JPS58147526A - Method for recovering sensible heat from sintered ore - Google Patents

Method for recovering sensible heat from sintered ore

Info

Publication number
JPS58147526A
JPS58147526A JP2736682A JP2736682A JPS58147526A JP S58147526 A JPS58147526 A JP S58147526A JP 2736682 A JP2736682 A JP 2736682A JP 2736682 A JP2736682 A JP 2736682A JP S58147526 A JPS58147526 A JP S58147526A
Authority
JP
Japan
Prior art keywords
layer
sintered ore
ore
sintering
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2736682A
Other languages
Japanese (ja)
Other versions
JPS6316451B2 (en
Inventor
Yoshio Shimozato
下里 省夫
Shigeo Itano
板野 重夫
Kimiaki Otawa
大多和 公昭
Keizo Arai
荒井 敬三
Tomiya Fukuda
福田 富也
Fumiaki Orimo
下茂 文秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nisshin Steel Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2736682A priority Critical patent/JPS58147526A/en
Publication of JPS58147526A publication Critical patent/JPS58147526A/en
Publication of JPS6316451B2 publication Critical patent/JPS6316451B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To efficiently recover sensible heat from a layer of discharged lump sintered ore by introducing a nonoxidizing gas inert to iron oxide of lower order or a gaseous mixture of the nonoxidizing gas with air into a layer of lump sintered ore from the bottom toward the surface layer after the end of sintering. CONSTITUTION:The surface of a starting material layer in the pallet frame P of a Dwight-Lloyd type sintering machine is fired with the firing furnace 6, and the sintering reaction of the starting material layer is allowed to proceed by downward draft with wind boxes B and a draft mechanism connected to the boxes B. After the end of the sintering, a nonoxidizing gas inert to iron oxide of lower other or a gaseous mixture of the nonoxidizing gas with air is introduced into a layer or lump sintered ore from the bottom, that is, from the side of grate bars under the frame P toward the surface layer to return heat transferred to the bars and the frame P to the ore layer. The sintered ore is then discharged from the ore discharging part 7 and fed to a cooler C to recover sensible heat from the ore.

Description

【発明の詳細な説明】 本発明rま、粉鉱石分ドワイトロイト式焼結機で神続的
に焼結した後、該焼結鉱の顕熱r冷却機で回収する方法
rこ関し、特にドワイトロイト式焼鯖機のグレードバー
およびパレットフレームに移行する焼結熱をも有効に回
収する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a method of sintering fine ore in a Dwight-Royt type sintering machine and then recovering the sintered ore in a sensible heat cooler. The present invention relates to a method for effectively recovering sintering heat transferred to the grade bar and pallet frame of a Dwight-Royt type mackerel machine.

