JPS58140313A - Manufacture of grained silicon dioxide - Google Patents

Manufacture of grained silicon dioxide

Info

Publication number
JPS58140313A
JPS58140313A JP2246582A JP2246582A JPS58140313A JP S58140313 A JPS58140313 A JP S58140313A JP 2246582 A JP2246582 A JP 2246582A JP 2246582 A JP2246582 A JP 2246582A JP S58140313 A JPS58140313 A JP S58140313A
Authority
JP
Japan
Prior art keywords
silicon dioxide
flame
target
compound
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2246582A
Other languages
Japanese (ja)
Other versions
JPH0343205B2 (en
Inventor
Kiyoshi Yokogawa
清 横川
Kazuo Kamiya
和雄 神屋
Keitaro Fukui
啓太郎 福井
Koji Sato
光司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2246582A priority Critical patent/JPS58140313A/en
Publication of JPS58140313A publication Critical patent/JPS58140313A/en
Publication of JPH0343205B2 publication Critical patent/JPH0343205B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain high purity grained SiO2 having a relatively large grain size by spraying an Si compound on a fire resistant target together with a flame to stick the compound and by melting and growing fine SiO2 powder produced by ozidizing or hydrolyzing the Si compound. CONSTITUTION:A high purity Si compound convertible into SiO2 by treatment at >=1,000 deg.C high temp. or with a flame and convertible into a gas or an atomized liq. in a reaction system, e.g., SiCl4 is prepared. The Si compound is sprayed on a fire resistant quartz target together with an oxyhydrogen flame, an induced plasma flame or the like. The Si compound is oxidized and/or hydrolyzed by contacting with the high temp. flame, and the resulting SiO2 is deposited on the target as fine particles having 0.1-0.5mum particle size. The target including the SiO2 deposited surface is then kept at 1,000-1,400 deg.C to melt and grow the SiO2 particles to 1-100mum, especially 5-50mum, and the reaction is stopped. After cooling the target, the particles are dropped from the target by a suitable method and recovered.

Description

【発明の詳細な説明】 本発明は粒状二酸化けい素、特には充填剤などとして有
用な比較的粒子の大きい粒状二酸化けい素の直接合成方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for directly synthesizing granular silicon dioxide, particularly relatively large granular silicon dioxide useful as fillers and the like.

二酸化けい素が各種ゴム、プラスチックス類の充填剤と
して汎用されていることはよく知られていることである
が、この二酸化けい素については天然に膨出するシリカ
原石を精製し、粉砕、分級して得られるものと、各種の
けい素化合物を始発材料とする合成品とがその目的、用
途に応じて使用されている。すなわち、この天黙りリカ
重石から得られるものはその平均粒子径が例えば1μm
〜100μmのような比較的大きなものとして取得され
るが、けい酸す)9ウム水溶液を塩酸で中和して得た沈
澱物またはけい酸オトリ9ムを塩化カルνりムと反応さ
せて得た沈澱を塩酸で処理したものを水洗乾燥して作っ
た湿式νす力、さらには気相のへロゲン化けい業の火炎
処理によって生成したレリカを耐火物標的上に付着させ
て回収するという乾式シリカは例えば0.001〜0.
1μmのように非常に微細な粒子形状体として取得され
るため、これらはその粒度に応じた各種の分野に区分し
て使用されている。
It is well known that silicon dioxide is widely used as a filler in various rubbers and plastics, but this silicon dioxide is produced by refining, crushing, and classifying naturally expanding silica ore. Synthetic products using various silicon compounds as starting materials are used depending on the purpose and use. In other words, the average particle size of the material obtained from Amamokuri Rikajuite is, for example, 1 μm.
The precipitate obtained by neutralizing an aqueous solution of 9um silicate with hydrochloric acid, or the precipitate obtained by reacting 9um silicate with calcium chloride, is obtained as a relatively large particle of ~100 μm. A wet method is made by treating the precipitate with hydrochloric acid, washed with water and dried, and a dry method is used to collect relica by depositing it on a refractory target. Silica is, for example, 0.001 to 0.
Since they are obtained in the form of very fine particles of 1 μm, they are classified and used in various fields according to their particle size.

