JPS58125801A - Manufacture of resin combined type permanent magnet - Google Patents

Manufacture of resin combined type permanent magnet

Info

Publication number
JPS58125801A
JPS58125801A JP57008686A JP868682A JPS58125801A JP S58125801 A JPS58125801 A JP S58125801A JP 57008686 A JP57008686 A JP 57008686A JP 868682 A JP868682 A JP 868682A JP S58125801 A JPS58125801 A JP S58125801A
Authority
JP
Japan
Prior art keywords
powder
magnetic field
magnet
resin
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57008686A
Other languages
Japanese (ja)
Inventor
Tatsuya Shimoda
達也 下田
Ryuichi Ozaki
隆一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP57008686A priority Critical patent/JPS58125801A/en
Publication of JPS58125801A publication Critical patent/JPS58125801A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent

Abstract

PURPOSE:To prevent the degradation of magnetic characteristics by molding the mixture of thermocuring resin and magnet powder in a magnetic field by a press, giving anisotropy and curing resin in the magnetic field. CONSTITUTION:Magnetic powder such as one shown in the table 1 is mixed with a proper quantity of epoxy resin mechanically. The mixture is weighed at every 4g to No. 1 and at every 8g to No. 2, 3, and each filled into press dies 3. Powder entered into the clearances of upper and lower punches in the press dies 3 is oriented by the magnetic field in wide air gaps first. Pressure is applied from both upper and lower punches in the magnetic field and powder is molded by the press, and a shape is carried to a heater section and cured in the magnetic field. The magnetic field is continued at applied until completion of curing after orientation, and the magnet is removed after powder is cured. Accordingly, the degradation of the magnetic characteristics of the magnet can be prevented because the orientation of powder can be increased.

Description

【発明の詳細な説明】 本発明は、高1向を有する異方性樹脂結合型磁石の製造
法K11llするものである。ζらに、詳しく述べると
、熱硬化性樹脂と磁石粉との混合物を磁場中でプレス成
形し異方性を付与させた後、磁場中で成形体中の414
脂を硬化(キュアーリング)させ、粉末の配向性を高く
保たせるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for manufacturing an anisotropic resin-bonded magnet having a high direction. To explain in detail, a mixture of thermosetting resin and magnet powder is press-molded in a magnetic field to impart anisotropy, and then the 414 in the molded body is formed in a magnetic field.
This cures the fat and maintains the high orientation of the powder.

従東、熱硬化性IIIIwtIを用いて異方性樹脂結合
型磁石を製造するのけ第1図のよへな方法で行なわれて
いる。すなわち、磁石粉と樹WfIは混合きれ友後、磁
場中でプレスhk形し、成形物はプレス型から取抄出さ
れ、所望の温度でオープン中あるいけ恒龜槽中で樹脂硬
化(キエアーりング)させて磁石にする。キュアーリン
グ中、樹脂の椿端な粘廖低下のため、磁石粉末の回転環
が起り、粉末の配向性がかな抄乱れる現象が起り、磁石
の磁気物性は劣什してしまう。
At present, an anisotropic resin-bonded magnet is manufactured using thermosetting IIIwtI using a method as shown in FIG. That is, after the magnet powder and wood WfI are mixed, they are pressed into a magnetic field, the molded product is taken out of the press mold, and the resin is cured in an open and constant-fog tank at a desired temperature. ) and turn it into a magnet. During curing, the viscosity of the resin decreases, causing a rotating ring of the magnet powder, causing a phenomenon in which the orientation of the powder is slightly disturbed, and the magnetic properties of the magnet deteriorate.

本発明は、磁場中でキュアーリングすることによりかか
る欠点を改善したものである。本発明に用いる磁性粉と
しては、ハード7エライト磁石粉、希土類コバルト磁石
粉が普通である。また、両者を適当な割合に混合すると
とKより、性能とコス)KN合った樹脂結合型磁石を作
製することができる。
The present invention improves this drawback by performing curing in a magnetic field. The magnetic powder used in the present invention is usually hard 7 elite magnet powder or rare earth cobalt magnet powder. Furthermore, if both are mixed in an appropriate ratio, a resin-bonded magnet with better performance and cost (KN) can be produced.

加えて、本発明は高性能な樹脂結合型磁石を作製するり
老でたいへん有効な製造方法である。し磁石を作製する
のに#i、希土類(Rで示す)コバルト(CO)磁石粉
を用いるのがよい。さちKR−C。
In addition, the present invention is a very effective manufacturing method for producing high-performance resin-bonded magnets. #i, rare earth (indicated by R) cobalt (CO) magnet powder is preferably used to produce the magnet. Sachi KR-C.

