JPS6215729B2 - - Google Patents

Info

Publication number
JPS6215729B2
JPS6215729B2 JP29601785A JP29601785A JPS6215729B2 JP S6215729 B2 JPS6215729 B2 JP S6215729B2 JP 29601785 A JP29601785 A JP 29601785A JP 29601785 A JP29601785 A JP 29601785A JP S6215729 B2 JPS6215729 B2 JP S6215729B2
Authority
JP
Japan
Prior art keywords
steam
turbine
cooling
pressure
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP29601785A
Other languages
Japanese (ja)
Other versions
JPS61167106A (en
Inventor
Toshuki Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP29601785A priority Critical patent/JPS61167106A/en
Publication of JPS61167106A publication Critical patent/JPS61167106A/en
Publication of JPS6215729B2 publication Critical patent/JPS6215729B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/24Control or safety means specially adapted therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は高温蒸気を使用する大容量複流再熱
蒸気タービンにおいて、再熱タービンのロータと
羽根植込部およびノズルダイヤフラム内輪を冷却
蒸気によつて冷却する蒸気タービンに関する。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a large-capacity double-flow reheat steam turbine that uses high-temperature steam. The present invention relates to cooling steam turbines.

〔発明の技術的背景〕[Technical background of the invention]

高温高圧の蒸気タービンとしては高圧タービン
から抽気した蒸気を再熱器を通して加熱し、得ら
れた再熱蒸気を中圧タービンや低圧タービンに導
入する複流再熱蒸気タービンが多用されている。
As high-temperature, high-pressure steam turbines, double-flow reheat steam turbines are often used, which heat steam extracted from a high-pressure turbine through a reheater and introduce the resulting reheated steam into an intermediate-pressure turbine or a low-pressure turbine.

近年製作される蒸気タービンは大容量化に伴つ
て、羽根の有効長と巾が大きくなつているので、
羽根の遠心力が増大し、羽根植込部とロータには
大きな遠心応力が作用する。再熱タービンは高圧
タービンに比べて蒸気圧力が低く、羽根も大径で
あるため、この作用は特に顕著に現われる。ま
た、高効率化を図るため、再熱蒸気温度を上昇さ
せると、材料の許容応力が低下し、羽根植込部、
ロータおよびノズルダイヤフラム内輪は高い応力
状態にさらされることになる。
As steam turbines manufactured in recent years have increased in capacity, the effective length and width of the blades have become larger.
The centrifugal force of the blade increases, and a large centrifugal stress acts on the blade implant and the rotor. This effect is particularly noticeable because reheat turbines have lower steam pressure and larger diameter blades than high-pressure turbines. In addition, when the temperature of reheated steam is increased in order to improve efficiency, the allowable stress of the material decreases,
The rotor and nozzle diaphragm inner race will be exposed to high stress conditions.

このため、再熱タービンにおいては、その高温
段落に冷却蒸気を導入して冷却することが行なわ
れている。
For this reason, in the reheat turbine, cooling steam is introduced into the high-temperature stage for cooling.

第1図は従来の再熱タービンにおける冷却系統
を例示するもので、高圧タービン1、再熱(中
圧)タービン2、低圧タービン3は発電機にくし
形に連結されている。簡便のため、第1図には主
蒸気系の図示を省略してあるが、ボイラから過熱
器を通して高圧タービン1に導入された高圧蒸気
は、そこで仕事を行なつた後、再熱器を通して加
熱され、再熱蒸気として再熱タービン2に導入さ
れる。そこで仕事を終えた蒸気は低圧蒸気として
低圧タービン3に導かれ、そこで再び仕事を行な
つた後、配管5を経て復水器に導入される。
FIG. 1 illustrates a cooling system in a conventional reheat turbine, in which a high pressure turbine 1, a reheat (intermediate pressure) turbine 2, and a low pressure turbine 3 are connected to a generator in a comb shape. For the sake of simplicity, the main steam system is not shown in Figure 1, but high-pressure steam is introduced from the boiler through the superheater to the high-pressure turbine 1, and after performing work there, it is heated through the reheater. and is introduced into the reheat turbine 2 as reheat steam. The steam that has completed its work there is led as low-pressure steam to the low-pressure turbine 3, where it performs work again, and then is introduced into the condenser via the pipe 5.

