JPS58126403A - Reheating turbine cooling equipment - Google Patents

Reheating turbine cooling equipment

Info

Publication number
JPS58126403A
JPS58126403A JP850182A JP850182A JPS58126403A JP S58126403 A JPS58126403 A JP S58126403A JP 850182 A JP850182 A JP 850182A JP 850182 A JP850182 A JP 850182A JP S58126403 A JPS58126403 A JP S58126403A
Authority
JP
Japan
Prior art keywords
turbine
cooling
steam
reheat
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP850182A
Other languages
Japanese (ja)
Inventor
Toshiyuki Harada
原田 稔之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP850182A priority Critical patent/JPS58126403A/en
Publication of JPS58126403A publication Critical patent/JPS58126403A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To constantly maintain cooling temperature at its optimum level in such a way that a closing valve is provided on a cooling steam bleeder tube to cool a rotor of a reheating turbine to control the valve in response to turbine load. CONSTITUTION:In order to cool a rotor, a diaphragm inner ring, etc. in a reheating turbine 2, low temperature steam is bled through the stage on the way to a high pressure turbine 1, and fed to the reheating turbine 2 through a bleed path 5. A cooling steam control valve 21 is provided on the way of the bleed path 5 and controlled by being opened and closed by opening signals 26 transmitted from a function generator 25 in response to the output from a power generator 4 which has been detected by a load detector 23, cooling steam rate to be fed into a mixing chamber in the reheating turbine is controlled, thus the steam temperature is always maintained at its optimum level regardless of the magnitude of the load, and the turbine is cooled in the allowable temperatures.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高温高圧の再熱蒸気をもって運転される大容量
の再熱タービンのロータと羽根植込部、ダイヤフラム内
輪等の冷却部を冷却する再熱タービン冷却装置に関する
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a reheat turbine for cooling cooling parts such as a rotor, a blade implant, and a diaphragm inner ring of a large-capacity reheat turbine that is operated with high-temperature and high-pressure reheat steam. The present invention relates to a thermal turbine cooling device.

〔発明の技術的背景〕[Technical background of the invention]

近年の蒸気タービンの大容量化に伴ない、例えば複流型
再熱タービンの高温段落を冷却する場合には、高圧ター
ビンの途中段落から抽気した低温蒸気を冷却蒸気として
前記再熱タービンの中央部ヘ流入せしめて、冷却部を冷
却するように形成されている。
With the recent increase in the capacity of steam turbines, for example, when cooling a high-temperature stage of a double-flow reheat turbine, low-temperature steam extracted from an intermediate stage of a high-pressure turbine is used as cooling steam to flow into the center of the reheat turbine. The cooling section is configured to cool the cooling section.

このような冷却が必要とされるのは次の理由による。The reason why such cooling is required is as follows.

蒸気タービンの大容量化に伴ない、羽根の有効長と幅が
増大するので、その羽根の遠心力が増大する。従って、
羽根植込部およびロータに作用する遠心力が増大するの
で、その羽根植込部等の強度低下を引き起すこととなる
。更に、再熱タービンの再熱蒸気の入口から高温段落部
分の間には、高子タービンで膨張した蒸気が流入するた
め、羽根植込部等の強度低下が起こる傾向が太きい。ま
た、高効率化を図るために再熱蒸気の温度全上昇させる
と羽根植込部等の強度低下が更に進行することとなる。
As the capacity of steam turbines increases, the effective length and width of the blades increases, which increases the centrifugal force of the blades. Therefore,
Since the centrifugal force acting on the blade implant and the rotor increases, this causes a decrease in the strength of the blade implant and the like. Furthermore, since the steam expanded in the high-temperature turbine flows between the reheated steam inlet and the high-temperature stage section of the reheat turbine, there is a strong tendency for the strength of blade embedded parts to be reduced. Further, if the temperature of the reheated steam is completely increased in order to improve efficiency, the strength of the blade embedded portion etc. will further deteriorate.