通常、焼結鉱の顕熱を回収する方法として、第1図に示
すような焼結機に釣設された冷却機によシ該顕熱を回収
する方法が行われている−すなわち第1図において、左
右両側のスジ0フ218間m無ト1(帯状に嵌装された
パレットフレームP列、その上部パレットフレーム2列
の直下に対向して配設されたウィンドボッタフ8列、こ
れに接続した通風機構としてのダクトd、ダンバー D
 、排ガスダクト22、集塵器2、プロワ1、スタック
6、パレットフレームPへ床敷鉱および焼結用坤料をそ
れぞれ供給するための床敷鉱供給機4および原料供給機
5、原料!−表層への点火を行う点火炉6、焼結反応を
終えたパレットフレームP内の内容物すなわち焼結鉱を
パレットフレームPから取出す排鉱部7、パレットフレ
ームPから排出さtした高温の焼結塊を破砕する熱風破
砕機8、シュート9、篩温の焼結鉱を冷却するだめの冷
却用壌状ホッパ10、該ホッパ10を係上〜する回転テ
ーブル11.pテーブル11の駆動機13、冷却空気9
(給フード12%冷却空気供給ブロワ14、冷却空気ダ
クト15、高温空気収集用フード16、ダクト17(以
上9から17までの機器を総称して冷却機Cという)、
高温空気用集塵器18、ボイラ)9等から成る焼結機お
よび冷却機系統により次のような方法で焼結鉱顕熱が回
収される。
Usually, as a method for recovering the sensible heat of sintered ore, a method is used in which the sensible heat is recovered using a cooler installed in a sintering machine as shown in Fig. 1. In the figure, there are 0 lines and 218 meters on both left and right sides. Duct d, damper D as a ventilation mechanism connected to
, exhaust gas duct 22, dust collector 2, blower 1, stack 6, bedding ore feeder 4 and raw material feeder 5 for supplying bedding ore and sintering material to the pallet frame P, respectively, raw material! - An ignition furnace 6 that ignites the surface layer, an ore discharge section 7 that takes out the contents of the pallet frame P after the sintering reaction, that is, sintered ore, from the pallet frame P, and a high-temperature sintered ore discharged from the pallet frame P A hot air crusher 8 for crushing the nodules, a chute 9, a cooling loam-like hopper 10 for cooling the sintered ore at sieve temperature, and a rotary table 11 for mooring the hopper 10. Drive machine 13 for p-table 11, cooling air 9
(Supply hood 12% cooling air supply blower 14, cooling air duct 15, high temperature air collection hood 16, duct 17 (the above equipment 9 to 17 are collectively referred to as cooler C),
Sensible heat of the sintered ore is recovered by the following method by the sintering machine and cooling system comprising the high-temperature air dust collector 18, boiler 9, etc.

先ず、床敷鉱供給機4および原料供給機5から図…1右
方に移行するパレットフレーム層内に床敷鉱およびその
上に原料が連続的に供給さ11点火炉6直下を通過する
際に原料層表面に着火され、図面右方へ移行する間rこ
ウィンドボックスBおよびこれに接続された通風機構に
よりパレットフレームP上方より燃焼用および冷却用空
気が吸引され下向の通風となって原料の乾燥、焼結反応
および焼結塊の冷却をj雰ム次原料層の下)jへN H
サ−aでパレットフレーム層内のグレードバー上の床敷
鉱層に到達し、さらにパレットフレームPが図面右方に
移行するに伴い下向きの排風温度がほぼピークに到達し
た後、排鉱部7にて焼結鉱が排出される。
First, the bedding ore and raw materials are continuously supplied from the bedding ore feeder 4 and the raw material feeder 5 into the pallet frame layer moving to the right in Fig.1. The surface of the raw material layer is ignited, and while it moves to the right in the drawing, combustion and cooling air is sucked in from above the pallet frame P by the wind box B and the ventilation mechanism connected to it, resulting in downward ventilation. The drying of the raw material, the sintering reaction and the cooling of the sintered mass are carried out in an atmosphere (below the raw material layer) to N H
After reaching the bedding ore layer on the grade bar in the pallet frame layer at Sar-a, and as the pallet frame P moves to the right in the drawing, the temperature of the downward exhaust air almost reaches its peak, the ore discharge section 7 Sintered ore is discharged.

この間の温度状況を紀2図rこ示ず。The temperature situation during this period is not shown in Fig. 2.

第2図において、TIはグレードバー面から110鰭位
置の層内温度を% T2はグレードバー面から75制位
置の層内温度を、T3はグレードバー面の温度を、T4
は下向き排風温度をそ扛ぞれ示す。すなわち、焼結反応
の終期が近づくと排風温度T4が上昇と始め、この温度
がピークになる時期を通常焼結反応が完全に終了すると
兄なし、この時期〔第2M中(イ)の時期〕に焼結鉱を
排鉱する。この時間rこはグレードバ一温度T3は約7
00℃になっている。また、この時期における焼結層内
の温度分布は、その−例を第3図に示すように、平均約
360℃(第3図は、層厚280mの焼結鋼試験結果で
あυ、平均温度は実際のものより低くなっている。実際
rCは通常450〜600℃程度である)であるので、
排出さ7’した焼結鉱は冷却が施される。
In Figure 2, TI is the temperature in the layer at the 110th fin position from the grade bar surface, T2 is the temperature in the layer at the 75th fin position from the grade bar surface, T3 is the temperature at the grade bar surface, T4
indicates the temperature of the downward exhaust air. In other words, as the end of the sintering reaction approaches, the exhaust air temperature T4 begins to rise, and the time when this temperature reaches its peak is usually reached when the sintering reaction is completely completed. ] to discharge sintered ore. During this time, the grade bar temperature T3 is approximately 7.
The temperature is 00℃. In addition, the temperature distribution within the sintered layer during this period is, as shown in Figure 3, an average of approximately 360°C (Figure 3 is the result of a sintered steel test with a layer thickness of 280 m, and the average The temperature is lower than the actual one (actual rC is usually around 450-600°C), so
The discharged sintered ore is cooled.

