JPS58122914A - Distortable, heat-radiating material composition - Google Patents

Distortable, heat-radiating material composition

Info

Publication number
JPS58122914A
JPS58122914A JP57005732A JP573282A JPS58122914A JP S58122914 A JPS58122914 A JP S58122914A JP 57005732 A JP57005732 A JP 57005732A JP 573282 A JP573282 A JP 573282A JP S58122914 A JPS58122914 A JP S58122914A
Authority
JP
Japan
Prior art keywords
compound
heat
incyanate
thermally conductive
conductive filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57005732A
Other languages
Japanese (ja)
Other versions
JPS6314728B2 (en
Inventor
Kiyoshi Hani
羽仁 潔
Norimoto Moriwaki
森脇 紀元
Torahiko Ando
虎彦 安藤
Masao Fujii
雅雄 藤井
Kazunari Nakao
一成 中尾
Takahiko Watanabe
渡辺 隆比古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57005732A priority Critical patent/JPS58122914A/en
Publication of JPS58122914A publication Critical patent/JPS58122914A/en
Publication of JPS6314728B2 publication Critical patent/JPS6314728B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:A heat-radiating material excellent in mountability to heating units and low in contact resistance, prepared by adding a heat-conductive filler to a thermosetting resin prepared from a polyhydroxy compound, an isocyanate compound and a masked isocyanate compound. CONSTITUTION:50-1,500pts.wt. heat-conductive filler is added to 100pts.wt. thermosetting resin prepared from a polyhydroxy compound, MW 500-5,000, m.p. 40-130 deg.C, having hydroxyl groups on both molecular ends and, as a curing agent therefor, a combination of an isocyanate compound having at least 1.5 isocyanato groups in the molecule and an isocyanate compound masked with a phenol compound of the formula, wherein R is an 8-20C aliphatic hydrocarbon residue. As the heat-conductive filler used, a metal oxide is preferred and especially, where a heat-radiating material having a high thermal conductivity is desired, aluminum oxide powder, average particle size <=50mu, in conjuction with finely divided mica is preferred.

Description

【発明の詳細な説明】 この発ψJ t:J、熱伝梼fトの優れたHJ変形熱放
散伯組成物に関し、詳しくは、あらゆる形状?した発熱
機器、装置との装着性VC優れ、しかも接触熱抵抗か小
さく、かつ熱伝導性の漫れfc J変形熱放散杓組成物
に関するものである。
[Detailed Description of the Invention] Regarding this HJ deformed heat dissipation ratio composition with excellent heat transfer ratio, please refer to the following for more details. The present invention relates to a heat-dissipating ladle composition that has excellent fitability with heat-generating equipment and devices, has low contact thermal resistance, and is thermally conductive.

熱口■塑性樹j]ぽおよび熱イ史化性梢脂あるい仁J、
こnらの樹脂を有機溶剤に浴解避せた樹脂欣また1。
Hot Mouth ■Plastic Tree J] Po and Hot I Furigenic Tree Tree Ori Jin J,
Resin products made by bathing these resins in organic solvents are also available.

粘稠なシリコーングリースなどに熱伝導性の潰れたフィ
ラー全多址VC混合しfc熱伝祷性祠利かjIJ販され
ていることはよく知られている。これらの熱伝導性材料
は、各種の機械装置や電気・電子機器および部品などの
作動中に発生する過剰な熱全シャフトやフレームめるい
に熱放散のためのヒートシンクなどへ導くために使用さ
れている。
It is well known that a viscous silicone grease or the like is mixed with a thermally conductive crushed filler called VC and sold as a heat conductive grease. These thermally conductive materials are used to guide excess heat generated during the operation of various mechanical devices, electrical/electronic equipment, and parts to heat sinks for heat dissipation, such as shafts and frames. There is.

しかし、前記の市販熱伝導性材Pl−は、個々に大きな
欠点7有しており、fih々の発熱体への適用が小町n
ヒでめり、使J4J範囲が限定されているのが実+1で
ある。
However, each of the commercially available thermally conductive materials Pl- has individual major drawbacks, and its application to various heating elements is difficult.
Unfortunately, the range of use of J4J is limited, which is +1.

