JPH09330842A - Manufacture of anisotropic bond magnet - Google Patents

Manufacture of anisotropic bond magnet

Info

Publication number
JPH09330842A
JPH09330842A JP8358310A JP35831096A JPH09330842A JP H09330842 A JPH09330842 A JP H09330842A JP 8358310 A JP8358310 A JP 8358310A JP 35831096 A JP35831096 A JP 35831096A JP H09330842 A JPH09330842 A JP H09330842A
Authority
JP
Japan
Prior art keywords
magnet
magnet powder
powder
anisotropic
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8358310A
Other languages
Japanese (ja)
Inventor
Nobutsugu Mino
修嗣 三野
Hideji Tsujimoto
秀治 辻本
Naoyuki Ishigaki
尚幸 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP8358310A priority Critical patent/JPH09330842A/en
Publication of JPH09330842A publication Critical patent/JPH09330842A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the magnetic characteristic of an anisotropic bond magnet and reduce the void volume of the magnet by mixing a specific amount of fine ferrite magnet powder in magnet powder before, when, or after a resin is mixed in the magnet powder as a binder. SOLUTION: After fine ferrite magnet powder and a thermosetting resin are mixed in anisotropic R-Fe-B magnet powder having an aggregate structure of recrystalline grains composed of R2 Fe14 B tetragonal crystals having a means grain size of 0.05-50μm at mixing rations of 0.5-50wt.% and 1-10wt.%, respectively, against the total weight of the mixture, the mixture is subjected to primary molding so that the density of the molded body can become 3-5.7g/cm<3> at a temperature lower than the softening starting temperature of the resin. Then, after the molded body is heated to a temperature higher than the softening starting temperature and lower than the curing starting temperature of the resin, the molded body is subjected to secondary molding under a molding pressure of 2-10ton/cm<2> in a magnetic field and the resin is cured. Therefore, an anisotropic bond magnet having an excellent magnetic characteristic, heat resistance, and weather resistance and high dimensional accuracy can be manufactured stably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、耐熱性、耐候性
と共に磁気特性、特に残留磁束密度(以下Brとい
う)、最大磁気エネルギー積(以下(BH)maxとい
う)および角型性のすぐれた異方性ボンド磁石の製造方
法に係り、R−Fe−B系合金鋳塊あるいは前記鋳塊を
粉砕して得られた粗粉砕粉を特定の熱処理条件のH2
理法により、特定の平均再結晶粒径を有する正方晶のR
2Fe14B相の再結晶粒集合組織を有する異方性磁石粉
末となし、これに特定量の微細なフェライト磁石粉末お
よびバインダーの樹脂を配合混合後、2段階の成形を行
い、さらに硬化処理することにより、成形時の単位重量
のばらつきが少なく製品の寸法精度が高く、さらに耐熱
性、耐候性並びにBr、(BH)max、角型性のすぐ
れた異方性ボンド磁石を生産性よく製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to excellent heat resistance, weather resistance and magnetic properties, in particular, residual magnetic flux density (hereinafter referred to as Br), maximum magnetic energy product (hereinafter referred to as (BH) max) and excellent squareness. relates to a method for producing isotropic bonded magnet, the R-Fe-B alloy ingot or H 2 treatment for a specific heat treatment conditions coarsely pulverized powder obtained by pulverizing the ingot, specified average recrystallization Tetragonal R with particle size
Anisotropic magnet powder and without having recrystallized grains texture 2 Fe 14 B phase, which after blending mixed resin of a specific amount of fine ferrite magnet powder and a binder, performs shaping of the two-step, a curing process By doing so, there is little variation in unit weight at the time of molding, the dimensional accuracy of the product is high, and the anisotropic bonded magnet with excellent heat resistance, weather resistance, Br, (BH) max, and squareness is manufactured with high productivity. On how to do.

【0002】[0002]

【従来の技術】一般にボンド磁石は焼結磁石に比して、
磁気特性では劣るにもかかわらず、機械的強度にすぐ
れ、且つ形状の自由度が高いこと等より、近年、その利
用範囲が急速に拡大している。かかるボンド磁石は、磁
石粉末と有機バインダー、金属バインダー等により結合
して成形されるが、ボンド磁石の磁気特性は使用する磁
石粉末の磁気特性に左右される。
2. Description of the Related Art In general, a bonded magnet is compared with a sintered magnet,
In spite of its inferior magnetic properties, its use has been rapidly expanding in recent years due to its excellent mechanical strength and its high degree of freedom in shape. Such a bonded magnet is formed by bonding with a magnet powder and an organic binder, a metal binder, or the like. The magnetic properties of the bonded magnet depend on the magnetic properties of the magnet powder used.

【0003】ボンド磁石用磁石粉末としては、(1)R
−Fe−B系鋳塊を機械的粉砕法、あるいはH2吸蔵崩
壊法により得られた磁石粉末や、あるいは、(2)液体
急冷法やアトマイズ法によって、溶融合金から超急冷し
て得られた磁石粉末が利用されている。
[0003] As magnet powder for bonded magnets, (1) R
-A magnet powder obtained by mechanical pulverization method or H 2 occlusion collapse method or a (2) liquid quenching method or an atomizing method, which is obtained by ultra-quenching a molten alloy from an Fe-B-based ingot. Magnet powder is used.

【0004】前者の(1)磁石粉末では、R2Fe14
相が粒内破壊して粉砕されるので、R2Fe14B相がR
リッチ相で囲まれた組織にならず、R2Fe14B相の一
部にRリッチ相が一部付着した組織となり、また、粉砕
時に磁石粉末に歪が残留するため、粉砕のままでは保磁
力iHcは3kOe以下に低下し、歪取り熱処理した磁
石粉末やR2Fe14B相粒界部にRリッチ相を形成させ
る集合粉末とした磁石粉末でも、ボンド磁石用粉末とし
て使用した場合、成型圧力の増加に伴って、ボンド磁石
のiHcは大幅に低下し、また、バインダーの硬化時に
も磁気特性が低下する欠点がある。
In the former (1) magnet powder, R 2 Fe 14 B
The R 2 Fe 14 B phase becomes R
The structure does not become a structure surrounded by the rich phase, but becomes a structure in which the R-rich phase is partially adhered to a part of the R 2 Fe 14 B phase, and distortion remains in the magnet powder at the time of pulverization. When the magnetic force iHc is reduced to 3 kOe or less and the magnet powder subjected to the strain relief heat treatment or the aggregated powder that forms an R-rich phase at the R 2 Fe 14 B phase boundary is used as a bonded magnet powder, As the pressure is increased, the iHc of the bonded magnet is significantly reduced, and the magnetic properties are also reduced when the binder is cured.