よって、この羽根植込部等の強度低下全防止するために
は、羽根植込部等を冷却しなげればならない。
Therefore, in order to completely prevent a decrease in the strength of the blade-embedded portion, etc., the blade-embedded portion, etc. must be cooled.

次に従来装置全第1〜2図について説明する。Next, the entire conventional apparatus shown in FIGS. 1 and 2 will be explained.

第1図は発准プラントの蒸気タービンを示しており、蒸
気タービンの大容量化を図って高圧タービン1、再熱タ
ービン2、低圧タービン3がそれぞね一用的に連結され
ており、発電機4を負荷として駆動するように形成され
ている。第1図において、各タービン全駆動する主蒸気
系は省略されている。再熱タービン2は複流型のもので
あり、中圧タービンとも称される。
Figure 1 shows the steam turbine of the initialization plant.In order to increase the capacity of the steam turbine, a high-pressure turbine 1, a reheat turbine 2, and a low-pressure turbine 3 are all connected for one purpose. It is formed to drive the machine 4 as a load. In FIG. 1, the main steam system that fully drives each turbine is omitted. The reheat turbine 2 is of a double flow type, and is also called an intermediate pressure turbine.

この再熱タービン2全冷却するために冷却蒸気抽気導入
路5が高圧タービン1と再熱タービン2との間に説けら
れている。この冷却蒸気抽気導入路5は、高圧タービン
1の途中段落から低温蒸気全抽気するためにその一端が
高圧タービン1の途中段落に接続されており、前記低温
蒸気全冷却蒸気として再熱タービン2へ供給するために
その他端が再熱タービン混合室6(第2図)に接続され
ている。そして、冷却蒸気抽気導入路5の途中には各種
仕切弁7と、再熱タービン2内へ流入する冷却蒸気の圧
力、流址調整等を行なうオリフィス8が設けられている
。この再熱タービン混合室6はPit K式の再熱ター
ビン2の中央部分に設けられている。第2図は再熱ター
ビン20片側のみ全表わしている。この再熱タービン混
合室6全形成する壁部には、再熱蒸気9の一部を再熱タ
ービン混合室6内に流入させる流入孔10が穿設されて
いる。
A cooling steam extraction passage 5 is provided between the high pressure turbine 1 and the reheat turbine 2 in order to completely cool the reheat turbine 2 . One end of this cooling steam extraction introduction passage 5 is connected to an intermediate stage of the high-pressure turbine 1 in order to fully extract the low-temperature steam from the intermediate stage of the high-pressure turbine 1, and the low-temperature steam is sent to the reheat turbine 2 as completely cooled steam. The other end is connected to a reheat turbine mixing chamber 6 (FIG. 2) for supply. Various gate valves 7 and orifices 8 are provided in the middle of the cooling steam extraction passage 5 to adjust the pressure and flow area of the cooling steam flowing into the reheat turbine 2. This reheat turbine mixing chamber 6 is provided in the central portion of the Pit K type reheat turbine 2. FIG. 2 shows only one side of the reheat turbine 20 in its entirety. An inflow hole 10 through which a portion of the reheat steam 9 flows into the reheat turbine mixing chamber 6 is bored in the wall portion that forms the entire reheat turbine mixing chamber 6 .