し1」えば、熱aJ塑性樹脂をマトリックスにした熱伝
導性飼料は、熱口Jt!!i性樹脂の融点以上の発熱蓋
會持つ機器や装置に用いた場合、熱伝導性材料が浴融し
流動するため、使用隠匿に限界がろる。また、耐薬品性
や耐溶剤性も劣る。さらに、熱可塑性樹脂に熱伝導性フ
づラーを混入させる場合、熱h]塑性樹脂の浴融粘匪が
高いため、熱伝導性フィラーの混入′kLに巾計となり
、熱伝導性の低いものしか得られないという欠点’に!
している。
For example, a thermally conductive feed containing thermal aJ plastic resin as a matrix is thermally conductive feed using thermal aJ plastic resin as a matrix. ! When used in equipment or equipment that has a heat-generating lid that exceeds the melting point of the i-type resin, the thermally conductive material melts in the bath and flows, so there is a limit to how well it can be concealed. It also has poor chemical resistance and solvent resistance. Furthermore, when a thermally conductive filler is mixed into a thermoplastic resin, since the bath melt viscosity of the plastic resin is high, the mixture of the thermally conductive filler 'kL' becomes a width, and the thermal conductivity is low. The downside is that you can only get it!
are doing.

一方、熱硬1ヒ性樹脂會用いた熱伝尋性材y#+は、篩
篩下で流動するような欠点がなく、また硬化前は液状樹
脂が多いため、熱伝導性フィラーも多針に混入できる。
On the other hand, the thermally conductive material y#+, which uses a thermosetting resin, does not have the disadvantage of flowing under the sieve, and since it contains a large amount of liquid resin before curing, the thermally conductive filler also has many needles. can be mixed in.

しかし、イ便イと後の硬度が尚い樹11ir(例えばエ
ポキン樹脂や不飽第11ポリエステル樹脂など)7用い
た場合には、柔軟性k ”IMする機器や部品への適用
に不可能である。さらに、熱伝導性材料との接触部が不
均一の場合には、接触熱抵抗?できるたけ小さくするた
め、熱硬化性の液状樹脂と熱伝導性フィラーの混合換金
注型または注入する方法もめるが、この場合には、混合
物が液状であることが条件となるため、熱伝導性フィラ
ーの混合量が少なくUt)、熱伝導性が低下するなどの
欠点がある。
However, when using materials with less hardness (e.g. Epoquine resin or unsaturated 11th polyester resin), it is impossible to apply them to equipment or parts that undergo IM due to their flexibility. Furthermore, if the contact area with the thermally conductive material is uneven, contact thermal resistance may be reduced as much as possible by using a method of casting or injecting a mixture of thermosetting liquid resin and thermally conductive filler. However, in this case, since the mixture must be in a liquid state, there are disadvantages such as the amount of the thermally conductive filler mixed is small (Ut) and the thermal conductivity is reduced.

また、シ1ト性全有する熱硬化性樹脂(例えばシリコー
ンゴム、加硫ゴムなど)と熱伝導性フィラーの混合物は
、未軟性に富み各種発熱体への装着も容易であるが、寸
法や形状が異なる突起物を持つ発熱体や面精度の粗い発
熱体、さらには発熱体表面に狭い隙間を持つ発熱体に装
着させる場合、弾性樹脂の反発弾性によって発熱体と密
着しない部分ができ、この結果、接触熱抵抗が増大し、
熱伝導性を著しく低下させる。
In addition, mixtures of thermosetting resins (e.g. silicone rubber, vulcanized rubber, etc.) and thermally conductive fillers that have full elastic properties are highly flexible and can be easily attached to various heating elements; When attaching to a heating element that has protrusions with different surfaces, a heating element with rough surface precision, or a heating element with narrow gaps on the surface of the heating element, the rebound resilience of the elastic resin may cause parts that do not come into close contact with the heating element. , the contact thermal resistance increases,
Significantly reduces thermal conductivity.

第1図のも図は、市販の熱伝導性ゴムシートを用いた応
用例であり、これら図中、1は熱伝導性ゴムシート、2
a、2b、2cは表向形状および寸法が互に異なる発熱
体、3は金属フレームなどの冷却部分會示す。第1図(
al)、(bl)、(cl)の状態から第1図(a2)
、(b2)、(c2)に示すように熱伝導性ゴム7−ト
1奮発熱体2a、2b、2cにN夾に密層させるfcめ
vCは、Pで示した圧力(締め句は力)が必要であり、
発熱体2a、2b。
The diagrams in Figure 1 are application examples using commercially available thermally conductive rubber sheets. In these figures, 1 is a thermally conductive rubber sheet, 2
Numerals a, 2b, and 2c are heating elements having different surface shapes and dimensions, and 3 is a cooling portion such as a metal frame. Figure 1 (
Figure 1 (a2) from the states of al), (bl), and (cl)
, (b2) and (c2), the thermally conductive rubber 7-to-1 and the heat-generating elements 2a, 2b, 2c are layered closely together with N. ) is required, and
Heating elements 2a, 2b.