次に、この冷却方法を躯1図に戻って曲間する 排鉱部
7rこて排出さt″Lだ焼結鉱は、熱間破砕機8にて適
当な大きさに破砕され冷却し易くなってンユート9から
冷却機Cの遠吠ホツ/ぐ10に移送される。該ホッパ1
0には常温の空気が冷却字句4ダクト15およびホッパ
10と−・一体になった冷却字句供給フード12を介し
て供給され、ホッパ10内の高温焼結鉱を順次冷却する
。このホッパ10は回転テーブル11に乗って水平方向
に回転運動をしているため、ホッパ1001ケ所に装入
された高温焼結鉱はホッパ10内に環状に配給され、か
つ一定区間回転渾1i#する間に冷却用空気によシ冷却
され、ホッパ10の排出孔から排出される。
Next, this cooling method is repeated by returning to Figure 1 of the body.The sintered ore discharged from the ore discharge section 7r trowel is crushed into an appropriate size by the hot crusher 8, and is easily cooled. The hopper 1 is then transferred from the unit 9 to the hot spring 10 of the cooler C.
Air at room temperature is supplied to the hopper 10 through a cooling duct 15 and a cooling supply hood 12 integrated with the hopper 10, thereby sequentially cooling the high temperature sintered ore in the hopper 10. Since this hopper 10 is rotated horizontally on a rotary table 11, the high-temperature sintered ore charged into 1001 locations of the hopper is distributed in the hopper 10 in an annular manner, and the rotating hopper 1i # During this time, it is cooled by cooling air and discharged from the discharge hole of the hopper 10.

一方、冷却用空気は、ホッパ10の内側壁下部から浸入
してホッパ10内の焼結鉱充填層中を通過する間に焼結
鉱と熱交換し、高温の空気となり、A温空気収集用フー
ド16で収集され、夕゛クト17および集塵器18を経
てボイラ19に送られ、低圧のスチームを製造すること
等で熱回収が行われる。
On the other hand, the cooling air enters from the lower part of the inner wall of the hopper 10 and exchanges heat with the sinter while passing through the sintered ore packed bed in the hopper 10, becoming high-temperature air, and is used for A hot air collection. The heat is collected in the hood 16 and sent to the boiler 19 via the reactor 17 and dust collector 18, where heat is recovered by producing low-pressure steam or the like.

しかし、このような焼結鉱顕熱の回収方法では、冷却機
Cから回収される高温空気の温珈1J約200℃と比較
的低いので、上記のように低圧スチームを製造するにと
どまっている。この理由は、冷却機Cに装入される焼結
鉱の温度が低いためであシ、これは焼結鉱が焼結機から
排鉱される迄に、焼結層中で生じるコークスの燃焼熱が
下向きの通風に乗って床敷鉱層、グレードバー、パレッ
トフレームを介して下方のウィンドボックスBに相当量
逃けてしまうからであシ、第2図に示す排風温度T4、
グレード面温縦T3の状況から明らかである。
However, in this method of recovering sensible heat of sintered ore, the temperature of the high-temperature air recovered from cooler C is relatively low at about 200°C, so the method is limited to producing low-pressure steam as described above. . The reason for this is that the temperature of the sintered ore charged into the cooler C is low, and this is due to the combustion of coke that occurs in the sintered layer before the sintered ore is discharged from the sintering machine. This is because a considerable amount of heat is carried by the downward draft and escapes to the lower wind box B via the bedding layer, the grade bar, and the pallet frame.
This is clear from the situation of grade surface temperature vertical T3.