磁石粉の中では、RCo、型よりR,Co、7IIIを
用いるのが高性能化のためKは望ましい、Rとしては、
サマリウムC8m)、セリウム(Ce)、プラセオジム
(Rr)そしてミツシュメタル(MMで示す)がJl独
あるいけ複合して使用きれる。R,Co、型けFtOo
、ailよ抄飽和磁化4π1θが高いうえ、Cof鉄と
置換することによりさらに4π工θを向上させることか
で−る。
Among magnetic powders, RCo, R, Co, and 7III are preferable for high performance, so K is preferable, and R is,
Samarium (C8m), cerium (Ce), praseodymium (Rr) and Mitsushmetal (indicated by MM) can be used in combination. R, Co, type FtOo
, ail has a high saturation magnetization 4π1θ, and by replacing it with Cof iron, the 4π workθ can be further improved.

この合金系は、銅を加えると保磁力か得られζらに、微
着の添加物M(M:チタン、ジルコニウム。
In this alloy system, coercive force is obtained by adding copper, and in addition, finely deposited additives M (M: titanium, zirconium) are added.

ハフニウム、ニオブ、バナジウム、タンタル)により、
鉄の量を高めてもあるいけ非磁性の鋼の含4S1を低下
ζせても充分大−なeS力が得られることが分り、4π
■8を向上はせても保磁力が以下しない高性能な磁石な
らびに磁石粉を製造で肴る。
Hafnium, niobium, vanadium, tantalum)
It was found that a sufficiently large eS force can be obtained even if the amount of iron is increased or the 4S1 content of non-magnetic steel is decreased.
■We manufacture high-performance magnets and magnetic powder that do not reduce coercive force even if the magnetic field is improved.

とりわけ、Bとして8mを用いたものが性能か高い。In particular, the one using 8m as B has high performance.

8m (Oo Cu Fe M )Zけ、2が65から
9までのものが、性能的によく、合金相としてけPm、
TM、、(TMFiCo等の遷移金楓を示す)型結晶が
主体の組成1域である。z<65であると、am、TM
、、型結晶構造が少なくなり、4π■6か低下するので
過当ではなく、また、Z)?であると、Fe −Co軟
磁性相か山頂し、これは磁気、性能を著しく低化させる
ので不適当である。
8m (Oo Cu Fe M ) Z, those with 2 from 65 to 9 have good performance, and as an alloy phase Pm,
TM, (indicating transition gold maple such as TMFiCo) type crystal is the main component in composition range 1. If z<65, am, TM
,, the type crystal structure decreases and the value of 4π■6 decreases, so it is not unreasonable, and also Z)? If this is the case, the Fe--Co soft magnetic phase will form a peak, which is unsuitable because it will significantly reduce the magnetic performance.

さらに、SlLI(C01−u−v−WCuuFevM
w)2として遷移金属内の組成比について言及すると、
以下のようKなる。まずQuit保磁力を得る喪めに不
可欠な元素で参るか、非磁性物のため4π工8は低める
Furthermore, SlLI(C01-uv-WCuuFevM
w) Referring to the composition ratio within the transition metal as 2,
K is as follows. First of all, it is an essential element for obtaining the Quit coercive force, or it is a non-magnetic material, so the 4π force 8 is lowered.

従って、0.[T1<:u<02が遣il″t″ある。Therefore, 0. [T1<:u<02 is used.

Feけ高飽和磁化にするために加えられる元素であり、
高4π工8什のためKけ、■〉02が望ましい。Vカ・
05を越えると、殆んど保磁力か得られなくなるので、
Feの量tf O,2(v<0.5 かよいことになる
。本合金の磁性は、Mの1に著しく敏感で、W値か高い
と保磁力は得られやすいが、4π工8がたいへん低下し
てしまい、V@が舒いと保磁力が得られK<くなるので
、保磁力と飽和磁化のかねあいから0001≦W≦α0
5が適当である。
Fe is an element added to make it highly saturated magnetized,
Since the height is 4π, 02 is desirable. Vka・
If it exceeds 05, almost no coercive force can be obtained, so
The amount of Fe tf O,2 (v < 0.5 means that the magnetism of this alloy is extremely sensitive to 1 of M, and it is easy to obtain a coercive force when the W value is high, but the 4π work 8 is very sensitive. When V@ increases, coercive force is obtained and K<, so 0001≦W≦α0 due to the balance between coercive force and saturation magnetization.
5 is appropriate.