よって、再熱蒸気9は主としてノズル11および羽根1
2方向に流入してロータ]3を回転させるとともに、再
熱タービン混合室6に流入して冷却蒸気抽気導入路5か
ら流入する冷却蒸気14と混合され、冷却蒸気14の温
度を上昇させる。このようにして冷却蒸気14に再熱蒸
気9を混合させるのは、低温な冷却蒸気14が冷却部に
直接触れて耐却部に過大な熱応力が発生するのを防止す
るためである。そして、この再熱タービン混合室6内で
冷却蒸気14と再熱蒸気9とが混合され、混合蒸気15
となって流出孔16より流出し、ノズル11のダイヤフ
ラム内輪17とロータ13との間、羽根植込部180ロ
ータ軸方向に貫通する冷却通路19ヲ順次流通して行き
、ロータ13、羽根植込部18、ダイヤフラム内@17
ヲ冷却する。また、混合蒸気15は、ダイヤフラム内輪
17と羽根積込s18とにそれぞれ突設したフィンで形
成された間隙20ヲ通って、再熱蒸気9の流れる主流側
に流入する。
Therefore, the reheated steam 9 mainly flows through the nozzle 11 and the blade 1.
It flows in two directions to rotate the rotor] 3, flows into the reheat turbine mixing chamber 6, and is mixed with the cooling steam 14 flowing in from the cooling steam extraction introduction path 5, thereby increasing the temperature of the cooling steam 14. The reason why the reheated steam 9 is mixed with the cooling steam 14 in this way is to prevent the low-temperature cooling steam 14 from coming into direct contact with the cooling section and generating excessive thermal stress in the burn-resistant section. The cooling steam 14 and the reheating steam 9 are mixed in the reheating turbine mixing chamber 6, and the mixed steam 15
It flows out from the outflow hole 16, flows between the diaphragm inner ring 17 of the nozzle 11 and the rotor 13, and sequentially flows through the cooling passage 19 passing through the blade embedded part 180 in the rotor axial direction, and flows through the rotor 13 and the blade embedded part. Part 18, inside the diaphragm @17
Cool it down. Further, the mixed steam 15 passes through a gap 20 formed by fins protruding from the diaphragm inner ring 17 and the vane loading s18, and flows into the mainstream side through which the reheated steam 9 flows.

また、冷却部を適正に冷却するためには、冷却部の温度
全許容温度以下に保つ必要がある。そのため、従来はオ
リフィス8により冷却蒸気14の圧力および流量調整全
行なっている。
Furthermore, in order to properly cool the cooling section, it is necessary to maintain the temperature of the cooling section below the total permissible temperature. Therefore, conventionally, the orifice 8 is used to completely adjust the pressure and flow rate of the cooling steam 14.

〔背景技術の問題点〕[Problems with background technology]

ところが、従来は蒸気タービンの負荷が小さくなると冷
却能力が低減してしまうという問題点があった。
However, conventionally, there has been a problem in that when the load on the steam turbine becomes small, the cooling capacity decreases.

それは次の理由による。This is due to the following reason.

第3図に示すように、オリフィス8を通過した後の冷却
蒸気14の圧力P。L、再熱蒸気9の圧力PRおよび高
圧タービン1と冷却蒸気抽気導入路5との接続部の冷却
蒸気取り出し口5a部分の冷却蒸気14の圧力Pa は
、それぞれ蒸気タービンに付加される負荷の増大に伴な
って増大するように変化する。
As shown in FIG. 3, the pressure P of the cooling steam 14 after passing through the orifice 8. L, the pressure PR of the reheated steam 9, and the pressure Pa of the cooling steam 14 at the cooling steam outlet 5a at the connection between the high-pressure turbine 1 and the cooling steam extraction introduction path 5, respectively, are determined by the increase in the load applied to the steam turbine. It changes as it increases.

第4図は負荷と再熱タービン5の高温段落の羽根植込部
18の温度との関係を示している。同図において、勝分
子DOVE ALは羽根植込部18の材料特性に基づく
許容温度TDOVE ALを示し、線分子Doい。。
FIG. 4 shows the relationship between the load and the temperature of the blade implant part 18 of the high temperature stage of the reheat turbine 5. In the figure, the winning molecule DOVE AL indicates the allowable temperature TDOVE AL based on the material characteristics of the blade implanted portion 18, and the winning molecule DOVE AL indicates the allowable temperature TDOVE AL based on the material characteristics of the blade implanted portion 18. .

は従来の冷却装置により冷却した場合の羽根植込部】8
の温度を示し、線分子Rは再熱蒸気の温度TRを示して
いる。
is the blade embedded part when cooled by a conventional cooling device]8
The line numerator R indicates the temperature TR of the reheated steam.