【0005】一方、後者の(2)磁石粉末の場合は、個
々のR2Fe14B相の結晶粒の結晶方向が任意で粉末の
磁気特性が等方性であるため、ボンド磁石自体も等方性
であるため、高磁気特性が望めず、実用的には用途が制
限される問題がある。
[0005] On the other hand, in the case of the latter (2) magnet powder, since the crystal direction of each crystal grain of each R 2 Fe 14 B phase is arbitrary and the magnetic properties of the powder are isotropic, the bond magnet itself is also the same. Since it is anisotropic, high magnetic properties cannot be expected, and there is a problem that its use is practically limited.

【0006】最近、ボンド磁石の磁気特性の改善向上の
ため、R−Fe−B系磁石粉末を2段成形することが提
案(特開平2−250303号公報)されているが、前
記公報の磁石粉末はR−Fe−B系磁石粉は液体急冷法
にて得られた等方性磁石粉末であり、また得られたボン
ド磁石も等方性磁石のため、磁気特性の改善向上は期待
できなかった。
Recently, in order to improve the magnetic properties of bonded magnets, it has been proposed to form R-Fe-B-based magnet powder in two steps (Japanese Patent Laid-Open No. 250303/1990). As for the powder, the R-Fe-B based magnet powder is an isotropic magnet powder obtained by a liquid quenching method, and since the obtained bonded magnet is also an isotropic magnet, improvement in magnetic properties cannot be expected. Was.

【0007】[0007]

【発明が解決しようとする課題】そこで、最近、異方性
ボンド用磁石粉末として、R−Fe−B系合金鋳塊ある
いは粉砕後の粗粉砕粉を特定の熱処理条件のH2処理法
により、R2Fe14B正方晶相からなる再結晶集合組織
となした異方性R−Fe−B系磁石粉末が提案されてい
る(特開平1−132106号)。
[SUMMARY OF THE INVENTION Therefore, recently, as a magnetic powder for an anisotropic bonded, with H 2 treatment for a specific heat treatment conditions for R-Fe-B alloy ingot or coarse pulverized powder after pulverization, anisotropic R-Fe-B magnet powder without the recrystallization texture consisting of R 2 Fe 14 B tetragonal phase has been proposed (Japanese Patent Laid-Open No. 1-132106).

【0008】前記異方性磁石粉末を用いて異方性ボンド
磁石を製造する方法としては、前記磁石粉末にバインダ
ーとして溶剤にて液状化した樹脂を添加配合後、溶剤を
蒸発させて前記粉末を乾燥後、圧縮成形し、さらにバイ
ンダー硬化のためのキュア熱処理する工程などが一般に
知られている。
As a method of producing an anisotropic bonded magnet using the anisotropic magnet powder, a resin liquefied with a solvent as a binder is added to the magnet powder, and then the solvent is evaporated to form the powder. After drying, compression molding and a curing heat treatment for curing the binder are generally known.

【0009】しかし、原料粉末の異方性磁石粉末は非常
に酸化され易いうえ、予め磁石粉末をカップリング処理
等で粉末表面を被覆しても、成形時の応力によって磁石
粉末には割れが発生し、活性な金属面が露出してより酸
化され易くなり、また、成形したボンド磁石は密度が低
くて空孔部が多く、前記空孔部にO2、H2Oが容易に侵
入してボンド磁石が酸化し、磁気特性が時間とともに劣
化する問題があった。さらに成形時に磁石粉末が割れる
ことは、磁石粉末へ多量の歪を導入することを意味し、
保磁力および角型性の劣化を生じる観点からも好ましく
なかった。
However, the anisotropic magnet powder as a raw material powder is very easily oxidized, and even if the powder surface is coated in advance by a coupling process or the like, cracks occur in the magnet powder due to stress during molding. However, the active metal surface is exposed to be oxidized more easily, and the formed bonded magnet has a low density and a large number of pores, and O 2 and H 2 O easily enter the pores. There is a problem that the bonded magnet is oxidized and the magnetic properties deteriorate with time. Further, cracking of the magnet powder during molding means introducing a large amount of strain into the magnet powder,
It is not preferable from the viewpoint of deteriorating coercive force and squareness.

【0010】また、発明者はボンド磁石の磁気特性の著
しい改善向上のため、R−Fe−B系鋳塊あるいは粉砕
後の粗粉砕粉を特定の熱処理条件にて水素化処理して得
られた特定の平均再結晶粒径を有する正方晶R2Fe14
B相の再結晶粒集合組織を有する異方性磁石粉末に熱硬
化樹脂を添加混合後、温間中にて磁場中成形した異方性
ボンド磁石を提案(特願平6−311874号)した
が、前記方法では加熱された金型中に原料粉末を供給中
に、原料粉末は金型上表面及び内壁面に溶着して、金型
中に均一に原料粉末を装入することが困難、且つ均質な
成形体が得られず、また生産性の点でも問題があった。
Further, the inventor of the present invention obtained a hydrogen-treated R-Fe-B-based ingot or a coarsely pulverized powder after pulverization under a specific heat treatment condition in order to remarkably improve the magnetic properties of the bonded magnet. Tetragonal R 2 Fe 14 having a specific average recrystallized grain size
A thermosetting resin was added to and mixed with an anisotropic magnet powder having a B-phase recrystallized grain texture, and then an anisotropic bonded magnet molded in a magnetic field in a warm state was proposed (Japanese Patent Application No. 6-311874). However, in the above method, while supplying the raw material powder into the heated mold, the raw material powder is welded to the upper surface and the inner wall surface of the mold, and it is difficult to uniformly charge the raw material powder in the mold, In addition, a uniform molded body could not be obtained, and there was a problem in productivity.

【0011】また、ボンド磁石の密度および磁石特性の
さらなる改善向上のため、水素化処理した磁気異方性を
有する原料粉末を室温にして低圧力により仮成形し、原
料粉末の脱気を行った後、原料粉末を加熱して温間中で
磁場中成形する方法が提案(特開平8−31677号)
されているが、前記方法を用いても、ボンド磁石の密度
の向上が充分でなく、このため磁気特性の向上も最大エ
ネルギー積(BH)maxで0.2〜0.5MGOeに
止まり、さらにボンド磁石内部の空孔部は依然として多
く存在するため、ボンド磁石の酸化による磁石特性の経
時的劣化により改善向上は期待できなかった。
Further, in order to further improve and improve the density and magnetic properties of the bonded magnet, a hydrogenated raw material powder having magnetic anisotropy was temporarily formed at room temperature under a low pressure to degas the raw material powder. Then, a method in which the raw material powder is heated and molded in a magnetic field in a warm state is proposed (JP-A-8-31677).
However, even if the above-mentioned method is used, the density of the bonded magnet is not sufficiently improved, and therefore the improvement of the magnetic properties is limited to a maximum energy product (BH) max of 0.2 to 0.5 MGOe. Since there are still many voids inside the magnet, improvement could not be expected due to the deterioration of the magnet properties over time due to oxidation of the bonded magnet.