以下実施例に従い本発明を1明してゆく。The present invention will be explained below with reference to Examples.

実施例1 第2図は、本発明の磁場中成形ならびに磁場中硬化を行
うための装曾の生簀部分の断面図である。
Example 1 FIG. 2 is a cross-sectional view of the cage portion of a cage for performing molding in a magnetic field and hardening in a magnetic field according to the present invention.

1は電磁石、2F1ポールピース、3はプレスダイであ
り、JFi上パンチ、5Fi下パンチである。3と4と
5でプレス金型を形成している。4と5はともに可動で
ある。6Fi固形の絶縁および断熱剤でする。7 Vi
all?を硬化させるための熱源ヒータである。8けガ
ラスウール、石M郷の断熱剤で、9け磁石粉と樹脂との
混合物である。
1 is an electromagnet, 2F1 pole piece, 3 is a press die, JFi upper punch, and 5Fi lower punch. 3, 4, and 5 form a press mold. Both 4 and 5 are movable. 6Fi solid insulation and heat insulation material. 7 Vi
All? This is a heat source heater for curing. It is a heat insulating agent made of 8-grade glass wool and Ishi Mgo, and is a mixture of 9-grade magnetic powder and resin.

次に本発明のfPjを用いた異方性樹脂結合型磁石の製
造方法について説明し、製造された磁石が従来の本のと
どれ位性能に差があるか比較して入る−まず、第111
!に示す磁性粉を適量のエポキシ樹脂と榛械的に混合し
た。sI#の粘麿け1500cpsのものを使用した。
Next, we will explain the method for manufacturing an anisotropic resin-bonded magnet using fPj of the present invention, and compare the performance of the manufactured magnet with that of conventional magnets.
! The magnetic powder shown in Figure 1 was mechanically mixed with an appropriate amount of epoxy resin. sI# with a viscosity of 1500 cps was used.

混合物は肩1に対しては4g42.3に対しては8gず
つ秤量きれ、それぞれ第21111のプレスダイ3の中
KV填される。
The mixture was weighed out in amounts of 4 g for shoulder 1 and 8 g for shoulder 42.3, and loaded into the press die 3 of No. 21111, respectively.

第1表 その後は、第3図で示された工程にそって進められる。Table 1 After that, the process proceeds along the steps shown in FIG.

まずプレスダイ中の下バンチと上パンチの間隙に入れた
粉は、充分広い空隙中で磁場配向させられる(工程■)
。次に磁場中で、上パンチと下バンプ双方から圧力をか
けてプレス液形する(工程■)。成形後上パンチで成形
物をヒータ部までもってゆき磁場中で硬化させる(工程
の)。
First, the powder placed in the gap between the lower bunch and the upper punch in the press die is oriented by a magnetic field in a sufficiently wide gap (Step ■)
. Next, in a magnetic field, pressure is applied from both the upper punch and the lower bump to form a press liquid (step ①). After molding, the molded product is carried to the heater section using the upper punch and hardened in a magnetic field (in the process).

磁場は、V向から硬化終了まで継続して印加してシ〈。The magnetic field is continuously applied from the V direction until the end of curing.

硬化發、磁場牽切り磁石を取り−出す(工程■)、磁場
中硬化の際、パンチに圧力をかけておけば、圧力低下に
伴う成形品の膨張がなくなり、より密賓の高い磁石かで
−る。
If you apply pressure to the punch during curing, taking out the magnetic field tension magnet (step ■), and curing in the magnetic field, the molded product will not expand due to pressure drop, and the magnet will be more suitable for attracting guests. -ru.

一方従来法と比較するため、磁場中加圧成形まで全く工
程を芦1−にして、成形物をオープン中で無磁場で樹脂
硬化行ったとtの磁石の性能を本発明の4のと眉1〜3
まで比較して入た、結果を第2表に示す。
On the other hand, in order to compare with the conventional method, we changed the entire process up to pressure molding in a magnetic field and cured the resin in an open environment without a magnetic field. ~3
The results are shown in Table 2.

第2表に示すように、本発明による磁石は従来法による
ものより、Brで約10憾、  (BH)mawでも1
0〜20111変全ての材料で上昇していることが分る
As shown in Table 2, the magnet according to the present invention has a lower Br of about 10% and a (BH)max of 10% lower than that of the conventional method.
It can be seen that the value has increased for all materials ranging from 0 to 20111.