同図に示すように、羽根植込部18の温度TDOVE 
OLは、負荷がPより小さい範囲では許容温度TDov
Ii、AL高くなってしまう。
As shown in the figure, the temperature TDOVE of the blade embedded part 18
OL is the allowable temperature TDov in the range where the load is smaller than P.
Ii, AL becomes high.

これは、従来オリフィス8により冷却蒸気の圧力および
流量調整を行なっているので、負荷の減少に伴ない、オ
リフィス80前後の圧力差が減少し、冷却蒸気の通過流
量が少なくなる。そのために冷却能力が減少し、再熱タ
ービン2の高温段落の植込部18、ロータ13およびダ
イヤフラム内@17等の冷却部の温度が許容温度を越え
ることとなる。
This is because the orifice 8 conventionally adjusts the pressure and flow rate of the cooling steam, so as the load decreases, the pressure difference across the orifice 80 decreases, and the flow rate of the cooling steam passing through decreases. Therefore, the cooling capacity decreases, and the temperature of cooling parts such as the implanted part 18 of the high-temperature stage of the reheat turbine 2, the rotor 13, and the inside of the diaphragm @17 exceeds the permissible temperature.

更に説明すると、再熱タービン混合室6に流入する冷却
蒸気14の圧力P。Lと再熱蒸気9の圧力PRとの差は
、高負荷域では大きく、その再熱タービン混合室6に流
入する冷却蒸気14の再熱蒸気9に対する割合が大きい
ので、再熱タービン2の筒温段落部の冷却を充分に行な
うことができる。
To explain further, the pressure P of the cooling steam 14 flowing into the reheat turbine mixing chamber 6. The difference between L and the pressure PR of the reheat steam 9 is large in the high load region, and the ratio of the cooling steam 14 flowing into the reheat turbine mixing chamber 6 to the reheat steam 9 is large. The hot stage can be sufficiently cooled.

一方、低負荷になるに従って、再熱タービン混合室6に
流入する冷却蒸気14の再熱蒸気9に対する割合が減少
し、再熱蒸気90分量が多くなり、混合蒸気15の温度
が高くなる。更に、蒸気タービンの変圧運転下において
は、高負荷域に比らべて低負荷域では、高圧タービン1
からの冷却蒸気取り出し口5a部分のエンタルピも少量
とはいえ増加するため、再熱タービン混合室6内の混合
蒸気15の温度が負荷の減少に伴ない上昇する。
On the other hand, as the load becomes lower, the ratio of cooling steam 14 flowing into reheat turbine mixing chamber 6 to reheat steam 9 decreases, the amount of reheat steam 90 increases, and the temperature of mixed steam 15 increases. Furthermore, under variable pressure operation of the steam turbine, the high pressure turbine 1
Since the enthalpy at the cooling steam outlet 5a from the reheat turbine also increases, albeit by a small amount, the temperature of the mixed steam 15 in the reheat turbine mixing chamber 6 increases as the load decreases.

その結果、混合蒸気15による冷却能力が減少し、再熱
タービン2の高温段落部の羽根植込部18等の冷却部の
温度も上昇し、許容温度を越えるおそれがある。
As a result, the cooling capacity of the mixed steam 15 decreases, and the temperature of the cooling parts such as the blade embedded part 18 of the high temperature stage part of the reheat turbine 2 also increases, and there is a possibility that the temperature exceeds the permissible temperature.

この許容温度を越えた状態で、再熱タービン2の運転を
継続すると、羽根植込部18の破損による羽根12の飛
散が生じたり、ロータJ3の付根部や中心部にクラック
が発生して破壊の原因となる等のおそれがあった。
If the reheat turbine 2 continues to operate in a state where the temperature exceeds this allowable temperature, the blades 12 may be scattered due to damage to the blade embedded part 18, or cracks may occur at the root or center of the rotor J3, resulting in destruction. There was a risk that it would cause

特に、蒸気タービンの大容量化、高温蒸気化に伴ない羽
根の遠心力が増大するので、そのおそれ(7) が増大する。
In particular, as the capacity of the steam turbine increases and the steam temperature increases, the centrifugal force of the blades increases, so the risk (7) increases.