2c表i(oの突起物の寸法差が大きくなるほど高い圧
力が必をとなる。
The larger the difference in size between the protrusions in Table 2c (i), the higher the pressure becomes necessary.

そして、突起物の寸法差がl■程度になると。Then, when the difference in size of the protrusions becomes about 1.

熱伝導性シートのマトリックスを破壊8せるt−1どの
圧力が必要となる。また1発熱体と常に密着した状態音
像つためには、圧力Pが均一に加わるように考慮しなけ
ればならない。
A pressure t-1 is required to destroy the matrix of the thermally conductive sheet. In addition, in order to maintain a sound image in close contact with one heating element, consideration must be given to applying pressure P uniformly.

第1図の各図に示す熱伝導性ゴムシートラ発熱体表面に
確実に密着させて熱伝導性を向上させるK r、1. 
、ゴムシートのマトリックスを破壊するような圧力で締
め付けるか、または密層しない部分に熱伝導性グリース
などの充填物全介在させるなどの方法があるが、いずれ
も好ましい方法とにいえない。例えば、外圧によって故
障が生じる精fM機器や装置あるいは電気・電子機器筐
たは部品などへの適用に避けなけれはならない。また、
グリースなどの充填物を用いた場合には1作業性の低下
や熱によるグリースの流動が大きな欠点となる。
Thermal conductive rubber sheet shown in each figure in FIG. 1 is Kr, which is brought into close contact with the surface of the heating element to improve thermal conductivity.1.
There are methods such as tightening the rubber sheet with such pressure that it destroys the matrix, or completely interposing a filler such as thermally conductive grease in the areas where the layer is not densely layered, but none of these methods can be said to be preferable. For example, it must be avoided in applications such as precision fM equipment or equipment, or electrical/electronic equipment casings or parts that may fail due to external pressure. Also,
When a filler such as grease is used, major drawbacks include reduced workability and flow of the grease due to heat.

また、前述した有機溶剤を用いたコーティング可能な熱
伝導性@料は、数十ミクロン程度の隙間や凸凹上コーテ
ィングによって平滑にすることができるが1wR程度以
上の隙間になると、細度もコーティングしなければなら
ない。さらに、有機溶剤を使用する場合には、作業環境
が問題となるため、装着しい方法とはいい難い。
In addition, the thermally conductive material that can be coated using an organic solvent as described above can be smoothed by coating on gaps of several tens of microns or unevenness, but if the gap is about 1wR or more, the fineness will also be coated. There must be. Furthermore, when using an organic solvent, the working environment becomes a problem, so it is difficult to say that it is a comfortable method to wear.

この発明の発明者らは、前述した各種の熱伝導性材料の
欠点を一掃し、あらゆる発熱体への装着が可能でめり、
しかも接触熱抵抗がきわめて小さい熱放散@料會得る目
的で、鋭意研究全血ねた結果、前記目的が十分に達成で
きる司変形熱放散拐組成物を得ることに成功した。
The inventors of this invention have eliminated the drawbacks of the various thermally conductive materials mentioned above, and have achieved a structure that can be attached to any heating element.
Moreover, with the aim of obtaining a heat dissipating material with extremely low contact thermal resistance, as a result of intensive research, we succeeded in obtaining a deformable heat dissipating composition that can fully achieve the above object.

すなわち、この発明に、融点が40〜130℃の範囲に
あって分子両末端に水酸基を有しかつ分子内が500〜
5000の範囲にあるポリヒドロキシ1ヒ合物、および
その硬1ヒ剤として分子内に1.5個以上のイソシアネ
ート基金有するインシアネート化合物と、]−配式(1
)で示される(ただし、式(1戸1]、Rは炭素数8〜
20個の脂肪族炭イし水素残基全表わす) フェノール化合物によってマスクされたインシアネート
化合物の両者全併用した熱硬化性樹脂100N針に対し
、熱伝導性フィラー50〜15001童部金添力II 
してlること全特徴とする司変形放散散材組成物を要旨
゛とするものである。
That is, in this invention, the melting point is in the range of 40 to 130°C, the hydroxyl group is at both ends of the molecule, and the molecular weight is 500 to 130°C.
5000, and an incyanate compound having 1.5 or more isocyanate groups in the molecule as a hardening agent thereof;
) (wherein the formula (1 house 1), R is 8 to 8 carbon atoms)
20 aliphatic carboxyhydrogen residues (representing all 20 aliphatic carboxyhydrogen residues) A thermosetting resin 100N needle using both incyanate compounds masked by a phenolic compound, thermally conductive filler 50 to 15001 Dobe Kanezo II
The gist of the present invention is to provide a deformable dispersion material composition having all the following characteristics.