実施例2 バリウムフェライトとサマリウムコバルトの磁石粉末を
岬重量混ぜてボールミル中で混合しえ、バリリム7エラ
イト粉末は1μの平均粒径を有しサマリリムコバルト粉
末は平均粒径10μの広い粒1分布をもつ、サマリウム
コバルト磁粉末の組成は、8m(Co Ouo、o@F
eo、54Zro、o+s )a、oである@バリウム
フェライトにけ30 VOI、fi 、サマリウムコバ
ルトKt112VOL1mのエポキシ樹脂を加えて従来
法で成形し走時のB−H減磁曲線を第4図に示す。図中
1はバリウムフェライト磁石を2はサマリウムコバルト
磁石を表す。ボールミル中よ抄取り出され九両粉末の混
合物は、17VOLtsのエポキシ樹脂で混練された後
、実施例1で説明した本発明法に従って磁石にされた。
Example 2 Barium ferrite and samarium cobalt magnetic powders can be mixed in a ball mill by weight mixing, with the barium 7 erite powder having an average particle size of 1μ and the samarium cobalt powder having a wide particle distribution with an average particle size of 10μ. The composition of the samarium cobalt magnetic powder is 8m (Co Ouo, o@F
eo, 54Zro, o+s) a, o@barium ferrite, 30 VOI, fi, samarium cobalt Kt112VOL1m epoxy resin was added and molded using the conventional method, and the B-H demagnetization curve during running is shown in Figure 4. . In the figure, 1 represents a barium ferrite magnet, and 2 represents a samarium cobalt magnet. The mixture of Kuryo powder taken out of the ball mill was kneaded with 17 VOLts of epoxy resin and then made into a magnet according to the method of the present invention as explained in Example 1.

結果のB−H減磁曲線を第4図中5に示した。 (BH
)+naxで8.3MGOeが得られた。この磁石は原
料コストは、8mOog型樹脂結合すマリラムコバルト
磁石に較べ、半分であるに4かかわらず性能Fi替らな
い、従って広〈産業界の程々の分野で使用されることが
簡待できる。
The resulting B-H demagnetization curve is shown in 5 in FIG. (BH
)+nax yielded 8.3 MGOe. Although the raw material cost of this magnet is half that of the 8 mOog type resin-bonded Marilum cobalt magnet, the performance Fi is the same even though it is 4. Therefore, it can be easily used in a wide range of industrial fields. .

【図面の簡単な説明】[Brief explanation of the drawing]