このように、焼結鉱の排鉱時点で、特にグレードバーが
高温(700〜1000℃)になることは、冷却機Cに
移送できる焼結鉱血熱の減、少を来たす欠点のみならず
、高温のグレード・く−およびパレットフレームが焼結
機ストランド下側をUターンすることによる作業環境の
唐、比を招く欠点がある。
In this way, the high temperature (700 to 1000°C) of the grade bar at the time of sinter discharge is not only disadvantageous in that it reduces the amount of sintered ore heat that can be transferred to cooler C. However, the disadvantage is that the high-temperature grades and pallet frame make a U-turn under the sintering machine strand, resulting in an unstable working environment.

本発明rよ、このような欠点を解消するためになされた
もので、その費旨とするところは、オフストランドクー
リング型式のドワイトロイド式焼結磯において、焼結終
期又は焼結光子後の焼結鉱塊層のF方、すなわち、パレ
ットフレーム下iR1のグレードバー側から、その表面
層間に向って四次の鉄酸化物(FθO、Fe3O4等)
に対して不活性なN2等の非酸化性ガス又は該非酸化性
ガスと空気との混合ガスを導入することにより、グレー
ドバーおよびパレットフレームに移行していた熱を焼結
鉱塊層中に再度移させ、この状態の焼結鉱塊層を排出さ
せ、冷却機に移送させて顕熱を回収することにある。
The present invention has been made to eliminate these drawbacks, and its purpose is to reduce the sintering temperature at the end of sintering or after the sintering photon in an off-strand cooling type Dwight Lloyd type sintered stone. Quaternary iron oxides (FθO, Fe3O4, etc.) are distributed between the surface layers from the F direction of the concretion lump layer, that is, from the grade bar side of iR1 under the pallet frame.
By introducing a non-oxidizing gas such as N2, which is inert to the environment, or a mixture of the non-oxidizing gas and air, the heat that had been transferred to the grade bar and pallet frame is transferred back into the sintered ore lump layer. The sintered ore lump layer in this state is discharged and transferred to a cooler to recover sensible heat.

以下、図面を参照して本発明方法を詳細に説明する、。Hereinafter, the method of the present invention will be explained in detail with reference to the drawings.

先ず、第2図により従来法と本発明法を比較して説明す
る。
First, the conventional method and the method of the present invention will be compared and explained with reference to FIG.

従来法においては、前述の通り、パレットフレーム内原
料層表向に点火された後、焼結反応が次第rC原料層下
方に進行し、原料層全体の焼結反応が終期に近づくに伴
って下向きの排風温度T4が上昇を開始し、ピークにな
る付近を八″と結反応完了期と見なし、図中(イ)の時
期で焼結鉱塊層をパレットフレームから排出している。
In the conventional method, as mentioned above, after the sintering reaction is ignited on the surface of the raw material layer in the pallet frame, the sintering reaction gradually progresses below the rC raw material layer, and as the sintering reaction of the entire raw material layer approaches the final stage, the sintering reaction progresses downward. The exhaust air temperature T4 starts to rise and reaches its peak at 8'', which is regarded as the completion stage of the solidification reaction, and the sintered ore lump layer is discharged from the pallet frame at the time (A) in the figure.

この時期の焼結鉱塊層内の温度分布は第3図に示した通
りであり、顕熱回収上余り好ましい高温度とはなってい
ない。
The temperature distribution within the sintered ore lump layer at this time is as shown in Figure 3, and the temperature is not very high, which is preferable in terms of sensible heat recovery.