他方、この二酸化けい素は例えば各種半導体素子の樹脂
封止剤用充填剤としても使用されており、この用達には
粒子径の制限から専ら粒子形状の大きい上記した天然品
が使用されているが、最近の電子工業の急激な発展に伴
なう需要の急増にはこの天然品の生産に限度があること
からその生産が間に合わず、しかもこれは微細粒子であ
る上記した合成品では代替することができないという問
題点がある。また、この半一体素子の樹脂封止について
は半導体素子の集積度が年々大きくなり、それに伴なっ
て半導体素子に関する補助材料についてもその純度と品
質に再検討を要することになってきているが、この封止
剤についてはその合成樹脂成分は化学工業の分野で充分
精製することができるものの、この無機質充填剤として
の二酸化けい素についてはそれが天然品であることから
その不純物や粉砕、分級時における異物混入を避けるこ
とができず、上記した生産量の問題と併せて、粒度5〜
50声mの合成による純度の高い二酸化けい素の生産が
求められるに到っている。
On the other hand, silicon dioxide is also used, for example, as a filler for resin encapsulants for various semiconductor devices, and due to particle size limitations, the above-mentioned natural products with large particles are used exclusively for this purpose. However, due to the limited production of this natural product, it cannot be produced in time to meet the rapid increase in demand due to the recent rapid development of the electronics industry, and the synthetic products mentioned above, which are made of fine particles, cannot be substituted. The problem is that it cannot be done. In addition, regarding the resin sealing of semi-integral devices, the degree of integration of semiconductor devices has increased year by year, and as a result, it has become necessary to reconsider the purity and quality of auxiliary materials for semiconductor devices. Although the synthetic resin component of this sealant can be sufficiently purified in the chemical industry, silicon dioxide as an inorganic filler is a natural product, so impurities, pulverization, and classification process In addition to the above-mentioned production volume problem, particle size 5~
There is a growing demand for the production of highly pure silicon dioxide by synthesis of 50 m.

本発明はこのような斯界の要求に応える高純度の粒状二
酸化けい素の直接合成方法を提供しようとするもので、
これはけい素化合物を火炎と共に耐火性の標的に軟きつ
けて、その酸化、加水分解で生成するりリカ微粉末7を
標的上に付着させ、これをその平均粒子径が1μm以上
になるまで溶融成長させたのち回収することを特徴とす
るものである。
The present invention aims to provide a method for directly synthesizing high-purity granular silicon dioxide that meets the demands of this industry.
This involves softening a silicon compound along with a flame onto a fire-resistant target, depositing silica fine powder 7 produced by its oxidation and hydrolysis on the target, and melting it until the average particle size becomes 1 μm or more. It is characterized by being grown and then collected.

