5 clo or less.

次に圧延時の加熱温度であるが、γ温度でAlその他の
元素の炭化物または窒化物を微細に析出させるため、ま
た(α+γ)2相域での圧下を加える必要上、あまり加
熱温度が高いと効率的でない。
Next, regarding the heating temperature during rolling, in order to finely precipitate carbides or nitrides of Al and other elements at γ temperature, and because it is necessary to apply rolling in the (α + γ) two-phase region, the heating temperature is not too high. and not efficient.

したがって上限は1250゜Cまでとする必要がある。Therefore, the upper limit needs to be 1250°C.

また(α+γ)域圧延により結晶方位を整合させるため
に加工フエライトを生成させる必要があるが、そのため
には(α+γ)域に加熱して圧延してもよい。
Further, it is necessary to generate processed ferrite in order to match the crystal orientation by rolling in the (α+γ) region, but for this purpose, heating and rolling may be performed in the (α+γ) region.

一方圧延温度域がAcl未満では変形抵抗が大きく、実
際的でない。
On the other hand, if the rolling temperature range is less than ACl, the deformation resistance will be large and this is not practical.

よってその下限温度は一部γ化が行なわれるAcl温度
以上がよG)。
Therefore, the lower limit temperature should be equal to or higher than the ACl temperature at which some gamma conversion occurs (G).

Ar3温度以下での加工圧下率を初期厚みの少なくとも
5%以上にとるのは圧延あるいは熱処理後のヤング率方
向性の形成度を2相域圧延により犬にするためであって
、50l)未満では適当な熱処理を行なってもヤング率
の向上が認められないので、Ar3温度以下での加工圧
下率を5%以上にとる。
The reason for setting the working reduction rate at Ar3 temperature or lower to at least 5% of the initial thickness is to reduce the degree of formation of Young's modulus directionality after rolling or heat treatment by rolling in the two-phase region. Since no improvement in Young's modulus is observed even if an appropriate heat treatment is performed, the working reduction ratio at Ar3 temperature or lower is set to 5% or more.

次に圧延後の300゜Cまでの冷却速度を15゜C/秒
以下にとるのは、この速度を超えると冷却後の鋼材の変
形を大きくし、成形加工素材として適当でない。
Next, setting the cooling rate to 300°C after rolling to 15°C/sec or less is because exceeding this speed increases the deformation of the steel material after cooling, making it unsuitable as a forming material.

なお300°C以下については鋼材の変形への影響が少
ないので15°C/秒を超えてもよい。
Note that at temperatures below 300°C, there is little effect on the deformation of the steel material, so the temperature may exceed 15°C/sec.

第3に鋼材を成形加工する場合の加工温度を室温乃至は
600’C以下とするのは、熱間圧延加工時に生成した
加工フエライトの方向性を維持するためであって、この
温度を越える場合には鋼板の方向性が失われるため成形
加工温度は600℃以下とする。
Thirdly, when forming steel materials, the processing temperature is kept at room temperature or below 600'C in order to maintain the directionality of processed ferrite produced during hot rolling. Since the directionality of the steel sheet is lost in this case, the forming temperature is set to 600°C or less.

次に結晶方位の整合性をよくするため焼もどし、回復再
結晶処理を行なうが、700℃をこえる時は結晶の方向
性が失なわれるので焼もどし温度は700゜C以下とす
る。
Next, in order to improve the consistency of crystal orientation, tempering and recovery recrystallization treatment are performed, but if the temperature exceeds 700°C, the crystal orientation will be lost, so the tempering temperature should be 700°C or lower.

すなわち、このようにして圧延直角方向のヤング率は1
0%程度向上する。
That is, in this way, the Young's modulus in the direction perpendicular to rolling is 1.
Improved by about 0%.

この場合、上記のようにしてヤング率を向上せしめると
同時に、材料の圧延加工直角方向を部材の供用主応力方
向にとればビーム材では剛性を増し、撓みを減少出来る
In this case, in addition to improving the Young's modulus as described above, by setting the direction perpendicular to the rolling process of the material to the direction of the member's service principal stress, the rigidity of the beam material can be increased and the deflection can be reduced.

又小型フレーム材では同程度の剛性を許容すれば軽量化
が可能となる。
In addition, it is possible to reduce the weight of a small frame material by allowing the same level of rigidity.

なお本発明で部材を加工する場合、成形部材の断面形状
は適当にとることが可能である。
Note that when processing a member according to the present invention, the cross-sectional shape of the molded member can be appropriately selected.

次に本発明の効果を実施例にもとづいてさらに具体的に
のべる。
Next, the effects of the present invention will be described in more detail based on examples.