〔発明の目的〕[Purpose of the invention]

本発明は再熱タービンの羽根植込部、ロータ、ダイヤフ
ラム内輪等の冷却部を再熱タービンの全負荷域に亘って
適正に冷却することができ、再熱タービンの強度を全負
荷域に亘って充分太き(保つことのできる再熱タービン
冷却装置を提供することを目的とする。
The present invention can appropriately cool cooling parts such as blade implants, rotors, and diaphragm inner rings of a reheat turbine over the entire load range of the reheat turbine, and can maintain the strength of the reheat turbine over the entire load range. The purpose of the present invention is to provide a reheat turbine cooling system that can maintain a sufficiently large diameter.

〔発明の概要〕[Summary of the invention]

本発明は、冷却蒸気抽気導入路の途中に従来のオリフィ
スに代えて冷却蒸気制御弁を設け、更にタービンに掛る
負荷の太ぎさに応じてその冷却蒸気制御弁を開閉させて
混合蒸気を適正温度に維持させる冷却蒸気制御弁駆動装
置を設けて形成されている。
The present invention provides a cooling steam control valve in place of the conventional orifice in the middle of the cooling steam extraction introduction path, and further opens and closes the cooling steam control valve depending on the weight of the load on the turbine to maintain the mixed steam at an appropriate temperature. A cooling steam control valve drive device is provided to maintain the cooling steam control valve.

この冷却蒸気制御弁駆動装置は、負荷が大きい時は冷却
蒸気制御弁の開度を小さく絞り、負荷が小さい時には冷
却蒸気制御弁の開度を大きくする。
This cooling steam control valve drive device reduces the opening degree of the cooling steam control valve when the load is large, and increases the opening degree of the cooling steam control valve when the load is small.

これにより、負荷が小さい場合にも多量の冷却蒸気が再
熱タービン混合室へ強制的に送給され、(8) 混合蒸気温度が低(保たれる。この低温な混合蒸気によ
り再熱タービンの羽根植込部等の冷却部が充分に冷却さ
れ、その温度が例ゼば材料特性によって定められる許容
温度以下に保たれる。
As a result, a large amount of cooling steam is forcibly fed to the reheat turbine mixing chamber even when the load is small, and (8) the mixed steam temperature is kept low. Cooling parts such as vane implants are sufficiently cooled and their temperature is kept below a permissible temperature determined, for example, by material properties.

〔発明の実施例〕[Embodiments of the invention]

第5図は本発明の一実施例金示しており、冷却蒸気抽気
導入路5の途中に電磁弁からなる冷却蒸気制御弁21が
股げられている。一方、負荷である発電機4には冷却蒸
気制御弁駆動装置22が付設されている。この冷却蒸気
制御弁駆動装置nは、負荷となる発電機出力の大きさを
検出する負荷検出器ηと、この負荷検出器nから発せら
れる負荷信号ムの変動に応じて、冷却蒸気制御弁21の
開度を変動させる開度信号26ヲ発する関数発生器部と
により形成されている。この開度信号あは負荷が大きい
時は小さく、負荷が小さい時は太き(なるように設定さ
れており、この開度信号加に基づいて冷却蒸気制御弁2
1は第6図の特性曲線に示すように開閉fJ、It節さ
れる。そして、この冷却蒸気制御弁21の開閉により混
合蒸気15により、冷却部を例えば許容温度以下に冷却
できる大ぎさに設定されている。他の構成は従来装置と
同様に形成されている。
FIG. 5 shows one embodiment of the present invention, in which a cooling steam control valve 21 consisting of a solenoid valve is straddled in the middle of the cooling steam bleed air introduction passage 5. As shown in FIG. On the other hand, a cooling steam control valve drive device 22 is attached to the generator 4, which is the load. This cooling steam control valve driving device n includes a load detector η that detects the magnitude of the output of a generator serving as a load, and a cooling steam control valve 2 and a function generator section that generates an opening degree signal 26 that changes the opening degree of the opening. This opening signal is set so that it is small when the load is large and thick when the load is small.Based on this opening signal, the cooling steam control valve 2
1, the nodes fJ and It are opened and closed as shown in the characteristic curve of FIG. By opening and closing the cooling steam control valve 21, the mixed steam 15 is set to a size that can cool the cooling section to, for example, an allowable temperature or lower. The other configurations are similar to those of the conventional device.