高圧タービン1の後方段落から抽気された蒸気
は配管6、バルブ群7、流量調整用オリフイス8
および導入管9を通り、冷却蒸気として再熱ター
ビン2に導入される。配管6から分岐するバイパ
ス管10と、オリフイス8の下流から分岐する配
管11には夫々制御弁12,13が介装されてい
る。
The steam extracted from the rear stage of the high-pressure turbine 1 is transferred to a pipe 6, a valve group 7, and an orifice 8 for adjusting the flow rate.
It then passes through the introduction pipe 9 and is introduced into the reheat turbine 2 as cooling steam. A bypass pipe 10 branching from the pipe 6 and a pipe 11 branching from the downstream of the orifice 8 are provided with control valves 12 and 13, respectively.

第2図は再熱タービンの高温段落における蒸気
の流れを示すもので、導入管9から導入された冷
却蒸気14は、高温のロータ15に直接触れて過
大な熱応力を発生させることがないよう、混合室
16において、再熱蒸気17の一部17′と混合
され、適当温度とされた後、ロータ15とノズル
ダイヤフラム内輪18の間を流れてそれらを冷却
し、更に矢符19,20,21のように流れて羽
根植込部22を冷却する。この場合、冷却孔23
を流過した冷却蒸気の一部は矢符21の流路を流
れて主蒸気流路24に合流し、残りは矢符25で
示すように、ラビリンス26を通して次の段落の
冷却蒸気流路へ送り込まれ、上記と同様にロー
タ、ノズルダイヤフラム内輪および羽根植込部を
冷却する。
Figure 2 shows the flow of steam in the high-temperature stage of the reheat turbine. , in the mixing chamber 16, it is mixed with a portion 17' of the reheated steam 17 and brought to an appropriate temperature, and then flows between the rotor 15 and the nozzle diaphragm inner ring 18 to cool them. 21 and cools the blade implanted portion 22. In this case, the cooling hole 23
A part of the cooling steam that has passed through flows through the flow path indicated by the arrow 21 and joins the main steam flow path 24, and the rest passes through the labyrinth 26 to the cooling steam flow path of the next stage, as shown by the arrow 25. The rotor, nozzle diaphragm inner ring, and blade implant are cooled in the same manner as above.

第3図は冷却蒸気の各部圧力が負荷に応じて変
化する様子を示すもので、POLはオリフイス8を
流過した直後の冷却蒸気圧力を、PRは再熱蒸気
圧力を、PHは高圧タービン1の冷却蒸気の取出
し口圧力を示す。
Figure 3 shows how the pressure at each part of the cooling steam changes depending on the load, where P OL is the cooling steam pressure immediately after passing through the orifice 8, P R is the reheating steam pressure, and P H is the reheating steam pressure. The pressure at the outlet of the cooling steam of the high-pressure turbine 1 is shown.

この図から明らかなように、再熱タービンの混
合室16に流入する冷却蒸気圧力POLと再熱蒸気
圧力PRとの差は高負荷域では大きく、再熱ター
ビンの冷却は十分に行なわれるが、低負荷域にな
るにつれて両蒸気圧力POL,PRの差は少なくな
り、混合室16に流入する蒸気量に占める再熱蒸
気の割合が増加する。また変圧タービンの場合、
高圧タービンの冷却蒸気取出し口のエンタルピ
は、高負荷域に比べて低負荷域で増加するので、
混合室16内の温度は負荷の減少に伴つて上昇す
る。
As is clear from this figure, the difference between the cooling steam pressure P OL flowing into the mixing chamber 16 of the reheat turbine and the reheat steam pressure P R is large in the high load range, and the reheat turbine is sufficiently cooled. However, as the load becomes lower, the difference between the two steam pressures P OL and P R decreases, and the proportion of reheated steam in the amount of steam flowing into the mixing chamber 16 increases. Also, in the case of variable pressure turbines,
The enthalpy at the cooling steam outlet of a high-pressure turbine increases in the low load range compared to the high load range, so
The temperature within the mixing chamber 16 increases as the load decreases.