表1は供試鋼板の化学成分であり表2はこれらの鋼材を
圧延により熱間加工し回復再結晶処理を行なった場合の
機械的性質及びヤング率である。
Table 1 shows the chemical composition of the test steel sheets, and Table 2 shows the mechanical properties and Young's modulus when these steel materials were hot worked by rolling and then subjected to recovery recrystallization treatment.

これより本発明の圧延条件及び熱処理を行なう事により
、圧延直角方向のヤング率が改善され従来21000K
9/m7rL2一定とされていた値が高くなっているこ
とがわかる。
It can be seen that by performing the rolling conditions and heat treatment of the present invention, the Young's modulus in the direction perpendicular to rolling is improved, compared to the conventional 21000K.
It can be seen that the value of 9/m7rL2, which was supposed to be constant, has become higher.

なお、ヤング率の測定は測定方向に採取した長柱型試験
片を磁気振動させ、その共振周波数よりヤング率(E)
を計算しており試片寸法、形状に正確を期したので相対
誤差1/100は確保されている。
In addition, Young's modulus is measured by magnetically vibrating a long columnar specimen taken in the measurement direction, and the Young's modulus (E) is determined from the resonance frequency.
Since we calculated the sample size and shape to ensure accuracy, a relative error of 1/100 was ensured.

したがって本発明の方法により、圧延加工直角方向のヤ
ング率向上は明らかである。
Therefore, it is clear that the method of the present invention clearly improves Young's modulus in the direction perpendicular to the rolling process.

またこれら試験鋼材の一部についてAr3温度以下での
圧延加工直角方向をその供用主応力方向にとってチャン
ネルに冷間成形し、チャネル梁の3点曲げ試1験を第1
図に示すようりようで行ない、撓み量を測定した。
In addition, some of these test steel materials were cold-formed into a channel with the direction perpendicular to the rolling process at Ar3 temperature or lower as the service principal stress direction, and a three-point bending test of the channel beam was performed in the first test.
The test was carried out as shown in the figure, and the amount of deflection was measured.

同図において1はチャンネル梁2は押え治具、3は支点
である。
In the figure, 1 is a channel beam 2 is a holding jig, and 3 is a fulcrum.

その結果を第2図に示すが、高ヤング率の本発明法で圧
延加工、成形処理された部材はヤング率21000Ky
/mn2材に比し、撓み量でも約10%少なくなってい
る事がわかる。
The results are shown in Figure 2, and the material that was rolled and formed using the method of the present invention with a high Young's modulus had a Young's modulus of 21,000 Ky.
It can be seen that the amount of deflection is also approximately 10% smaller than that of the /mn2 material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はチャンネル梁の3点曲げ試験の要領を示す模式
図、第2図は第1図の試験によって得られた撓み一荷重
の関係を示す図である。 1・・・・・・チャンネル梁、2・・・・・・押え治具
、3・・・・・・支点。
FIG. 1 is a schematic diagram showing the procedure for a three-point bending test on a channel beam, and FIG. 2 is a diagram showing the relationship between deflection and load obtained by the test in FIG. 1. 1... Channel beam, 2... Holding jig, 3... Fulcrum.

Claims (1)