【0012】この発明は、上述の異方性ボンド磁石の問
題を解消し、耐熱性、耐候性と共に磁気特性、特にB
r、(BH)maxおよび角型性のすぐれた異方性ボン
ド磁石を成形時の単位重量のばらつきが少なく、製品の
寸法精度を高く製造できる方法の提供を目的としてい
る。
The present invention solves the above-mentioned problems of the anisotropic bonded magnet, and provides heat resistance, weather resistance and magnetic properties, particularly B
It is an object of the present invention to provide a method capable of producing an anisotropic bonded magnet having excellent r, (BH) max and squareness with a small unit weight variation during molding and high dimensional accuracy of the product.

【0013】[0013]

【課題を解決するための手段】従来の異方性ボンド磁石
の問題点を解決すべく、発明者らは、成形したボンド磁
石中の空孔部を減少させる方法について、種々検討を加
えた結果、前記磁石粉末にバインダーとして樹脂を配合
混合する前、もしくは配合混合と同時に、あるいは配合
混合した後に、特定量の微細なフェライト磁石粉末を配
合混合することにより、フェライト磁石微粉末は2段成
形時に磁石粉末間隙、あるいは薄く樹脂にて被覆された
磁石粉末間隙に優先的に充填され、かかる現象により、
ボンド磁石中の空孔率が減少すること、さらに、前記の
ごとく、ボンド磁石の成形を温間中で行うことにより、
樹脂は軟化して、流動性が増加するため、密度が向上
し、その結果、磁気特性の向上と空孔率の低減が図れる
こと、また、磁石粉末間隙を占めるフェライト磁石粉末
は2段成形時に生じる異方性磁石粉末局部への応力集中
を緩和し、磁石粉末の割れを抑制することを知見した。
In order to solve the problems of conventional anisotropic bonded magnets, the inventors have conducted various studies on a method of reducing voids in a molded bonded magnet. By mixing and mixing a specific amount of fine ferrite magnet powder before compounding and mixing the resin as a binder with the magnet powder, simultaneously with compounding mixing, or after compounding and mixing, the ferrite magnet fine powder can be molded in two steps. The magnet powder gap or the magnet powder gap coated with a thin resin is preferentially filled.
By reducing the porosity in the bonded magnet, and further, as described above, by molding the bonded magnet in a warm temperature,
The resin softens and the fluidity increases, so the density is improved, and as a result, the magnetic properties can be improved and the porosity can be reduced, and the ferrite magnet powder that occupies the magnet powder gap can be used during the two-step molding. It was found that the stress concentration on the local area of the anisotropic magnet powder that occurs is alleviated and cracking of the magnet powder is suppressed.

【0014】また、発明者らは、1)空孔部の減少によ
って、磁石内部へのO2、H2Oの侵入が防止され、耐熱
性、耐候性が顕著に向上すること、2)従来空孔部であ
った部分がフェライト永久磁石粉末によって、置換され
るため、磁気特性、特にBr、(BH)maxが向上す
ること、3)さらに磁石粉末の割れ抑制によって、ボン
ド磁石中の非常に活性な金属破面が減少するので、耐熱
性、耐候性は一段と向上し、4)また、歪の導入も抑制
されるので、磁気特性、特に角型性が向上すること、
5)かかる作用効果が相乗され、ボンド磁石の耐熱性、
耐候性の向上、および磁気特性の改善向上に有効なるこ
とを知見した。
The inventors have also found that 1) O 2 and H 2 O are prevented from penetrating into the inside of the magnet by reducing the number of holes, and that heat resistance and weather resistance are remarkably improved. The ferrite permanent magnet powder replaces the voids, which improves the magnetic properties, especially Br and (BH) max. Since the number of active metal fracture surfaces is reduced, heat resistance and weather resistance are further improved, and 4) the introduction of strain is also suppressed, so that magnetic properties, particularly squareness are improved.
5) These actions and effects are synergized, and the heat resistance of the bonded magnet,
It was found that it is effective in improving weather resistance and improving magnetic properties.

【0015】さらに、発明者らは、温間成形時の製造時
の問題点を解決すべく、種々検討した結果、前記異方性
R−Fe−B系磁石粉末とフェライト磁石微粉末および
熱硬化性樹脂の混合物を樹脂軟化開始温度以下にて成形
体の密度が特定密度になるごとく1次成形した後、樹脂
軟化開始温度以上、硬化開始温度以下に加熱し、磁場中
にて特定の成形圧力にて2次成形後、硬化処理すること
により、高い磁気特性と共に均質性に優れた異方性ボン
ド磁石を生産性よく、製造できることを知見し、この発
明を完成した。
Further, as a result of various investigations by the inventors, in order to solve the problems in manufacturing during warm forming, the anisotropic R—Fe—B magnet powder, the ferrite magnet fine powder, and the thermosetting were obtained. After the primary molding of a mixture of functional resins at a temperature below the resin softening start temperature such that the density of the molded body reaches a specific density, it is heated above the resin softening start temperature and below the curing start temperature, and at a specific molding pressure in a magnetic field. The present invention has been completed by finding that an anisotropic bonded magnet excellent in homogeneity and excellent in magnetic property can be manufactured with high productivity by performing a hardening treatment after secondary molding in.

【0016】すなわち、この発明は、平均再結晶粒径が
0.05μm〜50μmのR2Fe14B正方晶相からな
る再結晶粒の集合組織を有する異方性R−Fe−B系磁
石粉末と、前記磁石粉末との合計に対して0.5〜50
wt%のフェライト磁石微粉末と1〜10wt%の樹脂
を添加混合後、樹脂軟化開始温度以下にて、成形体の密
度が3〜5.7g/cm2になるごとく、1次成形した
後、樹脂軟化開始温度以上、硬化開始温度以下に加熱
後、磁場中にて成形圧2〜10ton/cm2の2次成
形し、その後、硬化処理することを特徴とする異方性ボ
ンド磁石の製造方法である。
That is, according to the present invention, an anisotropic R-Fe-B magnet powder having a recrystallized grain texture composed of an R 2 Fe 14 B tetragonal phase having an average recrystallized grain size of 0.05 μm to 50 μm. And 0.5 to 50 relative to the total of the magnet powder
After the wt% ferrite magnet fine powder and 1 to 10 wt% resin are added and mixed, after the primary softening at a resin softening start temperature or less, the density of the molded body becomes 3 to 5.7 g / cm 2 , A method for producing an anisotropic bonded magnet, which comprises heating to a resin softening start temperature or higher and a hardening start temperature or lower, and then performing secondary molding in a magnetic field at a molding pressure of 2 to 10 ton / cm 2 , and then performing a curing treatment. Is.