第4図は再熱蒸気温度TR、再熱タービンの高
温段落における羽根植込部の温度TD、およびそ
の許容温度TAの負荷による変化の様子を示して
いる。
FIG. 4 shows how the reheat steam temperature T R , the temperature T D of the blade-embedded portion in the high-temperature stage of the reheat turbine, and the allowable temperature T A change depending on the load.

〔背景技術の問題点〕[Problems with background technology]

上述のように、従来の再熱タービンでは、高圧
タービンの冷却蒸気取出し口は常に一定段落であ
るため、オリフイス8によつて冷却蒸気の流量調
整を行なうと、負荷の減少に伴つてオリフイス前
後の圧力差が減少して冷却蒸気の通過流量が低下
し、その結果、冷却能力が弱まつて再熱タービン
2の高温段落における羽根植込部22やロータ1
5の温度TDが許容限度TAを越えるおそれがあ
る。
As mentioned above, in the conventional reheat turbine, the cooling steam outlet of the high-pressure turbine is always at a constant stage, so when the flow rate of the cooling steam is adjusted by the orifice 8, the flow rate before and after the orifice increases as the load decreases. As the pressure difference decreases, the flow rate of cooling steam passing through decreases, and as a result, the cooling capacity weakens and the blade implant 22 and rotor 1 in the high temperature stage of the reheat turbine 2 are reduced.
There is a possibility that the temperature T D of No. 5 exceeds the allowable limit T A.

このように、充分な冷却が行なわれない場合に
は、高温化、大容量化のため厳しい応力環境にさ
らされている羽根植込部やロータが短期間に劣化
し、重大事故を招来する危険がある。
In this way, if sufficient cooling is not performed, the blade implants and rotor, which are exposed to a severe stress environment due to high temperatures and large capacity, will deteriorate in a short period of time, leading to a risk of serious accidents. There is.

〔発明の目的〕[Purpose of the invention]

この発明は背景技術における上述の如き欠点を
除去すべくなされたもので、高負荷から低負荷ま
での負荷領域に亘つて、再熱タービンの高温段落
におけるロータ、羽根植込部およびノズルダイヤ
フラム内輪を適切に冷却することによつてそれら
の温度を許容限度内に保ち、しかも出力損失を低
減し得る蒸気タービンを提供することを目的とす
るものである。
This invention has been made to eliminate the above-mentioned drawbacks in the background art, and it is possible to maintain the rotor, blade embedded portion, and nozzle diaphragm inner ring in the high-temperature stage of a reheat turbine over a load range from high load to low load. The object is to provide steam turbines whose temperature can be kept within acceptable limits by proper cooling, while reducing power losses.

〔発明の概要〕[Summary of the invention]

この発明は、上述の目的を達成するため、高圧
タービンには異なつた段落に2個の冷却蒸気取出
し口を設け、それらの抽気蒸気流路に夫々設けた
冷却蒸気制御弁の開度を負荷の大きさによつて制
御し、高負荷領域では後方段落側の冷却蒸気取出
し口からの抽出蒸気を冷却蒸気として再熱タービ
ンに導入し、低負荷領域では先方段落側の冷却蒸
気取出し口からの抽気蒸気を冷却蒸気として再熱
タービンに導入するように構成したことを主たる
特徴とするものである。
In order to achieve the above-mentioned object, this invention provides a high-pressure turbine with two cooling steam take-off ports in different stages, and adjusts the opening degree of the cooling steam control valve provided in each of the extraction steam passages to match the load. In high load areas, extracted steam from the cooling steam outlet on the rear stage side is introduced into the reheat turbine as cooling steam, and in low load areas, the extracted steam is introduced from the cooling steam outlet on the front stage side. The main feature is that the steam is introduced into the reheat turbine as cooling steam.

〔発明の実施例〕[Embodiments of the invention]

以下、第5図および第6図を参照して、この発
明の実施例とその作用を説明する。
Embodiments of the present invention and their effects will be described below with reference to FIGS. 5 and 6.