第11Illけ、樹脂結合型磁石の製造法の工S図。 第2!g1は、本発明の方法に使用する装置。 1・・電磁石    2・・ポールピース5・・プレス
ダイ  4・・上ノ(ンテ5・・下バンチ   6・・
絶縁物 7・・ヒーター   8・・断熱剤 9・・磁石粉と樹脂との混合物 第3図は、本発明法による磁場中成形後、磁場中硬化の
工薯図兼説明図。 第4図は、各種磁石の雛磁曲紳。 1・・従来法によるバリウムフェライト磁石2・・従来
法によるサマリウムコノ(ルト磁石3・・本発明法によ
る〕(リウムフエライトとサマリウムコバルトの混合粉
による磁石 以  上 出願人 株式会社 舞訪精工會 ÷ ta<−中全清51 番 1州ll[砕4シ) 魯乙悄       謀懺シを声l]F−馬胤帰才ん史
イb     μ゛1伯し1傳1 ■     の     OO 第3図 1−1(koe)   第4図
No. 11 is a schematic drawing of a method for manufacturing a resin-bonded magnet. Second! g1 is an apparatus used in the method of the present invention. 1. Electromagnet 2. Pole piece 5. Press die 4. Upper no. 5. Lower bunch 6.
Insulator 7...Heater 8...Insulator 9...Mixture of magnet powder and resin Figure 3 is a factory diagram and explanatory diagram of curing in a magnetic field after molding in a magnetic field according to the method of the present invention. Figure 4 shows the various types of magnets. 1. Barium ferrite magnet by conventional method 2. Samarium Kono magnet by conventional method (ruto magnet 3. By the method of the present invention) (Magnet made of mixed powder of lithium ferrite and samarium cobalt) Applicant: Maiwa Seiko Co., Ltd. ÷ ta<-Zhong Quan Qing 51 No. 1 state ll [break 4 shi] Lu Yiyang's plot] F-Matane's return to history ib μ゛1 countshi 1 den 1 ■'s OO Figure 3 1-1 (koe) Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)熱硬化性樹脂と磁石粉末との混合物を磁場中でプ
レス成形して異方性を付与させ、該成形品中の樹脂を酸
化させるのKm磁場中行うことを特徴とする樹脂結合型
磁石の製造方法。
(1) A resin-bonded type characterized in that a mixture of thermosetting resin and magnet powder is press-molded in a magnetic field to impart anisotropy, and the resin in the molded product is oxidized in a Km magnetic field. How to manufacture magnets.
(2)  磁石粉末として、希土類コバルト磁石粉末と
ハードフェライト磁石粉末の一方、あるいは両方を使用
することを特徴とする特許請求の範囲第1XJ記載の#
IWfI結合瀞永久磁石の製造方法。
(2) # as set forth in claim 1
A method for manufacturing an IWfI bonded permanent magnet.
(3)  希土類コバルト磁石粉末として、希土類(R
で示す)とコバルトを主体とした遷移金属(TMで示す
)の比が1対45から1対9までの、%TM+?型結晶
構造主体の磁性粉末を使用することを特徴とする特許請
求の範囲w42項P載の樹脂結合型永久磁石の製造方法
(3) As rare earth cobalt magnet powder, rare earth (R
%TM + A method for manufacturing a resin-bonded permanent magnet according to claim W42, which uses magnetic powder mainly having a type crystal structure.
JP57008686A 1982-01-22 1982-01-22 Manufacture of resin combined type permanent magnet Pending JPS58125801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57008686A JPS58125801A (en) 1982-01-22 1982-01-22 Manufacture of resin combined type permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008686A JPS58125801A (en) 1982-01-22 1982-01-22 Manufacture of resin combined type permanent magnet

Publications (1)

Publication Number Publication Date
JPS58125801A true JPS58125801A (en) 1983-07-27

Family

ID=11699798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008686A Pending JPS58125801A (en) 1982-01-22 1982-01-22 Manufacture of resin combined type permanent magnet

Country Status (1)

Country Link
JP (1) JPS58125801A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0318252A2 (en) * 1987-11-27 1989-05-31 Imperial Chemical Industries Plc Process for the production of a bonded magnet
JPH09199363A (en) * 1996-01-22 1997-07-31 Aichi Steel Works Ltd Method for manufacturing magnetic anisotropic resin coupled magnet and magnetic anisotropic resin coupled magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0318252A2 (en) * 1987-11-27 1989-05-31 Imperial Chemical Industries Plc Process for the production of a bonded magnet
JPH09199363A (en) * 1996-01-22 1997-07-31 Aichi Steel Works Ltd Method for manufacturing magnetic anisotropic resin coupled magnet and magnetic anisotropic resin coupled magnet

Similar Documents

Publication Publication Date Title
JPH02288305A (en) Rare earth magnet and manufacture thereof
JPH0669003B2 (en) Powder for permanent magnet and method for manufacturing permanent magnet
JPS58125801A (en) Manufacture of resin combined type permanent magnet
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JPH11176682A (en) Manufacturing bond (trade mark) magnet
JP3604853B2 (en) Manufacturing method of anisotropic bonded magnet
JPH0559572B2 (en)
JPS62256411A (en) Permanent magnet with outstanding resistance to oxidation
JPH05144621A (en) Rare earth element-bonded magnet
JPH06330102A (en) Method for compacting magnet powder in magnetic field and manufacture of magnet
JP3652751B2 (en) Anisotropic bonded magnet
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JPH02110904A (en) Resin-bonded nd-fe-b magnet
JPH03110804A (en) Manufacture of nd-fe-b bonded magnet
JPH06260360A (en) Production of rare-earth metal and iron-based magnet
JPH0786070A (en) Manufacture of bond magnet
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPH1167568A (en) Manufacture of bonded magnet
JPH09330842A (en) Manufacture of anisotropic bond magnet
JPH0256904A (en) Manufacture of resin-bound rare-earth magnet
JPH0473908A (en) Manufacture of r-fe-b-based anisotropic compression molding bonded magnet
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JPH0544161B2 (en)
JPH0279404A (en) Polymer composite type rare magnet and manufacture thereof
JPS63287003A (en) Resin bond magnet material and manufacture thereof