【0017】また、この発明は、上記の製造方法におい
て、異方性R−Fe−B系磁石粉末が、R10〜30a
t%(RはYを含む希土類元素の1種又は2種以上)、
B2〜28at%、Fe65〜80at%を主成分とす
る鋳塊あるいは溶体化処理した鋳塊を750℃〜950
℃に30分〜8時間、H2ガス雰囲気中に保持した後、
引き続いて温度750℃〜950℃に15分〜4時間、
真空雰囲気中に保持した水素化処理して得られた磁石粉
末である異方性ボンド磁石の製造方法を併せて提案す
る。
Further, according to the present invention, in the above-mentioned production method, the anisotropic R-Fe-B-based magnet powder may have a composition of R10 to 30a.
t% (R is one or two or more rare earth elements including Y),
B2 to 28 at%, Fe65 to 80 at% as the main components, or a solution treated ingot, 750 ℃ ~ 950
C. for 30 minutes to 8 hours in an H 2 gas atmosphere,
Subsequently, at a temperature of 750 ° C. to 950 ° C. for 15 minutes to 4 hours,
We also propose a method for producing anisotropic bonded magnets, which are magnet powders obtained by hydrotreating in a vacuum atmosphere.

【0018】[0018]

【発明の実施の形態】この発明において、R2Fe14
正方晶相からなる再結晶集合組織の磁石粉末は、R−F
e−B系合金鋳塊あるいは前記鋳塊を粗粉砕して得られ
た粗粒を均質化処理するか、または、均質化処理せずに
2ガス雰囲気中で昇温し、温度750℃〜950℃に
30分〜8時間のH2ガス雰囲気中に保持した後、引き
続いて温度750℃〜950℃に5分〜4時間の真空雰
囲気中に保持した後、冷却し、粉砕して得られるもので
ある。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, R 2 Fe 14 B
A magnet powder having a recrystallization texture composed of a tetragonal phase is R-F.
The EB alloy ingot or the coarse particles obtained by coarsely pulverizing the ingot are homogenized or heated in an H 2 gas atmosphere without homogenization, and the temperature is increased to 750 ° C. It is obtained by keeping in a H 2 gas atmosphere at 950 ° C. for 30 minutes to 8 hours and subsequently in a vacuum atmosphere at 750 ° C. to 950 ° C. for 5 minutes to 4 hours, then cooling and pulverizing. Things.

【0019】かかる異方性R−Fe−B系磁石粉末の平
均粒度を5μm〜500μmに限定した理由は、5μm
未満では酸化し易く作業中に燃える恐れがあり、また、
500μmを超えると磁石粉末として実用的ではないの
で好ましくないことにあり、好ましい平均粒度は10μ
m〜300μmである。
The reason why the average particle size of such anisotropic R-Fe-B-based magnet powder is limited to 5 μm to 500 μm is as follows.
If it is less, it is easily oxidized and may burn during work,
If it exceeds 500 μm, it is not practical because it is not practical as a magnet powder.
m to 300 μm.

【0020】また、異方性R−Fe−B系磁石粉末の平
均再結晶粒径は、0.05μm未満では着磁が困難とな
り、50μmを超えるとiHc(保磁力)が5kOe以
下となり、磁気特性が低下するため、0.05μm〜5
0μmの範囲とし、好ましい平均再結晶粒径は0.1μ
m〜10μmである。
If the average recrystallized grain size of the anisotropic R—Fe—B magnet powder is less than 0.05 μm, magnetization becomes difficult. If it exceeds 50 μm, iHc (coercive force) becomes 5 kOe or less, 0.05 μm to 5 μm
0 μm, and the preferred average recrystallized particle size is 0.1 μm.
m to 10 μm.

【0021】この発明において、特定の異方性R−Fe
−B系磁石粉末に配合混合するフェライト磁石粉末の平
均粒度は、0.5μm未満では実際の製造上困難であ
り、また、10μmを超えるとフェライト磁石粉末の磁
気特性の低下が大きく、成形時の空孔低減効果や応力緩
和効果、すなわち磁石粉末の割れ抑制効果が少なく、耐
熱性、耐候性並びに磁気特性向上の効果が少ないので好
ましくなく、フェライト磁石粉末の粒度は0.5μm〜
10μmとする。好ましいフェライト磁石粉末の粒度は
0.5μm〜5μmである。
In the present invention, a specific anisotropic R-Fe is used.
If the average particle size of the ferrite magnet powder to be blended and mixed with the -B type magnet powder is less than 0.5 μm, it is difficult in actual production, and if it exceeds 10 μm, the magnetic properties of the ferrite magnet powder are largely deteriorated, and the average particle size is The void reduction effect and stress relaxation effect, that is, the effect of suppressing cracking of the magnet powder is small, and the effect of improving heat resistance, weather resistance and magnetic properties is small, which is not preferable, and the particle size of the ferrite magnet powder is 0.5 μm to
10 μm. The particle size of the preferred ferrite magnet powder is 0.5 μm to 5 μm.

【0022】また、フェライト磁石粉末の配合量は、磁
石粉末との合計に対して、0.5wt%未満では空孔率
低減効果、すなわち耐熱性、耐候性ならびに磁気特性の
改善効果が得られず、また50wt%を超えるとボンド
磁石の磁気特性を劣化するので、0.5wt%〜50w
t%とする。好ましいフェライト磁石粉末の配合量は2
wt%〜30wt%である。
If the content of the ferrite magnet powder is less than 0.5 wt% with respect to the total amount of the magnet powder, the porosity-reducing effect, that is, the heat resistance, weather resistance and magnetic property improving effects cannot be obtained. Further, if it exceeds 50 wt%, the magnetic characteristics of the bonded magnet are deteriorated, so 0.5 wt% to 50 w
t%. The preferred amount of ferrite magnet powder is 2
wt% to 30 wt%.

【0023】この発明の異方性R−Fe−B系磁石粉末
に用いる希土類元素Rは、組成の10原子%〜30原子
%を占めるが、Nd,Pr,Dy,Ho,Tbのうち少
なくとも1種、あるいはさらに、La,Ce,Sm,G
d,Er,Eu,Tm,Yb,Lu,Yのうち少なくと
も1種を含むものが好ましい。また、通常Rのうち1種
をもって足りるが、実用上は2種以上の混合物(ミッシ
ュメタル、シジム等)を入手上の便宜等の理由により用
いることができる。なお、このRは純希土類元素でなく
てもよく、工業上入手可能な範囲で製造上不可避な不純
物を含有するものでも差し支えない。
The rare earth element R used in the anisotropic R-Fe-B magnet powder of the present invention occupies 10 atom% to 30 atom% of the composition, and at least one of Nd, Pr, Dy, Ho and Tb is used. Seed, or even La, Ce, Sm, G
Those containing at least one of d, Er, Eu, Tm, Yb, Lu and Y are preferable. Further, although one of R is usually sufficient, in practice, a mixture of two or more kinds (Misch metal, cydim, etc.) can be used for reasons of availability. Note that R may not be a pure rare earth element, and may contain impurities that are unavoidable in production within the industrially available range.

【0024】Rは、上記系磁石粉末における必須元素で
あって、10原子%未満では結晶構造がα−鉄と同一構
造の立方晶組織となるため、高磁気特性、特に高保磁力
が得られず、30原子%を超えるとRリッチな非磁性相
が多くなり、残留磁束密度(Br)が低下してすぐれた
特性の永久磁石が得られない。よって、Rは、10原子
%〜30原子%の範囲が望ましい。
[0024] R is an essential element in the above-mentioned magnet powder, and if it is less than 10 atomic%, it has a cubic crystal structure having the same crystal structure as α-iron, so that high magnetic properties, particularly high coercive force cannot be obtained. %, The amount of R-rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R is desirably in the range of 10 at% to 30 at%.