なお、第5図では、第1図におけると同一の構
成要素にはそれらと同じ符号を付し、重複を避け
るため、詳細な説明は省略する。
In FIG. 5, the same components as in FIG. 1 are given the same reference numerals, and detailed explanations are omitted to avoid duplication.

高圧タービン1には後方段落とそれよりも上方
の段落に2個の冷却蒸気取出し口30a,30b
が設けられている。低圧側の冷却蒸気取出し口3
0aとバルブ群7の上流側を結ぶ配管には冷却蒸
気制御弁31aと逆止弁32が設けられ、高圧側
の冷却蒸気取出し口30bとバルブ群7の上流側
を結ぶ配管には冷却蒸気制御弁31bが設けられ
ている。
The high-pressure turbine 1 has two cooling steam outlets 30a and 30b in the rear stage and in the upper stage.
is provided. Low pressure side cooling steam outlet 3
A cooling steam control valve 31a and a check valve 32 are provided in the piping connecting 0a and the upstream side of the valve group 7, and a cooling steam control valve 31a and a check valve 32 are provided in the piping connecting the high pressure side cooling steam outlet 30b and the upstream side of the valve group 7. A valve 31b is provided.

一方、発電機4に設置した負荷検出器33には
関数発生器34a,34bが接続され、これらの
関数発生器の出力は夫々冷却蒸気制御弁31a,
31bに導かれ、それらの開度を負荷の変化に応
じて制御する。
On the other hand, function generators 34a and 34b are connected to the load detector 33 installed in the generator 4, and the outputs of these function generators are sent to the cooling steam control valves 31a and 34b, respectively.
31b, and their opening degrees are controlled according to changes in load.

第6図は、負荷に応じた冷却蒸気制御弁31
a,31bの開度制御の様子を例示するもので、
高負荷領域では制御弁31aによる制御が行なわ
れ、低負荷領域では制御弁31bによる制御が行
なわれる。
Figure 6 shows the cooling steam control valve 31 according to the load.
This is an example of the opening degree control of a and 31b.
Control is performed by the control valve 31a in the high load region, and control by the control valve 31b is performed in the low load region.

即ちM点(定格負荷)からL点までの高負荷領
域では関数発生器34aの出力に基いて、制御弁
31aの開度制御が行なわれ、高圧タービン1の
低圧側蒸気取出し口30aから抽気された冷却蒸
気が第2図につき説明したと同様に、導入管9を
通して混合室16に導入され、再熱蒸気の一部1
7′と混合された後、ロータ15とノズルダイヤ
フラム内輪18の間を流れてそれらを冷却し、更
に矢符19,20,21のように羽根植込部22
の表面と冷却孔23を流れてそこを冷却する。こ
の場合、高負荷領域における冷却蒸気14の圧力
Hは第3図に示すように再熱蒸気圧力PRよりも
かなり高いので、混合室16へ再熱蒸気17′が
過度に流入することはなく、適切な冷却が行なわ
れる。
That is, in a high load region from point M (rated load) to point L, the opening of the control valve 31a is controlled based on the output of the function generator 34a, and steam is extracted from the low pressure side steam outlet 30a of the high pressure turbine 1. The cooled steam is introduced into the mixing chamber 16 through the inlet pipe 9 in the same manner as described with reference to FIG.
7', the mixture flows between the rotor 15 and the nozzle diaphragm inner ring 18 to cool them, and then flows through the vane implants 22 as shown by arrows 19, 20, and 21.
It flows through the surface of the cooling hole 23 and cools it. In this case, since the pressure P H of the cooling steam 14 in the high load region is considerably higher than the reheat steam pressure P R as shown in FIG. 3, excessive flow of reheat steam 17' into the mixing chamber 16 is prevented. proper cooling.