ところが、この時期でのグレードバーの温度T3は、未
だ約700℃と高温で、かつ該グレードバーを支えてい
るパレットフレームモ約300〜400℃と高温となっ
ており、この両者は重量も大きいため大きな顕熱を保有
していることになる。そこで、本発明では、この大きな
顕熱を焼結鉱塊層に押戻して、焼結鉱塊層を従来法のも
のより高温にし、大きな顕熱を保有させた状態で排出さ
せ、冷却機に移送させてこの大きな顕熱を回収するもの
である。
However, the temperature T3 of the grade bar at this time is still as high as about 700°C, and the pallet frame supporting the grade bar is still as high as about 300 to 400°C, and both are heavy. Therefore, it has a large amount of sensible heat. Therefore, in the present invention, this large sensible heat is pushed back into the sintered ore lump layer, making the sintered ore lump layer higher temperature than that of the conventional method, and discharged while retaining a large sensible heat, and the cooling machine This large amount of sensible heat is recovered by transporting it.

すなわち、本発明では、第2図において、従来法での焼
結鉱塊層排出期(イ)の直後に、焼結鉱塊層の下方すな
わちパレットフレーム下面のグレードバー側から、その
表層面に向って前記した11酸化恰ガス又は該ガスと空
気との混合ガスを導入し、(ハ)の時期′までこのガス
導入を続行する、なお、(イ)から(ロ)迄の時期r、
J、通風方向逆転に伴う下向き通風区間と上向通風区間
とのガスがL通を抑制する関係上、シールプレー)&設
ける心数がある時期を示している。
That is, in the present invention, in FIG. 2, immediately after the discharge period (a) of the sintered ore lump layer in the conventional method, the surface layer is Then, the above-mentioned 11 oxidizing gas or a mixed gas of the gas and air is introduced, and this gas introduction is continued until the period (c).
J, indicates the period when there is a certain number of seal plates and the number of cores to be provided, in order to suppress the flow of gas between the downward ventilation section and the upward ventilation section due to the reversal of the ventilation direction.

このガス導入により、グレードバーおよびパレットフレ
ームの熱は、図に示すような温度経過(図VCitグレ
ードバーの温度T3のみ示し、パレットフレームの温度
は示していない)をたどり、焼結鉱塊層に移行し、本発
明の排出時期(ハ)においてF′i第4図にその一例を
示すような層内温1m分4+i fr有した状態となる
。この排出時期での焼結鉱塊層の半均温度は約420℃
(なお、h)、4図も、前記した紀3図と同様、層厚さ
280覇の焼結鋼試験結果であり、平均温度は実際のも
のより低くなっている)で、従来法の約330℃に比し
20チ余り高い状態となっている。なお、第2図も第3
.4図と同様層厚さ280fiでの焼結鍋試験に基づく
もので、実機ペースにおいては従来法および本発明法と
もに枦2〜4図に示すデータより高くなるが、従来が、
と本発明法との比較においては、排出時の一暁結鉱塊1
−の平均温度は本発明法の方が従来法よりも2゜チ余り
常に高く、冷却機での回収熱量μ入rこなり、かつ該回
収熱は発t#i、rLまで利用できるものとなる。
Due to this gas introduction, the heat in the grade bar and pallet frame follows the temperature course shown in the figure (the figure shows only the temperature T3 of the VCit grade bar, and the temperature of the pallet frame is not shown) and reaches the sintered ore lump layer. At the discharge time (c) of the present invention, F'i reaches a state where the temperature inside the layer is 1 m4+i fr as shown in FIG. 4, an example of which is shown in FIG. The half-average temperature of the sintered ore lump layer at this discharge time is approximately 420℃
(Note that Figure h) and Figure 4 also show the results of a sintered steel test with a layer thickness of 280cm, similar to the above-mentioned Figure 3, and the average temperature is lower than the actual temperature.) The temperature is about 20 inches higher than 330°C. In addition, Figure 2 is also similar to Figure 3.
.. This is based on the sintering pot test with a layer thickness of 280fi as in Figure 4. At the actual machine pace, both the conventional method and the inventive method are higher than the data shown in Figures 2 to 4, but the conventional method
In comparison with the method of the present invention, it was found that
- The average temperature of - is always higher by about 2 degrees in the method of the present invention than in the conventional method, and the amount of heat recovered by the cooler μ is equal to r, and the recovered heat can be used up to t#i, rL. Become.