これを説明すると、本発明者らは充分精製したけい素化
合物を原料として二酸化けい素を合成すれば純度的には
電子材料用としても満足されるものが得られるというこ
とに注目し、これを粒度の大きいものとして取得する方
法について種々検討した結果、精製したけい素化合物の
火炎反応によって得たシリカ微粒子を標的上に付着させ
、これを適宜の火炎条件下で凝集、溶融させれば、粗大
本発明の方法で始発材料とされるけい素化合物は、10
00℃以上の高温または火炎処理によって分解して二酸
化けい素となるもの、この分解を効果的に行なうために
それが反応系中でガス体となるかあるいは噴霧状の液体
となし得るものであること、さらには精留などの化学工
学的手段で不純物が容属に除去し得るものであることと
いう条件を滴すものであることが必要とされ、これらの
条件を満足するものとしては一般式Rm81x4−m(
ここにRは一価炭化水素基または水素原子、Xはへロゲ
ン腺子、mは0〜4の整数)で示されるへロゲン化けい
素が好ましいものとされる。このへロゲン化けい素とし
てはテトラクロロシラン(81014) 、)リクロロ
νラン(H81C1,)、モノシラン(81H,)、メ
チルトリクロロシラン(OH8101,)  などが例
示される。これらは液体のままで噴霧状に分散させるか
、沸点以上に加熱しガス体として反応系に送ればよいが
、これはまたその液相中に空気、窒素、酸素、アルゴン
などのガス体をバブリングさせてこれらのガス体に搬送
させて反応系に送入してもよい。
To explain this, the present inventors focused on the fact that if silicon dioxide was synthesized from a sufficiently purified silicon compound as a raw material, it would be possible to obtain silicon dioxide with a purity that was satisfactory for use in electronic materials. As a result of various studies on methods of obtaining large particles, we found that if fine silica particles obtained by flame reaction of purified silicon compounds are attached to a target and then coagulated and melted under appropriate flame conditions, coarse particles could be obtained. The silicon compound used as the starting material in the method of the present invention has 10
Substances that decompose into silicon dioxide at high temperatures of 00°C or higher or by flame treatment, and in order to effectively perform this decomposition, it can be turned into a gas or atomized liquid in the reaction system. In addition, it must be possible to remove impurities by chemical engineering means such as rectification, and the general formula that satisfies these conditions is Rm81x4-m(
Here, a silicon halide represented by R is a monovalent hydrocarbon group or a hydrogen atom, X is a heliogen atom, and m is an integer of 0 to 4 is preferred. Examples of the silicon halide include tetrachlorosilane (81014), )lichlorovrane (H81C1,), monosilane (81H,), and methyltrichlorosilane (OH8101,). These can be dispersed as a spray in their liquid state, or they can be heated above their boiling point and sent to the reaction system as a gas, but this can also be done by bubbling gases such as air, nitrogen, oxygen, or argon into the liquid phase. These gases may be transported to the reaction system.

本発明の方法における二酸化けい素の生成は上記したけ
い素化合物またはそれらの混合物を酸水素炎、炭化水素
炎あるいは誘導プラズマ炎と共に耐火物標的上に吹きつ
けることによって行なわれるが、この場合、けい素化合
物は必要に応じ空気。
The production of silicon dioxide in the method of the present invention is carried out by spraying the above-mentioned silicon compounds or their mixtures together with an oxyhydrogen flame, a hydrocarbon flame or an induced plasma flame onto a refractory target. Air is used for elementary compounds as necessary.

酸素、窒素、アルゴンガスと混合されていてもよい。こ
の耐火物標的は通常石英材で作られたものとされるが、
これは炭素、アルミナ、ジルコ土ア。
It may be mixed with oxygen, nitrogen, or argon gas. This refractory target is usually made of quartz material,
This is carbon, alumina, and zirco-earth metal.

白金などで作られたものであってもよい、このノーロゲ
ン化けい素は高温の火炎との接触によって酸化および/
または加水分解されて二酸化けい素となるが、この反応
によって生成した二酸化けい素は0.1〜05μmの微
粒子として標的上に析出される。本発明の方法はここに
析出した微細粒子を直径1μm以上の大粒子に成長させ
るのであるが、これには適宜の条件とした火炎の下に反
応を継続させればよく、これによればシリカ微粒子表面
での原料蒸気の付着反応や火炎中で生じたシリカ微粒子
がすでに標的上に付着しているシリカ粒子に付着する二
次凝集、さらにはこの二次凝集塊の空隙部への原料蒸気
の1看があり、これらがその温度上昇によって溶融し、
時間と共にその溶融成員によって数μmから数■の径を
もつ球状シリカにまで大きく成員する。しかし、この場
合、火力が強すぎたり、標的上の同一点だけで反応な長
(義けると、微粒子全体が相互1゛:溶着し、これが粗
大粒子を経てガラス状膜となるし、他方火炎の温度が低
すぎたり、標的上での反応時間が短かすぎると粒子の成
長が不充分となり0.5μm以下の二酸化けい素しか得
られなくなるので、二酸化けい素の粒子の大きさ、粒度
分布を目的の範囲とするためには熱源の温度とその発熱
量によって原料の供給速度や連続加熱時間を調節する必
要がある。また、上記した二酸化けい素粒子のガラス化
は標的の温度、熱容量、熱伝導闇によって大きく影響を
受けるので、その工業生産に当ってはこの標的の材質、
形状にも充分配慮する必要があり、この点からはこれを
板状の石英体とすることが望ましい。
This silicon norogenide, which may be made of platinum or the like, is oxidized and/or
Alternatively, it is hydrolyzed to become silicon dioxide, and the silicon dioxide produced by this reaction is deposited on the target as fine particles of 0.1 to 05 μm. In the method of the present invention, the fine particles precipitated here are grown into large particles with a diameter of 1 μm or more, but this can be done by continuing the reaction under flame under appropriate conditions. Adhesion reaction of raw material vapor on the surface of fine particles, secondary agglomeration of silica fine particles generated in the flame adhering to silica particles already attached to the target, and furthermore, raw material vapor flowing into the voids of these secondary agglomerates. 1) These melt due to the temperature increase,
Over time, the molten silica particles grow into spherical silica particles with diameters ranging from several μm to several square meters. However, in this case, if the firepower is too strong or if the reaction occurs only at the same point on the target, the entire fine particles will be welded together, which will pass through the coarse particles and become a glass-like film, and the flame If the temperature of In order to achieve the desired range, it is necessary to adjust the feed rate and continuous heating time of the raw material depending on the temperature of the heat source and its calorific value.In addition, the above-mentioned vitrification of silicon dioxide particles depends on the target temperature, heat capacity, Heat conduction is greatly affected by darkness, so in industrial production, this target material,
It is also necessary to give due consideration to the shape, and from this point of view it is desirable to use a plate-shaped quartz body.