この発明に月」いる熱硬イし性拘脂は、室温で弾性に冨
与、しかも、130℃以下の@度で加熱することによっ
て弾性率が極端に低くなるものである。
The thermoset resin used in this invention has high elasticity at room temperature, but its elastic modulus becomes extremely low when heated at temperatures below 130°C.

すなわち、第2図の線(A)に示すシリコ−ノコ9ムな
どの温度に対する弾性率変化に則し、この発明に剛いる
熱硬化性樹脂は第2図の曲線(B)のような特性音もつ
ものである。
That is, in accordance with the change in elastic modulus with respect to temperature of the silicone resin shown in line (A) in Figure 2, the thermosetting resin used in this invention has characteristics as shown in curve (B) in Figure 2. It also has sound.

したがって、この発明の熱硬化性樹脂は1発熱体なとへ
装着する場合に、加熱することによって非常に小さな圧
力で発熱体と密着し、かつ発熱体の表向がどのような形
状をしていても、Tべての而K m !″jる優れた性
質全イコしている。さらに、この発明の熱イ吠比性樹脂
に、変形させた状態で冷却すれは、変形した形状7保ち
、角度加熱すれは変形前の形状に戻るという優れた性質
を併せ持っている。
Therefore, when the thermosetting resin of the present invention is attached to a heating element, it will adhere to the heating element with a very small pressure when heated, and it will also be able to adhere to the heating element with very little pressure, and it will also be able to adhere to the heating element no matter what shape the surface of the heating element is. Even if it's all, K m! The thermostatic resin of the present invention maintains its deformed shape when cooled in a deformed state, and returns to its pre-deformed shape when heated at an angle. It has these excellent properties.

この発明に用いる熱硬fヒ性樹脂の置体的な例とシテは
、ポリヒドロキシブタジェン重合体の水素添加物全主剤
とし、その硬化剤として分子内に1.5個以上のインシ
アネート基を有する多管能インシア坏−ト1ヒ合物、お
よび前記類■)でボブれるフェノール化合1勿によって
マスクされたインシアネート化合物、さらに硬fじ触媒
で構成された熱硬11′。
A typical example of the thermosetting resin used in this invention is a hydrogenated polyhydroxybutadiene polymer as the main ingredient, and a curing agent containing 1.5 or more incyanate groups in the molecule. and a thermosetting compound 11' composed of a multi-functional incyanate compound having a phenol compound masked by a phenol compound 1, which is bobbed with the above-mentioned category 1), and a hardening catalyst.

性樹脂が好適する。このポリヒドロキシブタジェン重合
体の水素添加物としては、1分子当9水酸基を平均1.
5個以上有し、好ましくは1.7〜5.0個有するもの
である。このポリヒドロキシブタジェン重合体の水素添
加物としては、ブタツエンのホモポリマーまたはブタジ
ェンに対してスチレンやアクリロニトリル、メタクリル
酸、ビニルトルエン、酢酸ビニルなどのビニル系モノマ
ーが50重1%以下存在する共重合体を通常の方法で水
素泳方[1したものがある。
Polymer resins are preferred. The hydrogenated product of this polyhydroxybutadiene polymer contains 9 hydroxyl groups per molecule with an average of 1.
It has 5 or more, preferably 1.7 to 5.0. The hydrogenated product of this polyhydroxybutadiene polymer is a homopolymer of butatsuene or a copolymer in which vinyl monomers such as styrene, acrylonitrile, methacrylic acid, vinyltoluene, and vinyl acetate are present in an amount of 50% by weight or less and 1% by weight of butadiene. There is one in which merging is carried out in the usual way by hydrogen swimming [1].

硬化剤として用いる多官能インシアネート化合物として
は1分子内に1.5個以上のインシアネート基金有する
化合物であれはいずれも用いることができ1例えば、エ
チレンジイソシアネート、fロビレンヅイソシアネート
、テトラメチレンジインシアネート、ペンタメチレンジ
インシアネート。
As the polyfunctional incyanate compound used as a curing agent, any compound having 1.5 or more incyanate groups in one molecule can be used. For example, ethylene diisocyanate, f-robylene diisocyanate, tetramethylene diisocyanate. , pentamethylene diincyanate.