なお、本発明法において、焼結終了後rこ」二向き通風
を実施する時期は、グレードバーおよびパレットフレー
ム温度が一定水準迄低下する間で充分であり、それ以上
上向き通風を施せば、上向き通風に乗って焼結鉱塊−内
の熱が層外に逃散するので好ましくない。焼結鍋試験の
結果からは、2分間前後が望ましいといえる。
In addition, in the method of the present invention, it is sufficient to carry out two-way ventilation after the completion of sintering until the temperature of the grade bar and pallet frame has decreased to a certain level; This is not preferable because the heat inside the sintered ore lump escapes to the outside of the layer through ventilation. From the results of the sintering pot test, it can be said that around 2 minutes is desirable.

また本発明法においては、上向き通風用ガスとして前記
したN2  等の非酸化性ガス又は該ガスと空気との混
合ガスを用いるため、焼結鉱塊層中に存在する低次の酸
化鉄(FθO,Fe3O4等)が再酸化され難くなり、
第5図に示すようPC焼結鉱成品の環几粉化率が、N2
  ガス使用の場合に、比較例として示す空気ftl・
用に比し約5%改Hされ、LL未来法比べれば約4%も
改善され、N2  と空気とを酸素含廟率が約10%と
なるように混合したガスを使用する場合は、空気使用に
比し約15%改善される。このことから、上向き通風と
して使用するガス中の酸素濃度に還元粉化率がほぼ比例
するということができる。
In addition, in the method of the present invention, since a non-oxidizing gas such as N2 mentioned above or a mixed gas of this gas and air is used as the upward ventilation gas, lower iron oxide (FθO) present in the sintered ore lump layer is used. , Fe3O4, etc.) becomes difficult to reoxidize,
As shown in Figure 5, the ring phosphorization rate of the PC sintered mineral product is N2
When using gas, the air ftl. shown as a comparative example.
The hydrogen content has been improved by about 5% compared to the conventional method, and about 4% improved compared to the LL Mirai method. This is an improvement of about 15% compared to the actual use. From this, it can be said that the reduction powdering rate is approximately proportional to the oxygen concentration in the gas used for upward ventilation.

いずれにせよ、非酸化性ガス又は該ガスと空気との混合
ガスによる上向き通風を与える本発明によれ目、前記し
た顕熱回収効率を高め得るばかりでなく、焼結鉱成品と
しての環元粉化率をも改善できるという効果を奏し得る
ものである。
In any case, the present invention, which provides upward ventilation using a non-oxidizing gas or a mixture of the non-oxidizing gas and air, not only improves the efficiency of sensible heat recovery described above, but also improves the ability to use ring powder as a sintered ore product. This can also have the effect of improving the conversion rate.

なお、還元粉化率とは、次工程で行われる高炉中でのコ
ークスから発生するC、 Oによる焼結鉱の還元の際r
こ、焼結鉱が粉化する割合のことで、該粉化率が高いと
品炉内の通気性が悪化し操業不能になるので、焼結鉱の
品質の評価指数となるものである。ここでは、粒度10
〜15咽の焼結鉱をCo −N2混合ガスで還元率25
%迄還元した後、ふるい分けを行って5覇以ドの粉粒子
の全体試料針に7・1する比率で表わした。
Note that the reduction pulverization rate refers to the rate of reduction of sintered ore by C and O generated from coke in a blast furnace in the next step.
This refers to the rate at which the sintered ore is pulverized. If the pulverization rate is high, the permeability in the furnace deteriorates and operation becomes impossible, so it serves as an evaluation index for the quality of the sintered ore. Here, the particle size is 10
Reduction rate of ~15 sintered ore with Co-N2 mixed gas is 25
After reducing the powder to 5%, it was sieved and expressed in a ratio of 7.1 to the total sample needle of 5 or more powder particles.