なお、目的とする粒子径をもつ二酸化けい素を得るため
には、けい素化合物の火炎反応によりνす力微粒子の生
じる温度が800〜1500℃とされ、これが溶融して
透明な石英インゴットになるガラス化温度が1400℃
以上とされることから。
In addition, in order to obtain silicon dioxide with the desired particle size, the temperature at which ν force particles are generated by the flame reaction of the silicon compound is 800 to 1500°C, and this is melted to become a transparent quartz ingot. Vitrification temperature is 1400℃
From the above.

この二酸化けい素生成面を含む耐火性標的基板の温度は
1000−1400℃に保つようにすることがよく、さ
らに原料ガスとしてテトラクロロシランを使用し、これ
を酸水素火炎によって処理する場合にはこのH,/81
014のモル比を10〜100の範囲とすることがよい
が、この火炎の温度が火炎の部位によって異なるので、
これには火炎を形成するための酸素量および火炎と耐火
性標的との相対的位置を適宜に設定することが必要とさ
れる。
The temperature of the refractory target substrate containing the silicon dioxide-generating surface is preferably maintained at 1000-1400°C. Furthermore, when tetrachlorosilane is used as a raw material gas and treated with an oxyhydrogen flame, this H, /81
The molar ratio of 014 is preferably in the range of 10 to 100, but since the temperature of this flame varies depending on the location of the flame,
This requires appropriate setting of the amount of oxygen to form the flame and the relative position of the flame and the refractory target.

本発明の方法は二酸化けい素が1〜100μm好ましく
は5〜50μmにまでfII融成長した時点これには火
炎を止めるか、あるいは標的を移動させてこの反応によ
る二酸化けい素の付着面を移動させればよいが、この移
動を一定時間毎に行えば粒子の付着、加熱溶融、冷却、
回収を連続的に行なうことができるし、これはまたこの
シリカ微粒子の付着が標的上に層上に行なわれるので、
この層状積層物を溶融して大きな粒子径の粒状二酸化け
い素として回収し、これをくり返すことによって連続化
させてもよい。しかし、この方法で得られた二酸化けい
素はその粒径が0.1μmから100μmの粗大粒子に
到るまで広い粒度分布を有するものとされるので、これ
は必要に応じ軽く粉砕したのち分級することがよ(、こ
れによれば所望の粒度分布をもつ粒状二酸化けい素を容
易に取得することができる。
In the method of the present invention, when silicon dioxide has grown by fII to 1 to 100 μm, preferably 5 to 50 μm, the flame is stopped or the target is moved to move the surface on which silicon dioxide is attached due to this reaction. However, if this movement is performed at regular intervals, it will prevent particles from adhering, heating and melting, cooling,
Recovery can be carried out continuously, and this also because the deposition of the silica particles is carried out in layers on the target.
This layered laminate may be melted and recovered as granular silicon dioxide with a large particle size, and this may be repeated to make it continuous. However, silicon dioxide obtained by this method is said to have a wide particle size distribution ranging from 0.1 μm to coarse particles of 100 μm, so if necessary, it may be lightly crushed and then classified. According to this method, granular silicon dioxide having a desired particle size distribution can be easily obtained.