次に、本実施例の作用全説明する。Next, the entire operation of this embodiment will be explained.

各タービン1,2.3を運転して、発電機4により発電
を行なっている間中、負荷検出器乙により発電機4の出
力が検出される。この検出された負荷信号24の大きさ
に応じて、関数発生器16が開度信号26′lr:冷却
蒸気制御弁21へ送る。冷却蒸気制御弁21は開度信号
26に基づいて開閉させられる。
While each turbine 1, 2.3 is operating and the generator 4 is generating power, the output of the generator 4 is detected by the load detector B. Depending on the magnitude of the detected load signal 24, the function generator 16 sends an opening signal 26'lr to the cooling steam control valve 21. The cooling steam control valve 21 is opened and closed based on the opening signal 26.

今、低負荷域についてみると、冷却蒸気制御弁2】は第
6図に示すように開度が太きい。したがって、冷却蒸気
制御弁21を通過する冷却蒸気14に対する圧力損失は
低減し、通過後の冷却蒸気14の圧力pccv  (第
3図参照)が高くなり、冷却蒸気14の再熱タービン混
合室6内への流入量が多(なる。
Now, looking at the low load range, the opening degree of the cooling steam control valve 2 is wide as shown in FIG. Therefore, the pressure loss to the cooling steam 14 passing through the cooling steam control valve 21 is reduced, the pressure pccv (see FIG. 3) of the cooling steam 14 after passing through is increased, and the cooling steam 14 is inside the reheat turbine mixing chamber 6. The amount of inflow to is large.

これにより、再熱タービン混合室6内のおける冷却蒸気
14の再熱蒸気9に対する割合が多くなり、従来に比べ
て低温な混合蒸気15が得られる。この混合蒸気15が
冷却部を流通するので、各冷却部は充分に冷却されて、
冷却部の温度TDoい。cv(第4図参照)が許容温度
T   より低(保たれる。
As a result, the ratio of the cooling steam 14 to the reheating steam 9 in the reheat turbine mixing chamber 6 increases, and mixed steam 15 having a lower temperature than before can be obtained. Since this mixed steam 15 flows through the cooling sections, each cooling section is sufficiently cooled.
The temperature of the cooling section is TDo. cv (see Figure 4) is kept lower than the allowable temperature T.

DO■、AL また、高負荷域についてみると、冷却蒸気制御弁21は
8g6図に示すように開度が小さい。したがって、冷却
蒸気制御弁21ヲ通過した後の冷却蒸気14の圧力Pc
cv  が低く抑えられ、再熱タービン混合室6内へ流
入する冷却蒸気の流所が小さく絞られ、混合蒸気15が
適冷状態になるのが防止される。
DO■, AL Also, in the high load region, the opening degree of the cooling steam control valve 21 is small as shown in Figure 8g6. Therefore, the pressure Pc of the cooling steam 14 after passing through the cooling steam control valve 21
cv is kept low, the flow area of the cooling steam flowing into the reheat turbine mixing chamber 6 is narrowed down, and the mixed steam 15 is prevented from becoming appropriately cooled.

よって、第6図の特性曲線TDovE CCV に示す
ように再熱タービン2の冷却部の温度がタービンにかか
る負荷の全範囲に亘って許容温度TDovEALより低
く維持される。
Therefore, as shown by the characteristic curve TDovE CCV in FIG. 6, the temperature of the cooling section of the reheat turbine 2 is maintained lower than the allowable temperature TDovEAL over the entire range of the load applied to the turbine.