第6図は、本発明法の一実施性様例を7ドす図で、図中
1〜22.d、B−D、P、Sはり1,1図のものと同
一機能の機器を示し、25は前8C゛。
FIG. 6 is a diagram showing seven examples of implementation of the method of the present invention, 1 to 22 in the figure. d, BD, P, and S show equipment with the same functions as those in Figures 1 and 1, and 25 is the previous 8C.

したN2  等の不活性な非酸化性ガス又は該ガスと空
気との混合ガスを供給する上向き通風用プロワ24はダ
クト、25は下向き通風と上向き通風とのガス流通を抑
制するだめのシールプレートである。なお、冷却機Cと
しては第1図と同様のパン型の一パス式のものを示して
いるが、ニパス式のものを用いることもできる。
The upward ventilation blower 24 that supplies an inert non-oxidizing gas such as N2 or a mixed gas of this gas and air is a duct, and 25 is a seal plate that suppresses the gas flow between the downward ventilation and the upward ventilation. be. Although the cooling device C is shown as a bread-type one-pass type cooler similar to that shown in FIG. 1, a two-pass type cooler can also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法の説明図、第2図Fi従来法と本発明法
との比較を説明するための点火がら排鉱に至る迄の各部
の温度状況を示す図表、第6図は従来法におシする排鉱
時期の焼結鉱塊層内偏度分布を示す図表、第4図は本発
明法における排鉱時期の焼結鉱塊層内温度外4■を示す
図表、第5図は従来法および本発明法rこよる成品焼結
′?4)、の還元粉化率の比較を示す図表、第6図は本
発明法の一実施態様例を示す図である。 後代理人  内 1)  明 復代理人  萩 原 光 − 帛2図 (点火)      1党火h)らの紅過時間(mrn
)帛3図 層内温度(°C) 帛4図 層内温度じC) 第1頁の続き 0発 明 者 下茂文秋 呉市昭和町11番1号日新製鋼株 式会社呉製鉄所内 ■出 願 人 日新製鋼株式会社 東京都千代田区丸の内3丁目4 番1号
Figure 1 is an explanatory diagram of the conventional method, Figure 2 is a chart showing the temperature status of each part from the ignition to the ore discharge to explain the comparison between the conventional method and the method of the present invention, and Figure 6 is the conventional method. Figure 4 is a chart showing the deviation distribution within the sintered ore lump layer at the time of ore discharge in the method of the present invention; Are the products sintered by the conventional method and the method of the present invention? FIG. 6 is a diagram showing a comparison of the reduction powdering ratios of 4) and 4), and FIG. 6 is a diagram showing an embodiment of the method of the present invention. Sub-agent 1) Meifuku agent Hikaru Hagiwara - Figure 2 (ignition) 1 Party fire h) et al.'s red time (mrn
) Figure 3 Temperature inside the layer (°C) Figure 4 Temperature inside the layer Applicant Nissin Steel Co., Ltd. 3-4-1 Marunouchi, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] ドワイトロイト式焼結機において、パレットフレーム内
の原料層表面に点火後、下向き通風を与えて焼結反応を
進行させ、その焼結反応の末M itφ程以降に、パレ
ットフレーム内容物、グレードバーおよびパレットフレ
ームに対シて低次の鉄酸化物に対して不活性な非酸化性
ガス又は該ガスと空気との混合ガスによる上向き通風を
与え、グレードバーおよびパレットフレームの熱分パレ
ットフレーム内の焼結鉱塊層に戻し、Q6焼結鉱塊層を
排出した俵、冷却機に搬送し、d・焼結鉱塊層の顕熱を
回収することを特徴とする焼結鉱の顕熱回収法。
In the Dwight-Royt type sintering machine, after igniting the surface of the raw material layer in the pallet frame, downward ventilation is applied to advance the sintering reaction, and at the end of the sintering reaction, after about M itφ, the contents of the pallet frame and the grade bar are And the pallet frame is provided with upward ventilation using a non-oxidizing gas that is inert to low-order iron oxides or a mixed gas of this gas and air, and the heat of the grade bar and pallet frame is absorbed by the pallet frame. Sensible heat recovery of sintered ore, characterized by returning the Q6 sintered ore lump layer to a bale, which is discharged, and conveying it to a cooling machine, and recovering the sensible heat of the sintered ore lump layer. Law.
JP2736682A 1982-02-24 1982-02-24 Method for recovering sensible heat from sintered ore Granted JPS58147526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2736682A JPS58147526A (en) 1982-02-24 1982-02-24 Method for recovering sensible heat from sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2736682A JPS58147526A (en) 1982-02-24 1982-02-24 Method for recovering sensible heat from sintered ore