【0025】Bは、上記系磁石粉末における必須元素で
あって、2原子%未満では菱面体構造が主相となり、高
い保磁力(iHc)は得られず、28原子%を超えると
Bリッチな非磁性相が多くなり、残留磁束密度(Br)
が低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲が望ましい。
B is an essential element in the above magnet powder, and if it is less than 2 atomic%, the rhombohedral structure becomes the main phase and a high coercive force (iHc) cannot be obtained, and if it exceeds 28 atomic%, it is rich in B. Non-magnetic phase increases and residual magnetic flux density (Br)
, The excellent permanent magnet cannot be obtained. Therefore, B is desirably in the range of 2 to 28 atomic%.

【0026】Feは、上記系磁石粉末において必須元素
であり、65原子%未満では残留磁束密度(Br)が低
下し、80原子%を超えると高い保磁力が得られないの
で、Feは65原子%〜80原子%の含有が望ましい。
また、Feの一部をCoで置換することは、得られる磁
石の磁気特性を損なうことなく、温度特性を改善するこ
とができるが、Co置換量がFeの20%を超えると、
逆に磁気特性が劣化するため、好ましくない。Coの置
換量がFeとCoの合計量で5原子%〜15原子%の場
合は、(Br)は置換しない場合に比較して増加するた
め、高磁束密度を得るために好ましい。
Fe is an essential element in the above-mentioned magnet powder, and if it is less than 65 atom%, the residual magnetic flux density (Br) is lowered, and if it exceeds 80 atom%, a high coercive force cannot be obtained. % To 80 atomic% is desirable.
Also, substituting a part of Fe with Co can improve the temperature characteristics without impairing the magnetic characteristics of the obtained magnet, but when the Co substitution amount exceeds 20% of Fe,
On the contrary, the magnetic characteristics are deteriorated, which is not preferable. When the amount of substitution of Co is 5 at% to 15 at% in terms of the total amount of Fe and Co, (Br) is increased as compared with the case where no substitution is made, which is preferable for obtaining a high magnetic flux density.

【0027】また、R,B,Feのほか、工業的生産上
不可避的不純物の存在を許容でき、例えば、Bの一部を
4.0wt%以下のC、2.0wt%以下のP、2.0
wt%以下のS、2.0wt%以下のCuのうち少なく
とも1種、合計量で2.0wt%以下で置換することに
より、永久磁石の製造性改善、低価格化が可能である。
In addition to R, B and Fe, the presence of impurities that are unavoidable in industrial production can be tolerated. For example, part of B is 4.0 wt% or less of C, 2.0 wt% or less of P, 2 .0
By replacing at least one of S by wt% or less and Cu by 2.0 wt% or less with a total amount of 2.0 wt% or less, it is possible to improve the productivity and reduce the cost of the permanent magnet.

【0028】さらに、Al,Ti,V,Cr,Mn,B
i,Nb,Ta,Mo,W,Sb,Ge,Ga,Sn,
Zr,Ni,Si,Zn,Hfのうち少なくとも1種
は、磁石粉末に対してその保磁力、減磁曲線の角型性を
改善あるいは製造性の改善、低価格化に効果があるため
添加することができる。なお、添加量の上限は、ボンド
磁石の(BH)maxを14MGOe以上とするには、
(Br)が少なくとも8kG以上必要となるため、該条
件を満たす範囲が望ましい。
Further, Al, Ti, V, Cr, Mn, B
i, Nb, Ta, Mo, W, Sb, Ge, Ga, Sn,
At least one of Zr, Ni, Si, Zn, and Hf is added to the magnet powder because it is effective for improving the coercive force and the squareness of the demagnetization curve or improving the productivity and reducing the price. be able to. In addition, the upper limit of the addition amount is such that the (BH) max of the bonded magnet is 14 MGOe or more.
Since (Br) requires at least 8 kG or more, a range satisfying the condition is desirable.

【0029】配合混合に用いるフェライト磁石微粉末
は、化学式MO・6Fe23(M=Ba,Sr,Pb)
で表されるM型、及び化学式2MO・BaO・8Fe2
3で表されるW型などのいずれであってもよい。な
お、この発明においては、前記フェライト磁石微粉末の
他に、R−Fe−B系超急冷磁石微粉末、R−Co系磁
石微粉末、R−Fe−N系磁石微粉末を複合混合しても
よい。
The ferrite magnet fine powder used for blending and mixing has a chemical formula of MO · 6Fe 2 O 3 (M = Ba, Sr, Pb)
M type represented by, and the chemical formula 2MO.BaO.8Fe 2
It may be of any type such as W type represented by O 3 . In addition, in the present invention, in addition to the ferrite magnet fine powder, R-Fe-B type ultra-quenching magnet fine powder, R-Co type magnet fine powder, and R-Fe-N type magnet fine powder are mixed and mixed. Good.

【0030】また、この発明において、熱硬化性樹脂の
種類は特に制限されないが、従来よりボンド磁石に使用
されるエポキシ樹脂、フェノール樹脂、ポリエステル樹
脂などを用いることができ、特に熱硬化性樹脂としては
エポキシ樹脂が好ましい。熱硬化性樹脂は必要に応じ
て、硬化剤、硬化促進剤と一緒に使用する。
In the present invention, the type of thermosetting resin is not particularly limited, but epoxy resins, phenol resins, polyester resins and the like which have been conventionally used for bonded magnets can be used, and particularly as thermosetting resins. Is preferably an epoxy resin. The thermosetting resin is used together with a curing agent and a curing accelerator, if necessary.

【0031】熱硬化性樹脂は、軟化温度が40℃〜10
0℃のものが使用できる。樹脂の軟化温度が40℃未満
では常温でも原料粉末の流動性が悪くなり、均質な1次
成形体は得難く、また100℃を超えると、金型に投入
した1次成形体を樹脂の軟化温度以上に加熱するのに長
時間を要し、また加熱時の温度調整や磁場印加のための
磁気回路の設計も難しくなるため、軟化温度が40℃〜
100℃の樹脂を使用することが望ましく、さらに好ま
しい軟化温度は50℃〜90℃である。
The thermosetting resin has a softening temperature of 40 ° C. to 10 ° C.
Those at 0 ° C can be used. If the softening temperature of the resin is less than 40 ° C, the fluidity of the raw material powder will be poor even at room temperature, and it will be difficult to obtain a homogeneous primary compact, and if it exceeds 100 ° C, the softening of the resin in the primary compact put into the mold will be difficult. It takes a long time to heat above the temperature, and it becomes difficult to adjust the temperature during heating and to design a magnetic circuit for applying a magnetic field.
It is desirable to use a resin at 100 ° C, and a more preferable softening temperature is 50 ° C to 90 ° C.