【特許請求の範囲】 1 化学成分としてC0.20%以下、Si0.01〜
1.0%,Mn 0.3〜2.0%,A7 0.0 0
1〜0.20%,N0.020%以下を含み、残部鉄
および不純物よりなる鋼を、その鋼のAc 1変態点〜
1250゜C間に加熱し圧延加工する際に、圧延中の一
部で2相域(オーステナイ1・+フエライト)圧延を行
ない、Ar 3温度以下での加工圧下率を初期厚みの少
なくとも5%以上にとり、圧延仕上後300゜Cまでの
冷却速度が15°C/秒以下となるよう冷却し、次いで
700’C以下の温度で・焼戻すことを特徴とする高ヤ
ング率鋼材の製造法。 2 化学成分としてco.2ofb以下、Si0.01
〜10%,Mn 0.3〜2.0%,Al O.0 0
1〜0.20%,NO.0 2 0’fb以下ヲ含み
、残部鉄オヨび不純物よりなる鋼を、その鋼のAc 1
変態点〜1250゜C間に加熱し、圧延する際に、圧延
中の一部で2相域(オーステナイト+フエライト)圧延
を行ない、Ar 3温度以下での加工川下率を初期厚み
の少なくとも5%以上にとり、圧延仕上後300°Cま
での冷却速度が15°C/秒以下となるよう冷却し、次
いでAr 3温度以下での圧延加工直角方向を部材の供
用主応力方向にとって、室温ないしは600℃以下での
成形加工を行ない、次いで700゜C以下の温度で焼戻
すことを特徴とする高ヤング率鋼部材の製造法。 3 化学成分としてC0.20%以下、Si0.01〜
1.0%,Mn o.3〜2.0%,A,gO.001
〜0.20%,NO.2 o%以下を含み、その他の合
金元素としてNi ,Cr,Mo,Cu,W,P,Co
,V,NbrTlrZr+Ta+I{f,希土類元素、
Y,Ca,Mg,Te,Se,Bを1種以上合計で45
%以下含む鋼を、その鋼のAcl変態点〜1250°C
間に加熱し、圧延加工する際に、圧延中の一部で2相域
(オーステナイト士フエライト)圧延を行ない、Ar3
温度以下での加工圧下率を初期厚みの少なくとも5%以
上にとり、圧延仕上後300゜Cまでの冷却速度が15
゜C/秒以下となるよう冷却し、次いで700゜C以下
の温度で焼戻すことを特徴とする高ヤング率鋼材の製造
法。 4 化学成分としてC0.20%以下、Si0.01〜
1.0%,Mn 0.3〜2.0%,A70.OO 1
〜0.20%,NO.020%以下を含み、その他の合
金元素としてNi ,Cr,Mo,Cu,W,P,Co
,V,Nb,Ti,Zr,Ta,Hf、希土類元素、Y
,Ca,M.!i’,Te,Se,Bを1種以上合計で
45%以下含む鋼を、その鋼のAcl変態点〜1250
゜C間に加熱し、圧延する際に、圧延中の一部で2相域
(オーステナイト+フエライ1・)圧延を行ない、Ar
3温度以下での加工川下率を初期厚みの少なくとも5%
以上にとり、圧延仕上後300’Cまでの冷却速度が1
5°C/秒以下となるよう冷却し、次いでAr3温度以
下での圧延加工直角方向を部材の供用主応力方向にとっ
て、室温ないしは600℃以下での成形加工を行ない、
次いで700゜C以下の温度で焼戻すことを特徴とする
高ヤング率鋼部材の製造法。
[Claims] 1. Chemical components: C0.20% or less, Si0.01~
1.0%, Mn 0.3-2.0%, A7 0.0 0
1 to 0.20%, N0.020% or less, and the balance consists of iron and impurities.
When heating and rolling to 1250°C, roll in a two-phase region (austenite 1 + ferrite) in a part of the rolling process, and reduce the working reduction rate at Ar 3 temperature or below to at least 5% of the initial thickness. A method for producing a high Young's modulus steel material, which is characterized in that after rolling and finishing, the steel material is cooled to 300°C at a cooling rate of 15°C/second or less, and then tempered at a temperature of 700°C or less. 2 co. as a chemical component. 2ofb or less, Si0.01
~10%, Mn 0.3~2.0%, AlO. 0 0
1-0.20%, NO. 0 2 A steel containing less than 0' fb, with the remainder consisting of iron and impurities, is classified into the Ac 1
When heating and rolling between the transformation point and 1250°C, two-phase region (austenite + ferrite) rolling is performed in a part of the rolling process, and the processing downstream rate at Ar 3 temperature or lower is at least 5% of the initial thickness. For the above reasons, after rolling and finishing, the cooling rate up to 300°C is 15°C/sec or less, and then Ar is heated to room temperature or 600°C, with the direction perpendicular to the rolling process at 3 temperatures or less taken as the main stress direction of the member. A method for manufacturing a high Young's modulus steel member, which comprises performing the following forming process and then tempering at a temperature of 700°C or less. 3 Chemical components: C0.20% or less, Si0.01~
1.0%, Mno. 3-2.0%, A, gO. 001
~0.20%, NO. 2o% or less, and other alloying elements include Ni, Cr, Mo, Cu, W, P, Co
, V, NbrTlrZr+Ta+I{f, rare earth element,
One or more types of Y, Ca, Mg, Te, Se, B in total 45
% or less, the ACl transformation point of the steel ~1250°C
During heating and rolling, rolling is performed in a two-phase region (austenite/ferrite) in a part of the rolling process, and Ar3
The working reduction rate below the initial thickness is at least 5% of the initial thickness, and the cooling rate up to 300°C after rolling is 15%.
1. A method for producing a high Young's modulus steel material, which comprises cooling to a temperature of 0.degree. C./second or less, and then tempering at a temperature of 700.degree. C. or less. 4 Chemical components: C0.20% or less, Si0.01~
1.0%, Mn 0.3-2.0%, A70. OO 1
~0.20%, NO. 020% or less, and other alloying elements include Ni, Cr, Mo, Cu, W, P, Co
, V, Nb, Ti, Zr, Ta, Hf, rare earth elements, Y
, Ca, M. ! A steel containing one or more types of i', Te, Se, and B in a total of 45% or less is
When heating and rolling at °C, rolling is carried out in a two-phase region (austenite + ferrite 1) in a part of the rolling process, and Ar
Processing downstream rate at temperatures below 3: at least 5% of the initial thickness
Considering the above, the cooling rate up to 300'C after rolling finish is 1
Cooling to 5°C/sec or less, then forming at room temperature or 600°C or less with the direction perpendicular to the rolling process at Ar3 temperature or less as the service principal stress direction of the member,
A method for producing a high Young's modulus steel member, which comprises then tempering at a temperature of 700°C or less.
JP9786279A 1979-07-31 1979-07-31 Manufacturing method for high Young's modulus steel Expired JPS5814849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9786279A JPS5814849B2 (en) 1979-07-31 1979-07-31 Manufacturing method for high Young's modulus steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9786279A JPS5814849B2 (en) 1979-07-31 1979-07-31 Manufacturing method for high Young's modulus steel