〔発明の効果〕〔Effect of the invention〕

不発明はタービンにかかる負荷の大きさを検出しつつ、
負荷の大ぎさに応じて冷却蒸気制御弁を開閉させるもの
であるから、タービンの全負荷領域に亘って適正温度の
混合蒸気を得て冷却することができ、冷却部全十分に例
えば冷却部の材料特性より定まる許容温度以下に冷却す
ることができ、再熱タービンの強度を充分に太きく維持
するととができ、タービンの破壊等を防止でき、タービ
ンの信頼性が向上し、タービンの大容量化を図ることが
できる。
The invention is to detect the magnitude of the load on the turbine,
Since the cooling steam control valve is opened and closed according to the magnitude of the load, it is possible to obtain and cool mixed steam at an appropriate temperature over the entire load range of the turbine. It is possible to cool the reheat turbine to a temperature lower than the allowable temperature determined by the material properties, and it is possible to maintain the strength of the reheat turbine sufficiently large, preventing damage to the turbine, improving the reliability of the turbine, and increasing the capacity of the turbine. It is possible to aim for

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の再熱タービン冷却装置を付設した蒸気タ
ービンプラントの概略図、第2図は再熱タービン混合室
付近の状態を示す断面図、第3図は各種蒸気圧力と負荷
との関係を示す特性図、第4図は各種部位の温度と負荷
との関係金示す特性図、第5図は本発明の再熱タービン
冷却装置の一実施例を付設した蒸気タービンプラントの
概略図、第6図は冷却蒸気制御弁の開度と負荷との関係
を示す特性図である。 1・・・高圧タービン、2・・・再熱タービン、4・・
・発電機、5・・・冷却蒸気抽気導入路、6・・・再熱
タービン混合室、9・・・再熱蒸気、14・・・冷却蒸
気、15・・・混合蒸気、21・・・冷却蒸気制御弁、
n・・・冷却蒸気制御弁駆動装置、る・・・負荷検出器
、5・・・関数発生器。 他3M □9周 鴇4M 2  □9駒 ′#75図 5 第6図 こく1 □負堝
Figure 1 is a schematic diagram of a steam turbine plant equipped with a conventional reheat turbine cooling system, Figure 2 is a sectional view showing the state near the reheat turbine mixing chamber, and Figure 3 is the relationship between various steam pressures and loads. FIG. 4 is a characteristic diagram showing the relationship between temperature and load of various parts. FIG. 5 is a schematic diagram of a steam turbine plant equipped with an embodiment of the reheat turbine cooling system of the present invention. FIG. 6 is a characteristic diagram showing the relationship between the opening degree of the cooling steam control valve and the load. 1... High pressure turbine, 2... Reheat turbine, 4...
- Generator, 5... Cooling steam extraction introduction path, 6... Reheat turbine mixing chamber, 9... Reheat steam, 14... Cooling steam, 15... Mixed steam, 21... cooling steam control valve,
n...Cooling steam control valve drive device, RU...Load detector, 5...Function generator. Other 3M □9 pieces 4M 2 □9 piece'#75 Figure 5 Figure 6 Koku 1 □ Negative pot

Claims (1)