負荷が第6図のL点以下に低下すると、冷却蒸
気制御弁31aを全開(開度100%)にしたとし
ても、冷却蒸気14と再熱蒸気17′の圧力差は
小さくなつているので、混合室16には多量の再
熱蒸気が流入し、混合室から流出する蒸気温度が
上昇するため、再熱タービン2の冷却は不十分と
なる。
When the load decreases below point L in FIG. 6, even if the cooling steam control valve 31a is fully opened (100% opening), the pressure difference between the cooling steam 14 and the reheating steam 17' becomes small. A large amount of reheated steam flows into the mixing chamber 16, and the temperature of the steam flowing out from the mixing chamber increases, so that the reheat turbine 2 is insufficiently cooled.

そこで、この発明においては、負荷が第6図の
L点以下に低下した場合には、関数発生器34
a,34bからの信号に基いて冷却蒸気制御弁3
1aは全閉し、31bが開く。これによつて導入
管9には冷却蒸気取出し口30bから抽気された
冷却蒸気14が導入されるが、蒸気取出し口30
bは30aよりも上流段落に設けられており、そ
の蒸気圧力PHbは第3図に示すように蒸気取出し
口30aからの蒸気圧力PHよりも高いので、混
合室16に流入する再熱蒸気17′の流量は抑制
される。従つて、混合室16から流出する冷却蒸
気の温度は適当範囲内の温度に保たれ、再熱ター
ビン2の高温段落におけるロータ15、ノズルダ
イヤフラム18および羽根植込部22は最小負荷
点Kに至るまでの間、適正温度に冷却される。
Therefore, in this invention, when the load drops below point L in FIG. 6, the function generator 34
Based on the signals from a and 34b, the cooling steam control valve 3
1a is fully closed and 31b is open. As a result, the cooling steam 14 extracted from the cooling steam outlet 30b is introduced into the introduction pipe 9.
b is provided in the upstream stage of 30a, and its steam pressure P Hb is higher than the steam pressure P H from the steam outlet 30a as shown in FIG. The flow rate at 17' is suppressed. Therefore, the temperature of the cooling steam flowing out from the mixing chamber 16 is maintained within a suitable range, and the rotor 15, nozzle diaphragm 18 and vane implant 22 in the high temperature stage of the reheat turbine 2 reach the minimum load point K. Until then, it is cooled to the appropriate temperature.

このように、この発明の蒸気タービンにおいて
は、高圧タービンの異なつた段落から抽気された
冷却蒸気を負荷に応じた開度に調整される冷却蒸
気制御弁31a,31bによつて流量制御し、再
熱タービンの高圧段落に導入して再熱蒸気と混合
した後、冷却流路に流すようにしたので、再熱タ
ービンの冷却は最小負荷点Kから最大(定格)負
荷点Mに至る全範囲に亘つて適切に行なわれる。
As described above, in the steam turbine of the present invention, the flow rate of the cooling steam extracted from different stages of the high-pressure turbine is controlled by the cooling steam control valves 31a and 31b whose opening degree is adjusted according to the load. Since the steam is introduced into the high-pressure stage of the heat turbine, mixed with reheat steam, and then passed through the cooling channel, the reheat turbine can be cooled over the entire range from the minimum load point K to the maximum (rated) load point M. It is done properly throughout.

なお、第3図中の曲線PCCVは、上述のように
して開閉制御される冷却蒸気制御弁31a,31
bの下流側における冷却蒸気の圧力を示し、ま
た、第4図中の曲線TCCVはこのの発明を適用し
た場合の羽根植込部の温度変化の様子を示す。こ
の図から明らかなように、この発明による場合に
は、羽根植込部の温度TCCVは最小負荷点Kから
最大負荷点Mに至る全領域に亘つて許容温度TA
以下に保たれる。
Note that the curve P CCV in FIG.
In addition, the curve T CCV in FIG. 4 shows the temperature change at the blade installation part when this invention is applied. As is clear from this figure, in the case of the present invention, the temperature T CCV of the blade implantation part is equal to the allowable temperature T A over the entire range from the minimum load point K to the maximum load point M.
It is kept below.