Publications (2)

Publication Number Publication Date
JPS5623223A JPS5623223A (en) 1981-03-05
JPS5814849B2 true JPS5814849B2 (en) 1983-03-22

Family

ID=14203553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9786279A Expired JPS5814849B2 (en) 1979-07-31 1979-07-31 Manufacturing method for high Young's modulus steel

Country Status (1)

Country Link
JP (1) JPS5814849B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144121A (en) * 1984-08-09 1986-03-03 Nippon Kokan Kk <Nkk> Manufacture of high strength, high toughness steel for pressurized vessel
JPS61130424A (en) * 1984-11-29 1986-06-18 Kobe Steel Ltd Production of heat treatment-omission type high tension steel wire or rod having excellent workability
JPH01170532A (en) * 1987-12-25 1989-07-05 Kosumetsuku:Kk Cylinder type hydraulic clamp
JPH0739608B2 (en) * 1989-03-28 1995-05-01 住友金属工業株式会社 Manufacturing method of steel for steel construction with low elastic modulus decrease at high temperature
JP2596860B2 (en) * 1991-02-04 1997-04-02 新日本製鐵株式会社 Method for manufacturing ERW oil well pipe with high Young's modulus in circumferential direction of steel pipe and excellent crush characteristics
JP2596861B2 (en) * 1991-02-04 1997-04-02 新日本製鐵株式会社 Method for manufacturing ERW oil well pipe with high Young's modulus in circumferential direction of steel pipe and excellent crush characteristics
US5462808A (en) * 1993-09-03 1995-10-31 Sumitomo Metal Industries, Ltd. Highly rigid composite material and process for its manufacture
JP4213022B2 (en) * 2002-12-26 2009-01-21 愛知製鋼株式会社 High-stiffness steel that can be manufactured by melting method and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5623223A (en) 1981-03-05

Similar Documents

Publication Publication Date Title
US7794552B2 (en) Method of producing austenitic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
JP3857939B2 (en) High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
JPS5814849B2 (en) Manufacturing method for high Young&#39;s modulus steel
TW201217547A (en) using steel composition, hot rolling and cooling to achieve a high strength steel with low yield ratio or high hole expansibility
JP4214671B2 (en) Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same
US11186900B2 (en) High-strength cold rolled steel sheet and method for manufacturing the same
JPH073328A (en) Production of high strength hot rolled steel sheet excellent in processability
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP3297798B2 (en) Manufacturing method of austenitic stainless steel sheet for roll forming
JP3293378B2 (en) Method for producing high-strength extra-thick rolled H-section steel for construction with a flange thickness of 80 mm or more that has fire resistance, excellent weldability, and little change in strength in the thickness direction
JPS62192539A (en) Manufacture of high gamma value hot rolled steel plate
JPH0257634A (en) Manufacture of high-strength steel plate and heat treatment for worked product of same
JPS6148531A (en) Manufacture of hot-rolled low-carbon steel sheet having superior deep drawability
JPH0665645A (en) Production of high ductility hot rolled high tensile strength steel sheet
EP3572546A1 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JPS582571B2 (en) Manufacturing method of Tin-based low yield ratio composite structure high tensile strength steel plate
US20220298592A1 (en) Low-strength steel sheet for hot stamping, hot-stamped component, and method for manufacturing hot-stamped component
JP3362739B2 (en) Manufacturing method of hot rolled steel sheet with excellent deep drawability
JPH0953118A (en) Production of hot rolled steel plate with high young&#39;s modulus
JP3873581B2 (en) Manufacturing method of high formability hot-rolled steel sheet
JPH05331538A (en) Manufacture of thick high toughness and high tensile strength steel plate excellent in toughness on central part of plate thickness
JPS59123721A (en) Production of cold rolled steel sheet having excellent processability
JPH1161274A (en) Manufacture of steel sheet for extra deep drawing, excellent in baking hardenability
JP2640065B2 (en) High-strength hot-rolled steel sheet having good workability and a strength of 730 N / mm2 or more and method for producing the same