【0032】また、バインダーとしての樹脂の配合量
は、1wt%未満ではボンド磁石の強度が十分に得られ
ず、また10wt%を超えると磁気特性の劣化を招来し
好ましくないため、樹脂の配合量は1〜10wt%とす
る。
If the amount of the resin as the binder is less than 1 wt%, the strength of the bond magnet cannot be sufficiently obtained, and if it exceeds 10 wt%, the magnetic properties are deteriorated, which is not preferable. Is 1 to 10 wt%.

【0033】この発明の製造条件について限定した理由
を説明する。1次成形において、温度が樹脂の軟化開始
温度を超えると、原料粉末の流動性が失われて、金型内
への充填が困難になるため、温度は樹脂の軟化開始温度
以下にする。1次成形においては、磁場の付与は任意で
あるが、磁場を付与しない方が金型残磁の影響がなく、
より均一な原料粉末の充填が可能となり、また生産性が
大で成形体の残磁もないため、1次成形体への粉付きも
少なくかつ作業もし易いため好ましい。
The reason for limiting the manufacturing conditions of the present invention will be described. In the primary molding, if the temperature exceeds the softening start temperature of the resin, the fluidity of the raw material powder is lost and it becomes difficult to fill the mold, so the temperature is set to be equal to or lower than the softening start temperature of the resin. In the primary molding, the application of the magnetic field is optional, but the absence of the magnetic field is free from the influence of the mold remanence,
It is preferable because the raw material powder can be more uniformly filled, the productivity is large, and there is no residual magnetism of the molded body, so that the primary molded body is less likely to be powdered and the work is easy.

【0034】成形体の密度は、磁石粉末と樹脂との混合
粉末の粒度分布及び成形圧により決まるが、成形体の密
度が3g/cm3未満では1次成形体の強度が低くハン
ドリングに支障を及ぼすため、2次成形時に1次成形体
を金型内に装入することが困難となり、また、5.7g
/cm3を超えると磁石粉末の機械的な拘束力が強く、
2次成形時の磁場配向が困難となるので好ましくない。
なお、1次成形体の形状、寸法は2次成形用金型内に装
入することより、2次成形体の形状、寸法より小でなけ
ればならない。
The density of the molded product is determined by the particle size distribution of the mixed powder of the magnet powder and the resin and the molding pressure, but if the density of the molded product is less than 3 g / cm 3 , the strength of the primary molded product is low and handling is hindered. As a result, it becomes difficult to load the primary compact into the mold during secondary molding, and 5.7 g
/ Cm 3 greater than the strong mechanical binding of magnetic powder,
It is not preferable because the magnetic field orientation during the secondary molding becomes difficult.
The shape and dimensions of the primary molded body must be smaller than the shapes and dimensions of the secondary molded body because they are charged into the secondary molding die.

【0035】また、2次成形において、温度を樹脂軟化
開始温度以上、硬化開始温度以下に限定した理由は、樹
脂軟化開始温度未満ではボンド磁石の密度が低く十分な
磁石特性及び強度が得られないためであり、また、硬化
開始温度を超えると成形体を得る以前に硬化が開始し、
磁場配向並びに高密度化が困難となり、また磁石粉末が
酸化し、得られたボンド磁石の磁気特性、耐食性が低下
するためである。
In the secondary molding, the reason why the temperature is limited to the resin softening start temperature or higher and the curing start temperature or lower is that the temperature of the resin softening start temperature is lower and the density of the bond magnet is low and sufficient magnet characteristics and strength cannot be obtained. Also, when the curing start temperature is exceeded, curing starts before the molded body is obtained,
This is because it is difficult to orient the magnetic field and increase the density, and the magnet powder is oxidized, and the magnetic properties and corrosion resistance of the obtained bonded magnet are reduced.

【0036】また、2次成形圧は、2Ton/cm2
満ではボンド磁石の密度が低く、優れた磁気特性が得ら
れず、また、10Ton/cm2を超えると金型の損
傷、破損を惹起するので好ましくない。さらに好ましい
成形圧は4Ton/cm2〜10Ton/cm2である。
また、2次成形時の磁場の強さは2kOe以上、好まし
くは5kOe以上で、上限値は規定はないが、直流電流
コイルによる静磁場の上限は実用上、30kOe程度で
ある。また、パルス強磁場を単独または静磁場との併用
で用いてもよく、パルス磁場では50kOe以上の磁場
を得ることも可能であり、より好ましい。
Further, the secondary molding pressure, low density of the bonded magnet is less than 2 ton / cm 2, not be obtained excellent magnetic properties, also damage the mold exceeds 10ton / cm 2, caused damage Is not preferred. A more preferable molding pressure is 4 Ton / cm 2 to 10 Ton / cm 2 .
The strength of the magnetic field during the secondary molding is 2 kOe or more, preferably 5 kOe or more, and the upper limit is not specified, but the upper limit of the static magnetic field by the DC current coil is practically about 30 kOe. Further, a pulsed strong magnetic field may be used alone or in combination with a static magnetic field, and a pulsed magnetic field can obtain a magnetic field of 50 kOe or more, which is more preferable.

【0037】[0037]

【実施例】【Example】

実施例1 原料として真空溶解炉にて溶解鋳造し、組成がNd10
at%−Pr2.8at%−B6at%−Co15at
%−Ga1at%−残部Feからなる、R−Fe−B系
磁石用合金鋳塊を得た。これらの合金鋳塊を温度113
0℃、時間12時間でAr雰囲気中にて均質化処理を行
った。前記鋳塊を加熱炉に挿入し、760TorrのH
2ガスとして、加熱炉内の温度を室温から温度850℃
に上昇し、引き続いて温度850℃に3時間保持した
後、850℃に1時間保持して脱H2を行って、真空度
1×10-5Torrになるまで排気冷却した。その後、
鋳塊をAr雰囲気中で300μm以下になるまで粉砕し
て、R−Fe−B系磁石粉末を得た。得られた磁石粉末
は平均結晶粒径0.5μmのR2Fe14B正方晶相から
なる再結晶粒の集合組織を有する異方性磁石粉末であっ
た。
Example 1 A raw material was melt-cast in a vacuum melting furnace and had a composition of Nd10.
at% -Pr2.8at% -B6at% -Co15at
% -Ga1at% -the balance Fe was obtained, and an alloy ingot for an R-Fe-B magnet was obtained. These alloy ingots are heated to a temperature of 113
The homogenization treatment was performed in an Ar atmosphere at 0 ° C. for 12 hours. Insert the ingot into a heating furnace and add 760 Torr of H
2 gas, the temperature in the heating furnace is from room temperature to 850 ° C
After that, the temperature was maintained at 850 ° C. for 3 hours, then at 850 ° C. for 1 hour to remove H 2, and exhausted and cooled to a vacuum degree of 1 × 10 −5 Torr. afterwards,
The ingot was crushed in an Ar atmosphere to 300 μm or less to obtain R—Fe—B based magnet powder. The obtained magnet powder was an anisotropic magnet powder having a texture of recrystallized grains composed of an R 2 Fe 14 B tetragonal phase having an average crystal grain size of 0.5 μm.