本発明の方法は従来公知の乾式シリカの製造法によって
生成する微粉状二酸化けい素を結晶成長によって大粒子
として回収するものであり、これによれば二酸化けい素
をその平均粒子径が1〜100、s鳳の球状体として、
したがってその表面活性も安定なものとして取得するこ
とができ、しかもこのものは原料としてのへロゲン化け
い素中の炭素、水素、ハロゲン元素などがその熱分解時
にガス体として揮散した純度の高いものとして得られる
ので、これは半導体素子用封止剤の充填剤として最も望
ましいものになるという有利性をもつものとされる。
The method of the present invention is to recover fine powder silicon dioxide produced by a conventionally known method for producing dry silica as large particles by crystal growth. , as a spherical body of sho,
Therefore, it can be obtained as a product with stable surface activity, and this product is a highly pure product in which carbon, hydrogen, halogen elements, etc. in the silicon halide as a raw material are volatilized as a gas during thermal decomposition. Therefore, it has the advantage of being the most desirable filler for encapsulants for semiconductor devices.

つぎに本発明の実施例をあげる。Next, examples of the present invention will be given.

実雑@ l 精製したテトラクロロシランを30℃に保持し。Miscellaneous @ l The purified tetrachlorosilane was maintained at 30°C.

ここに50j/時の酸素ガスをバブリングさせて、この
酸素ガスにテトラクロロシランを伴流させ、これを木下
式ブルーバーナの中心から噴出させると共に、その周囲
から水素ガス8007/時、酸素ガス2001/峙を噴
出させて酸水素炎を形成させ、これを60(IK、f離
して設置した石英板に吹きつけた。
Oxygen gas is bubbled here at a rate of 50J/hour, and this oxygen gas is accompanied by tetrachlorosilane, which is ejected from the center of the Kinoshita blue burner, and from around it hydrogen gas 8007J/hour and oxygen gas 2001/hour are bubbled. A flame was ejected to form an oxyhydrogen flame, which was blown onto a quartz plate placed at a distance of 60 (IK, f).

1分間反応を行なわせてこの石英板にテトラクロロシラ
ンの酸化により発生した微粉杖の二酸化けい素な#看さ
せたのも、反応面を移動させ、冷却後この付着面をしら
べたところ、その中心部はI[径3−の透明石英ガラス
層となっていたが、その外周にはS■の帯状部分があり
、ここには直径60声mの透明な二酸化けい素球が生じ
ていた。
The reaction was allowed to proceed for 1 minute, and the quartz plate was allowed to see the fine particles of silicon dioxide produced by the oxidation of tetrachlorosilane.When the reaction surface was moved and the adhering surface was examined after cooling, it was found that the center of the quartz plate was It was a transparent quartz glass layer with a diameter of 3 mm, but on its outer periphery there was a band-shaped portion of S, in which a transparent silicon dioxide sphere with a diameter of 60 m was formed.

実施942 前例における水素ガス量#t600j/時、酸素ガス量
をI S O11時とし、バーナーと石英板との距離を
Seamとしたほかは前例と同様の条件で二酸化けい素
の生成反応を行なわせたところ、石英板上の二酸化けい
素材着面はその中心部が約10■−の透明石英ガラス層
となっていたがその周囲には直径200.am−の透明
な二酸化けい素球が主じており、この反応時間を2分間
としたときその透明球は最大600/I!Elにまで成
員した。
Implementation 942 The silicon dioxide production reaction was carried out under the same conditions as in the previous example, except that the hydrogen gas amount was #t600j/hour, the oxygen gas amount was ISO11, and the distance between the burner and the quartz plate was Seam. As a result, the surface on which the silicon dioxide material was adhered on the quartz plate was found to have a transparent quartz glass layer with a diameter of about 10 mm at the center, but around it a layer of transparent quartz glass with a diameter of about 20 mm. Am- is mainly composed of transparent silicon dioxide spheres, and when the reaction time is 2 minutes, the transparent spheres have a maximum of 600/I! It became a member of El.