〔発明の効果〕〔Effect of the invention〕

上述のように、この発明によれば、大容量化や
高温化によつて厳しい応力環境にさらされる再熱
タービンのロータや羽根植込部およびノズルダイ
ヤフラム内輪は負荷の変動に拘らず適切な温度に
冷却されるので、材料の熱劣化は防止され、長期
間に亘り、安定した運転を継続することができ
る。
As described above, according to the present invention, the rotor, blade implant, and inner ring of the nozzle diaphragm of a reheat turbine, which are exposed to severe stress environments due to increased capacity and higher temperatures, can be maintained at an appropriate temperature regardless of load fluctuations. Since the material is cooled to a certain temperature, thermal deterioration of the material is prevented and stable operation can be continued for a long period of time.

また、充分な冷却蒸気圧力が得られる高負荷領
域では冷却蒸気を高圧タービンの低圧段落から抽
気し、それで十分な冷却が行なわれない場合に限
つて中圧段落からの抽気を冷却蒸気として利用す
るようにしたので、高圧タービンの蒸気エネルギ
は有効に活用され。高圧タービンの出力損失を低
減させることができる。
In addition, in high-load areas where sufficient cooling steam pressure can be obtained, cooling steam is extracted from the low-pressure stage of the high-pressure turbine, and only when sufficient cooling is not achieved by this, the extracted air from the intermediate-pressure stage is used as cooling steam. As a result, the steam energy of the high-pressure turbine can be used effectively. The output loss of the high pressure turbine can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の蒸気タービンにおける再熱ター
ビンの冷却系統図、第2図は従来およびこの発明
における再熱タービン内の冷却蒸気の流れを説明
する複流再熱タービンの高温段落の継断面図、第
3図は負荷に対する各部圧力を例示するグラフ、
第4図は負荷に対する各部温度を例示するグラ
フ、第5図はこの発明の蒸気タービンの実施例を
示す再熱タービンの冷却系統図、第6図はこの発
明における冷却蒸気制御弁の負荷に対する開度を
例示するグラフである。 1……高圧タービン、2……再熱(中圧)ター
ビン、3……低圧タービン、4……発電機、7…
…バルブ群、8……オリフイス、9……導入管、
14……冷却蒸気、15……ロータ、16……混
合室、17,17′……再熱蒸気、18……ノズ
ルダイヤフラム内輪、22……羽根植込部、23
……冷却孔、26……ラビリンス、30a,30
b……冷却蒸気取出し口、31a,31b……冷
却蒸気制御弁、32……逆止弁、33……負荷検
出器、34a,34b……関数発生器。
FIG. 1 is a cooling system diagram of a reheat turbine in a conventional steam turbine, and FIG. 2 is a joint sectional view of a high temperature stage of a double flow reheat turbine, illustrating the flow of cooling steam in the reheat turbine in the conventional and present invention. Figure 3 is a graph illustrating the pressure at each part relative to the load.
Fig. 4 is a graph illustrating the temperature of each part relative to the load, Fig. 5 is a cooling system diagram of a reheat turbine showing an embodiment of the steam turbine of the present invention, and Fig. 6 is a graph illustrating the temperature of each part relative to the load. It is a graph illustrating degree. 1... High pressure turbine, 2... Reheat (medium pressure) turbine, 3... Low pressure turbine, 4... Generator, 7...
... Valve group, 8 ... Orifice, 9 ... Introductory pipe,
14... Cooling steam, 15... Rotor, 16... Mixing chamber, 17, 17'... Reheating steam, 18... Nozzle diaphragm inner ring, 22... Vane implantation part, 23
...Cooling hole, 26...Labyrinth, 30a, 30
b... Cooling steam outlet, 31a, 31b... Cooling steam control valve, 32... Check valve, 33... Load detector, 34a, 34b... Function generator.