【0038】得られた平均粒径150μmの前記異方性
磁石粉末に、平均粒径1.3μmのSrフェライト(S
r0・6Fe23)粉末を前記異方性磁石粉末との合計
に対して10wt%配合後、V型混合器にて30分間混
合し、さらに、バインダーとして2wt%のエポキシ樹
脂(軟化開始温度(61℃)、硬化開始温度(112
℃))を配合混合後、真空乾燥し、温度26℃のプレス
金型に自動給粉装置を用いて充填後に、成形圧力を変え
て、表1のごとく成形体密度3.1〜5.6g/cm3
になるように各条件にて40個を1次成形した。その
後、それらを温度70℃ならびに90℃のプレス金型に
挿入して磁場の強さ10kOeの静磁場にて成形圧6t
on/cm2の2次成形を行い、得られた2次成形体を
170℃で1時間の硬化処理を行って、各条件ごと20
個の異方性ボンド磁石を得た。
The obtained anisotropic magnet powder having an average particle size of 150 μm was mixed with Sr ferrite (S having an average particle size of 1.3 μm).
r0.6Fe 2 O 3 ) powder was mixed with the anisotropic magnet powder in an amount of 10 wt% with respect to the total, and then mixed in a V-type mixer for 30 minutes, and further, 2 wt% of an epoxy resin (softening start temperature was used as a binder. (61 ° C.), curing start temperature (112
)) Is mixed and mixed, vacuum-dried, and filled in a press die at a temperature of 26 ° C. by using an automatic powder feeder. / Cm 3
40 pieces were primary-molded under each condition so that After that, they are inserted into a press die at temperatures of 70 ° C. and 90 ° C., and a molding pressure of 6 t is applied in a static magnetic field having a magnetic field strength of 10 kOe.
On / cm 2 secondary molding was performed, and the obtained secondary molded body was subjected to a curing treatment at 170 ° C. for 1 hour, and was subjected to 20 times for each condition.
An anisotropic bonded magnet was obtained.

【0039】得られた異方性ボンド磁石の磁気特性、角
型性および空孔率と耐候性試験結果を表2に表す。ここ
で、空孔率は、異方性磁石粉末、フェライト磁石粉末な
らびに樹脂の密度と配合比、および成形したボンド磁石
の実測密度から計算によって求めた。
Table 2 shows the magnetic properties, squareness, porosity, and weather resistance test results of the obtained anisotropic bonded magnet. Here, the porosity was calculated from the density and the compounding ratio of the anisotropic magnet powder, the ferrite magnet powder and the resin, and the measured density of the molded bond magnet.

【0040】また、耐熱性、耐候性試験の試験条件は大
気中で100℃×1000時間の条件で、試験中の磁束
の経時変化を測定した。なお、磁束の経時変化試験方法
は試験片を着磁した後、磁束を測定し、ついで大気中に
て100℃に1000時間放置後、再び試験片を着磁し
磁束を測定し、再着磁によっても復元しない減磁率、す
なわち永久的な減磁率を算出した。この永久的な減磁は
磁石の腐食等による変質に起因するものであり、耐熱
性、耐候性向上の判定指標となり得る。また、ボンド磁
石の成形の安定性を評価するために、作製した各条件の
20個のボンド磁石の重量を測定し、そのばらつきにつ
いて調査した結果を、表3に表す。
The test conditions for the heat resistance and weather resistance tests were 100 ° C. × 1000 hours in the atmosphere, and the change with time of the magnetic flux during the test was measured. The test method for the change of magnetic flux over time is to measure the magnetic flux after magnetizing the test piece, then leave it in the atmosphere at 100 ° C for 1000 hours, magnetize the test piece again, measure the magnetic flux, and remagnetize it. A demagnetization rate that does not restore even after the measurement, that is, a permanent demagnetization rate was calculated. This permanent demagnetization is caused by deterioration due to corrosion of the magnet or the like, and can be a judgment index for improving heat resistance and weather resistance. In addition, in order to evaluate the molding stability of the bonded magnet, the weight of 20 bonded magnets manufactured under each condition was measured, and the variation thereof was investigated.

【0041】比較例1 実施例1にて得られた磁石粉末に、フェライト永久磁石
粉末を配合混合しない以外は実施例1と同一の製造条
件、但し、2次成形温度は90℃に限定して異方性ボン
ド磁石を作製し、得られた異方性ボンド磁石の磁気特
性、角型性および空孔率と耐候性試験結果を表2に、重
量測定結果を表3に表す。なお、この比較例1の製造方
法は、前述した特開平8−31677号に記載の製造方
法に相当する。
Comparative Example 1 The same manufacturing conditions as in Example 1 except that the permanent magnet powder of ferrite was not mixed with the magnet powder obtained in Example 1, but the secondary molding temperature was limited to 90 ° C. Anisotropic bonded magnets were produced. Magnetic properties, squareness, porosity and weather resistance test results of the resulting anisotropic bonded magnets are shown in Table 2, and weight measurement results are shown in Table 3. The manufacturing method of Comparative Example 1 corresponds to the manufacturing method described in JP-A-8-31677 mentioned above.