実施例 3     ′ 実施例1における石英板を#Iさ81声mのものとして
これを上方から吊し、バーナー炎の当たる面が10一/
分で移動するようにゆっくり回転させるようにして実施
#12の条件で1分間で二酸化けい素材雪面が順次移動
するようにして反応させたところ、石英板表面には最大
100μmの二酸化けい素粒子が成長し、その周囲には
50μm、さらにその外側には約μmの粒子が付着して
いた。
Example 3' The quartz plate used in Example 1 was #I and 81 mm, and it was suspended from above so that the surface that was exposed to the burner flame was 101/2 m.
When the reaction was carried out by rotating slowly so that the surface of the quartz plate moved in 1 minute under the conditions of test #12, silicon dioxide particles of up to 100 μm were observed on the surface of the quartz plate. had grown, and particles of 50 μm in size were attached around it, and particles of approximately μm in size were attached to the outside.

冷却後、これらの粒子を石英棒で払い落して回収したと
ころ、これには各種の破断面をもつ透明な二酸化けい累
粉も含まれていたが、これを半導体素子の樹脂封止剤用
充填剤として使用したところ、加工性、物性に全く異常
は認められなかった。
After cooling, these particles were scraped off with a quartz rod and collected, and they also contained transparent silicon dioxide powder with various fractured surfaces. When used as an agent, no abnormalities were observed in processability or physical properties.

実施例 4 実施例3と同様の装置、条件で回転している15−φの
石英棒に火炎と共にテトラクロロシランを吹きつけて、
その中心部にシリカ微粒子が付着するようにし、これを
軸方向に回転成長させたところ、6時間後に約300t
の粉末焼結体を得た。
Example 4 Using the same equipment and conditions as in Example 3, a rotating 15-φ quartz rod was sprayed with flame and tetrachlorosilane.
When fine silica particles were attached to the center and grown by rotation in the axial direction, approximately 300 tons were obtained after 6 hours.
A powder sintered body was obtained.

つぎに、これを取出して冷却後粉砕し、15゜メツシュ
のふるいを通過したものをエポキシ樹脂と肩合し、この
組成物で半導体素子をモールド成形して、その特性をし
らべたところ、これには金(異常が認められなかった。
Next, this was taken out, cooled and pulverized, and the material that passed through a 15° mesh sieve was combined with epoxy resin, and a semiconductor element was molded with this composition, and its properties were investigated. (No abnormality was observed.

特許出願人 信越化学工業株式会社 代理人 弁理士山本亮−−1%e iく隈1Patent applicant: Shin-Etsu Chemical Co., Ltd. Agent: Patent attorney Ryo Yamamoto--1%e i kuma 1

Claims (1)

【特許請求の範囲】 1、けい素化合物を火炎と共に耐火性の標的上1=吹き
つけて、その酸化、加水分解で生成するりツカ微粉子を
標的上に付着させ、これをその平均粒子径が1μ目以上
になるまで溶融成長させたのち回収することを特徴とす
る粒状二酸化けい素の製造方法 2、回収した粒状二酸化けい素を粉砕、分級して所望の
粒度分布を有する粒状物とすることを特徴とする特許請
求の範囲111項記載の粒状二酸化けい素の製造方法 3、s釣上5:付着したりツカ微粉子を溶融成員させた
のち、一層毎に付着面を移動させて冷却し、回収するこ
とを特徴とする特許請求の範囲第1項記載の粒状二酸化
けい素の製造方法
[Claims] 1. A silicon compound is sprayed onto a fire-resistant target together with a flame, and the fine particles produced by its oxidation and hydrolysis are deposited on the target, and the average particle size of the silicon compound is Method 2 for producing granular silicon dioxide, characterized by melting and growing the silicon dioxide until it reaches 1 μm or more, and then recovering the granular silicon dioxide.The recovered granular silicon dioxide is crushed and classified to obtain granules having a desired particle size distribution. Method 3 for producing granular silicon dioxide according to claim 111, characterized in that 5: After melting the adhered or thickened fine powder, the adhering surface is moved layer by layer and cooled. A method for producing granular silicon dioxide according to claim 1, characterized in that the method comprises:
JP2246582A 1982-02-15 1982-02-15 Manufacture of grained silicon dioxide Granted JPS58140313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2246582A JPS58140313A (en) 1982-02-15 1982-02-15 Manufacture of grained silicon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2246582A JPS58140313A (en) 1982-02-15 1982-02-15 Manufacture of grained silicon dioxide