Claims (1)

【特許請求の範囲】 1 高圧タービンから抽気した冷却蒸気と再熱蒸
気とを混合して再熱タービンの冷却流路に流すよ
うにした蒸気タービンにおいて、前記高圧タービ
ンには異なつた段落に2個の冷却蒸気取出し口を
設け、それらの抽気蒸気流路に夫々設けた冷却蒸
気制御弁の開度を負荷の大きさによつて制御する
よう構成したことを特徴とする蒸気タービン。 2 蒸気タービンによつて駆動される発電機に負
荷検出器を設け、この負荷検出器の出力を関数発
生器に導き、この関数発生器からの信号に基い
て、前記発電機が高負荷領域にあるときは後方段
落側の冷却蒸気取出し口に設けた冷却蒸気制御弁
のみを開き、前記発電機が低負荷領域にあるとき
は先方段落側の冷却蒸気取出し口に設けた冷却蒸
気制御弁のみを開いて再熱タービンに導入される
冷却蒸気の圧力を制御することを特徴とする特許
請求の範囲第1項に記載の蒸気タービン。
[Scope of Claims] 1. A steam turbine in which cooling steam extracted from a high-pressure turbine and reheated steam are mixed and flowed into a cooling passage of the reheat turbine, wherein the high-pressure turbine has two steam turbines in different stages. 1. A steam turbine characterized in that a cooling steam outlet is provided, and the opening degree of a cooling steam control valve provided in each of the extracted steam passages is controlled according to the magnitude of a load. 2. A load detector is provided in a generator driven by a steam turbine, the output of this load detector is guided to a function generator, and based on the signal from this function generator, the generator is in a high load region. At one time, only the cooling steam control valve provided at the cooling steam outlet on the rear stage side is opened, and when the generator is in a low load area, only the cooling steam control valve provided at the cooling steam outlet on the front stage side is opened. The steam turbine according to claim 1, characterized in that the pressure of the cooling steam that is opened and introduced into the reheat turbine is controlled.
JP29601785A 1985-12-27 1985-12-27 Steam turbine Granted JPS61167106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29601785A JPS61167106A (en) 1985-12-27 1985-12-27 Steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29601785A JPS61167106A (en) 1985-12-27 1985-12-27 Steam turbine

Publications (2)

Publication Number Publication Date
JPS61167106A JPS61167106A (en) 1986-07-28
JPS6215729B2 true JPS6215729B2 (en) 1987-04-09

Family

ID=17828037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29601785A Granted JPS61167106A (en) 1985-12-27 1985-12-27 Steam turbine

Country Status (1)

Country Link
JP (1) JPS61167106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561935U (en) * 1992-01-28 1993-08-13 ミツミ電機株式会社 switch

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9194248B2 (en) * 2012-06-07 2015-11-24 General Electric Company Reheat steam bypass system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561935U (en) * 1992-01-28 1993-08-13 ミツミ電機株式会社 switch

Also Published As

Publication number Publication date
JPS61167106A (en) 1986-07-28

Similar Documents

Publication Publication Date Title
US4693086A (en) Steam turbine plant having a turbine bypass system
US4858428A (en) Advanced integrated propulsion system with total optimized cycle for gas turbines
US5784888A (en) Method and apparatus of conversion of a reheat steam turbine power plant to a no-reheat combined cycle power plant
KR840001347B1 (en) Flow system for the control of turbiue temperatures during by pass operation
JP2523518B2 (en) How to start a steam turbine plant by starting a high pressure turbine
JP2010242673A (en) Steam turbine system and method for operating the same
JPS6215729B2 (en)
JPS62101809A (en) Single-shaft combined plant having reheating system
JPS60216002A (en) Turbine body for urban heating
US4373340A (en) Peak load device of a multistage turbine
JP2000248962A (en) Operating method for combined cycle generating plant
JPH09250306A (en) Cooling device of steam turbine
JP2915885B1 (en) Gas turbine combined cycle system
JP3518252B2 (en) Closed steam cooled gas turbine combined plant and gas turbine combined plant
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
US6666028B2 (en) Operation method for combined plant
JPS60159311A (en) Starting method for steam turbine
JP5475315B2 (en) Combined cycle power generation system
JPS6039850B2 (en) How to start the turbine
JPH0232442B2 (en) JOKITAABINNOKIDOHOHO
JPS5968501A (en) Method and device for cooling steam turbine rotor
JPS5847203Y2 (en) Steam turbine rotor cooling system
JPS62157210A (en) Steam turbine
JP2000297611A (en) Exhaust heat recovery system and operation method of the same
JPH11247622A (en) Steam-cooled multi-shaft gas turbine composite plant and operation control method therefor