【0042】比較例2 実施例1と同一の異方性ボンド磁石用コンパウンドを金
型温度90℃のプレス金型に自動給粉装置を用いて充填
後、10kOeの静磁場中、6ton/cm2の成形圧
力で20個の成形体を作製し、得られた成形体を170
℃で1時間硬化処理して異方性ボンド磁石を得た。得ら
れた異方性ボンド磁石の磁気特性、角型性および空孔率
と耐候性試験結果を表2に、重量測定結果を表3に表
す。
Comparative Example 2 The same compound for anisotropic bonded magnets as in Example 1 was filled in a press die having a die temperature of 90 ° C. using an automatic powder feeder, and then 6 ton / cm 2 in a static magnetic field of 10 kOe. 20 moldings were produced with a molding pressure of
An anisotropic bonded magnet was obtained by performing a curing treatment at 1 ° C. for 1 hour. Table 2 shows the magnetic properties, squareness and porosity of the obtained anisotropic bonded magnet, and the results of the weather resistance test. Table 3 shows the weight measurement results.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【発明の効果】この発明による異方性ボンド磁石は、R
−Fe−B系鋳塊あるいは前記鋳塊を粉砕して得られた
粗粉砕粉を、特定の熱処理条件のH2処理法により、特
定の平均再結晶粒径を有する正方晶のR2Fe14B相の
再結晶粒集合組織を有する異方性磁石粉末となし、これ
に所定量の微細なフェライト磁石粉末とバインダー樹脂
を配合混合後、特定の温度範囲で特定密度範囲に1次成
形した成形体を次いで所定の温度範囲、磁場強度範囲、
成形圧力範囲で2次成形して得られたもので、この方法
によれば、実施例に明らかなように磁気特性及び耐熱、
耐候性に優れかつ単重ばらつきの少ない、すなわち寸法
精度の高い、異方性ボンド磁石を安定して製造すること
ができる。
The anisotropic bonded magnet according to the present invention has an R
A —Fe—B-based ingot or a coarsely crushed powder obtained by crushing the ingot is subjected to an H 2 treatment method under a specific heat treatment condition to form a tetragonal R 2 Fe 14 having a specific average recrystallized grain size. Anisotropic magnet powder having B-phase recrystallized grain texture is formed, and a predetermined amount of fine ferrite magnet powder and a binder resin are mixed and mixed, and then primary molding is performed in a specific density range in a specific temperature range. The body then has a predetermined temperature range, magnetic field strength range,
It was obtained by secondary molding in the molding pressure range. According to this method, magnetic properties and heat resistance,
An anisotropic bonded magnet having excellent weather resistance and less variation in unit weight, that is, high dimensional accuracy can be stably manufactured.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均再結晶粒径が0.05μm〜50μ
mのR2Fe14B正方晶相からなる再結晶粒の集合組織
を有する異方性R−Fe−B系磁石粉末に、前記磁石粉
末との合計に対して、0.5〜50wt%のフェライト
磁石微粉末と1〜10wt%の熱硬化性樹脂を添加混合
後、樹脂軟化開始温度以下にて成形体の密度が3〜5.
7g/cm3になる如く1次成形した後、樹脂軟化開始
温度以上、硬化開始温度以下に加熱後、磁場中にて成形
圧2〜10ton/cm2の2次成形し、その後、硬化
処理することを特徴とする異方性ボンド磁石の製造方
法。
An average recrystallized grain size of 0.05 μm to 50 μm.
An anisotropic R-Fe-B based magnet powder having a recrystallized grain texture of the R 2 Fe 14 B tetragonal phase of m is added in an amount of 0.5 to 50 wt% based on the total amount of the magnet powder. After the ferrite magnet fine powder and the thermosetting resin of 1 to 10 wt% are added and mixed, the density of the molded product is 3 to 5 at a temperature not higher than the resin softening start temperature.
After primary molding to 7 g / cm 3 , it is heated above the resin softening start temperature and below the curing start temperature, then secondary molded at a molding pressure of 2 to 10 ton / cm 2 in a magnetic field, and then cured. A method for producing an anisotropic bonded magnet, characterized in that
【請求項2】 請求項1において、異方性R−Fe−B
系磁石粉末は、R10〜30at%(RはYを含む希土
類元素の1種又は2種以上)、B2〜28at%、Fe
65〜80at%を主成分とする鋳塊、あるいは溶体化
処理した鋳塊を750℃〜950℃に30分〜8時間、
2ガス雰囲気中に保持した後、引き続いて温度750
℃〜950℃に15分〜4時間、真空雰囲気中に保持し
た水素化処理にて得られた磁石粉末である異方性ボンド
磁石の製造方法。
2. The anisotropic R-Fe-B according to claim 1.
The system magnet powder contains R10 to 30 at% (R is one or more of rare earth elements including Y), B2 to 28 at%, Fe
Ingot containing 65 to 80 at% as a main component or ingot subjected to solution treatment at 750 ° C. to 950 ° C. for 30 minutes to 8 hours,
After being kept in an H 2 gas atmosphere, the temperature was subsequently raised to 750.
A method for producing an anisotropic bonded magnet, which is a magnet powder obtained by a hydrogenation treatment held in a vacuum atmosphere at a temperature of 950C to 950C for 15 minutes to 4 hours.
JP8358310A 1996-04-12 1996-12-27 Manufacture of anisotropic bond magnet Pending JPH09330842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8358310A JPH09330842A (en) 1996-04-12 1996-12-27 Manufacture of anisotropic bond magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-115804 1996-04-12
JP11580496 1996-04-12
JP8358310A JPH09330842A (en) 1996-04-12 1996-12-27 Manufacture of anisotropic bond magnet

Publications (1)

Publication Number Publication Date
JPH09330842A true JPH09330842A (en) 1997-12-22

Family

ID=26454239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8358310A Pending JPH09330842A (en) 1996-04-12 1996-12-27 Manufacture of anisotropic bond magnet

Country Status (1)

Country Link
JP (1) JPH09330842A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1523017A2 (en) 2003-10-10 2005-04-13 Aichi Steel Corporation A composite rare-earth anisotropic bonded magnet, composite rare-earth anisotropic bonded magnet compound, and methods for their production
WO2021200517A1 (en) * 2020-03-31 2021-10-07 愛知製鋼株式会社 Compressed bonded magnet, manufacturing method therefor, and field coil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1523017A2 (en) 2003-10-10 2005-04-13 Aichi Steel Corporation A composite rare-earth anisotropic bonded magnet, composite rare-earth anisotropic bonded magnet compound, and methods for their production
US7357880B2 (en) 2003-10-10 2008-04-15 Aichi Steel Corporation Composite rare-earth anisotropic bonded magnet, composite rare-earth anisotropic bonded magnet compound, and methods for their production
WO2021200517A1 (en) * 2020-03-31 2021-10-07 愛知製鋼株式会社 Compressed bonded magnet, manufacturing method therefor, and field coil

Similar Documents

Publication Publication Date Title
EP0302947B1 (en) Rare earth element-iron base permanent magnet and process for its production
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
EP3291249B1 (en) Manganese bismuth-based sintered magnet having improved thermal stability and preparation method therefor
JPH0531807B2 (en)
JP2002064010A (en) High-resistivity rare earth magnet and its manufacturing method
JPH0316761B2 (en)
JPH0696928A (en) Rare-earth sintered magnet and its manufacture
KR100204256B1 (en) Rare-earth-element-fe-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
JP2787580B2 (en) Nd-Fe-B based sintered magnet with excellent heat treatment
JP3118740B2 (en) Rare earth magnet materials and rare earth bonded magnets
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JP2007250605A (en) Method for manufacturing r-t-b-based rare-earth permanent magnet
JP3604853B2 (en) Manufacturing method of anisotropic bonded magnet
JPH09312230A (en) Manufacturing anisotropic bond magnet
JP3670424B2 (en) Method for manufacturing anisotropic bonded magnet
JP2017135268A (en) Hybrid magnet
JPH09330842A (en) Manufacture of anisotropic bond magnet
JP3652751B2 (en) Anisotropic bonded magnet
JPH0535210B2 (en)
JP3623564B2 (en) Anisotropic bonded magnet
JPH06112026A (en) Permanent magnet with excellent thermal stability and corrosion-resisting property and manufacture thereof
JP3652752B2 (en) Anisotropic bonded magnet
JP3703903B2 (en) Anisotropic bonded magnet
JP3623583B2 (en) Anisotropic bonded magnet
JPH0547533A (en) Sintered permanent magnet and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405