【特許請求の範囲】 1、再熱タービンと、冷却蒸気および再熱蒸気全混合さ
せて混合蒸気として前記再熱タービンの冷却部へ送給す
る再熱タービン混合室と、前記再熱タービンと別個に設
けられている高圧タービンの段落から前記冷却蒸気を抽
気するとともに前記再熱タービン混合室内へ導びく冷却
蒸気抽気導入路とを有する再熱タービン冷却装置におい
て、前記冷却蒸気抽気導入路の途中にその冷却蒸気抽気
導入路を開閉制御する冷却蒸気制御弁を設け、前記各タ
ービンにかかる負荷の大きさに応じて前記冷却蒸気制御
弁を開閉させ前記混合蒸気を適正温度に維持させる冷却
蒸気制御弁駆動装置を設けたことを特徴とする再熱ター
ビン冷却装置。 2、冷却蒸気制御弁駆動装置は、負荷の大きさを検出す
る負荷検出器と、この9荷検出器から発せられる負荷の
変動に応じて冷却蒸気制御弁の開度を指令する関数発生
器とからなることを特徴とする特許請求の範囲第1項記
載の再熱タービン冷却装置。 3、負荷は各タービンに接続されている発電機の出力と
したことを特徴とする特許請求の範囲第1項または第2
項記載の再熱タービン冷却装置。
[Claims] 1. A reheat turbine, a reheat turbine mixing chamber that completely mixes cooling steam and reheat steam and supplies the mixed steam to the cooling section of the reheat turbine, and a reheat turbine mixing chamber that is separate from the reheat turbine. In the reheat turbine cooling system, the reheat turbine cooling device has a cooling steam extraction introduction passage for extracting the cooling steam from a stage of a high-pressure turbine provided in the reheat turbine mixing chamber and guiding the cooling steam into the reheat turbine mixing chamber. A cooling steam control valve is provided to control the opening and closing of the cooling steam extraction inlet passage, and the cooling steam control valve opens and closes the cooling steam control valve according to the magnitude of the load applied to each of the turbines to maintain the mixed steam at an appropriate temperature. A reheat turbine cooling device characterized by being provided with a drive device. 2. The cooling steam control valve drive device includes a load detector that detects the magnitude of the load, and a function generator that commands the opening degree of the cooling steam control valve in accordance with changes in the load generated from the load detector. A reheat turbine cooling device according to claim 1, characterized in that the reheat turbine cooling device comprises: 3. Claim 1 or 2, characterized in that the load is the output of a generator connected to each turbine.
Reheat turbine cooling device as described in Section 1.
JP850182A 1982-01-22 1982-01-22 Reheating turbine cooling equipment Pending JPS58126403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP850182A JPS58126403A (en) 1982-01-22 1982-01-22 Reheating turbine cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP850182A JPS58126403A (en) 1982-01-22 1982-01-22 Reheating turbine cooling equipment

Publications (1)

Publication Number Publication Date
JPS58126403A true JPS58126403A (en) 1983-07-27

Family

ID=11694859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP850182A Pending JPS58126403A (en) 1982-01-22 1982-01-22 Reheating turbine cooling equipment

Country Status (1)

Country Link
JP (1) JPS58126403A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133203A (en) * 1978-04-07 1979-10-16 Hitachi Ltd Rotor cooling device for steam turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133203A (en) * 1978-04-07 1979-10-16 Hitachi Ltd Rotor cooling device for steam turbine

Similar Documents

Publication Publication Date Title
US5579631A (en) Steam cooling of gas turbine with backup air cooling
KR100413754B1 (en) Compressed Opportunities for Gas Turbines
US4519207A (en) Combined plant having steam turbine and gas turbine connected by single shaft
EP0908603B1 (en) Single shaft combined cycle plant
US4309873A (en) Method and flow system for the control of turbine temperatures during bypass operation
US6578352B2 (en) Combined cycle power plant
US6405537B1 (en) Single shaft combined cycle plant and operating thereof
US6220014B1 (en) Single shaft combined cycle plant and operating method thereof
CN102906373A (en) Vapour turbine and vapour turbine thrust adjustment method
US20090196732A1 (en) Turbomachine, in Particular a Gas Turbine
JP2523518B2 (en) How to start a steam turbine plant by starting a high pressure turbine
JPS58126403A (en) Reheating turbine cooling equipment
JPS6022003A (en) Cooling method for gas turbine blade
JP2674263B2 (en) Control method for reheat steam turbine
JP2966357B2 (en) Gas turbine turbine blade cooling system
JPS60159311A (en) Starting method for steam turbine
JPS62157210A (en) Steam turbine
JPS6215729B2 (en)
JPS62324B2 (en)
EP1455056A1 (en) Single shaft combined cycle plant and operating method thereof
JPS6238803A (en) Cooling device for last stage of steam turbine
JPS59150909A (en) Steam turbine plant
JPS5968501A (en) Method and device for cooling steam turbine rotor
JP3909466B2 (en) Steam turbine operation method
JPS5847203Y2 (en) Steam turbine rotor cooling system