Publications (2)

Publication Number Publication Date
JPS58147526A true JPS58147526A (en) 1983-09-02
JPS6316451B2 JPS6316451B2 (en) 1988-04-08

Family

ID=12219046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2736682A Granted JPS58147526A (en) 1982-02-24 1982-02-24 Method for recovering sensible heat from sintered ore

Country Status (1)

Country Link
JP (1) JPS58147526A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332805A (en) * 1976-09-09 1978-03-28 Ishikawajima Harima Heavy Ind Co Ltd Recovering method for heat of sintered ore
JPS55122833A (en) * 1979-03-13 1980-09-20 Kawasaki Steel Corp Sintering machine operating method
JPS56105435A (en) * 1980-01-23 1981-08-21 Mitsubishi Heavy Ind Ltd Recovery of waste heat in sintering plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332805A (en) * 1976-09-09 1978-03-28 Ishikawajima Harima Heavy Ind Co Ltd Recovering method for heat of sintered ore
JPS55122833A (en) * 1979-03-13 1980-09-20 Kawasaki Steel Corp Sintering machine operating method
JPS56105435A (en) * 1980-01-23 1981-08-21 Mitsubishi Heavy Ind Ltd Recovery of waste heat in sintering plant

Also Published As

Publication number Publication date
JPS6316451B2 (en) 1988-04-08

Similar Documents

Publication Publication Date Title
CN100463975C (en) Production of sponge iron
CN107304460B (en) A kind of iron ore prereduction sintering method and its device
CN100441701C (en) Method for producing reduced iron compact in rotary hearth reducing furnace, reduced iron compact, and method for producing pig iron using the same
US2747988A (en) Method for the recovery of pure iron oxide and iron from oxidic iron ores
US2367262A (en) Process for producing metals
JPS58147526A (en) Method for recovering sensible heat from sintered ore
CN210585357U (en) Deironing device of refractory material fine powder
JPS6052533A (en) Preliminary treatment of sintered raw material
JP2002226920A (en) Sintered ore manufacturing method, and sintered ore
US2684296A (en) Reduction of iron ores
JPS6316450B2 (en)
JPS58498B2 (en) You can't get enough of this.
JP2020196941A (en) Method for manufacturing sintered ore
JP3642027B2 (en) Blast furnace operation method
US3304168A (en) System for producing carbonized and prereduced iron ore pellets
WO2022209013A1 (en) Reduced iron production method and reduced iron production device
EP4324938A1 (en) Method for producing agglomerated ore, method for producing reduced iron, agglomerated ore, sintering machine and pellet firing furnace
JP6246865B2 (en) Raw material processing method and raw material processing apparatus
JPS62247035A (en) Blast furnace for sintered ore
JP2004262724A (en) Quick lime manufacturing method in coke dry quench facility and sintered ore manufacturing method
CN1067453A (en) The method of transport of sponge iron
JPS62297421A (en) Multi-stage ignition type sintering method
JPS60248830A (en) Production of quicklime for binder by sintering machine
JPS63128127A (en) Manufacture of sintered ore
JP2001335850A (en) Operating method for sintering machine