Publications (2)

Publication Number Publication Date
JPS58140313A true JPS58140313A (en) 1983-08-20
JPH0343205B2 JPH0343205B2 (en) 1991-07-01

Family

ID=12083447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2246582A Granted JPS58140313A (en) 1982-02-15 1982-02-15 Manufacture of grained silicon dioxide

Country Status (1)

Country Link
JP (1) JPS58140313A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340560A (en) * 1993-04-30 1994-08-23 General Electric Company Method for making fumed silica having a reduced aggregate size and product
US6322765B1 (en) 1996-02-15 2001-11-27 Wacker-Chemie Gmbh Process for preparing silicon dioxide
JP2002348113A (en) * 2001-05-25 2002-12-04 Mitsubishi Materials Corp Method for producing silica powder and silica power produced b using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50723A (en) * 1972-11-10 1975-01-07
JPS532443A (en) * 1976-06-25 1978-01-11 Kanebo Ltd Preparation of 1-phenyl-2-aminoethanol derivatives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50723A (en) * 1972-11-10 1975-01-07
JPS532443A (en) * 1976-06-25 1978-01-11 Kanebo Ltd Preparation of 1-phenyl-2-aminoethanol derivatives

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340560A (en) * 1993-04-30 1994-08-23 General Electric Company Method for making fumed silica having a reduced aggregate size and product
US6322765B1 (en) 1996-02-15 2001-11-27 Wacker-Chemie Gmbh Process for preparing silicon dioxide
JP2002348113A (en) * 2001-05-25 2002-12-04 Mitsubishi Materials Corp Method for producing silica powder and silica power produced b using the same

Also Published As

Publication number Publication date
JPH0343205B2 (en) 1991-07-01

Similar Documents

Publication Publication Date Title
JPH02500972A (en) Improvements in and related to vitreous silica
WO2007120871A2 (en) Production of silicon through a closed-loop process
CA1228220A (en) Process for the production of silicon
WO2018006694A1 (en) Method for producing silicon tetrachloride
JPH0264006A (en) Production of solar silicon
JP2001220126A (en) Crystalline synthetic silica powder and glass compact using the same
US3449072A (en) Synthesis of finely divided oxide powders
JPS58140313A (en) Manufacture of grained silicon dioxide
JPH0222004B2 (en)
JPH02199013A (en) Production of fine fused spherical silica
JPH07502006A (en) Microparticulate silicone with halogen bonded to its surface, its manufacturing method and its uses
JPS5860609A (en) Preparation of high purity sic
JPH0476359B2 (en)
US3321270A (en) Process for manufacture of cyanates
JPS6389414A (en) Production of chloropolysilane
JPS58115016A (en) Preparation of fine powdery silicon carbide
JPS604131B2 (en) Method for producing ultrafine aluminum oxide
JP2006290645A (en) Silicon and its manufacturing method
JP2532933B2 (en) Method for producing high-purity silica
JP2820865B2 (en) Method for producing quartz glass foam
JPS5997527A (en) Manufacture of high purity alumina particle
JPH0676609B2 (en) Method for producing fine copper powder
WO2024038429A1 (en) Method for preparing lithium bromide
JPS63117907A (en) Production of silicon tetrachloride
JPS627605A (en) Method for recovering hydrochloric acid from silicon tetrachloride