オクタメチレンジインシアネート、3−インシアネート
メチル−3、5、5−) I)メチルシクロヘキシルイ
ンシアネートs シクロヘキシレン1,4−ソイソシア
不−ト、2.4−)ルエンジイソシ74−ト、2 、6
− )ルエンジ1ソシアネート、キシリレン−1,4−
ジインシアネート、キシリレン−1,3−ジインシアネ
ート、 4 、4’−ヅフェニルメタンソインシア+−
)sm−フェニレンソイソシアネート、p−フェニレン
ヅインシアネート、ナフチレン−1,4−ジづンシアイ
・−ト。
Octamethylene diisocyanate, 3-incyanate methyl-3,5,5-) I) Methylcyclohexyl incyanate s Cyclohexylene 1,4-soisocyanate, 2.4-) Luene diisocyanate, 2,6
-) Luene di-1-socyanate, xylylene-1,4-
Diincyanate, xylylene-1,3-diincyanate, 4,4'-duphenylmethanesoincyanate+-
) sm-phenylene soocyanate, p-phenylene duincyanate, naphthylene-1,4-didencyanate.

p、p’、p“−トリフェニルメタントリインシアネー
ト、ソフェニルー4 、6 、4’−トリインシアネー
トなどの単独または2種以上の混合物を用いることがで
きる。
p, p', p"-triphenylmethane triincyanate, sophenylated 4,6,4'-triincyanate, and the like can be used alone or in a mixture of two or more thereof.

さらに、硬化剤として用いるフェノール化合物でマスク
されたインシアネート化合物に、前述したインシアネー
ト化合物のインシアネート基VC対し、下記式(1)の
フェノール化合物全当鍵反応させることによって得られ
る。
Further, it can be obtained by subjecting the incyanate compound masked with a phenol compound used as a curing agent to a phenol compound of the following formula (1) in an all-key reaction with respect to the incyanate group VC of the above-mentioned incyanate compound.

(ただし1式(1)中、Rは炭素数8〜20個の脂肪族
炭1ヒ水素残基會表わす) フェノール化合物としては1例えば4−オクチルフェノ
ール、4−ノニルフェノール、4−ドデシルフェノール
、カルダノールなどがあり、これらの1種’J fcに
2柚以上?混合して用いることができる。
(However, in formula (1), R represents an aliphatic carbon having 8 to 20 carbon atoms, an arsenic residue) Examples of phenolic compounds include 4-octylphenol, 4-nonylphenol, 4-dodecylphenol, cardanol, etc. Is there more than 2 yuzu in one of these 'J fc? They can be used in combination.

前日じyJ?リヒドロキシプタジェン重合体の水素添加
物とインシネート化合物およびフェノール化合物でマス
クされたインシアネート1ヒ合物の混合割合は、 (1モル)          (1モル)(0,2モ
ル) +(0,6モル)    (0,3モル) +(
0,7モル)の範囲が好ましい。この範囲を外れると、
硬化剤不足になって硬化物に粘着性全もったり、また硬
化剤過剰になって架橋密度が高くなったりして。
The day before? The mixing ratio of hydrogenated product of rehydroxyptadiene polymer and incyanate compound masked with insinate compound and phenol compound is (1 mol) (1 mol) (0.2 mol) + (0.6 mol) mole) (0,3 mole) +(
0.7 mol) is preferred. Outside this range,
If there is not enough curing agent, the cured product will become sticky, and if there is too much curing agent, the crosslinking density will become high.

この発+yJの目的である加熱時の弾性率変化が小さく
  な る 。
The purpose of this +yJ is to reduce the change in elastic modulus during heating.

また、インンアネート化合物とフェノール化合9勿でマ
スクきれたインンアネート化合9勿の混合割合は、前記
範囲が好適であV、インンアネート化合物がこの範囲?
外れて過剰に7Iると、硬化反応が早くなって作業性の
低下4招き、逆VCフェノール化合物でマスクされたイ
ンシアネート1に合物が過剰になると、硬化後に遊離し
たフェノール化合物が硬1に物表面にブリードする。
In addition, the mixing ratio of the inanate compound and the inanate compound 9, which is masked by the phenol compound 9, is preferably within the above range.
If 7I comes off and is used in excess, the curing reaction will be accelerated, resulting in a decrease in workability4.If there is an excess of the compound on incyanate 1, which has been masked with a reverse VC phenol compound, the phenol compound released after curing will cause hardness 1. Bleed onto surfaces.

前記熱硬化性樹脂の硬イb反応全促進させる触媒として
は、トリエチレンジアミン、ヅプテル錫ソラウリレート
、オクチル酸錫、aト酸銅、酢酸トリブチル錫などのウ
レタン1ヒ反尾、触媒全通蓋用いることができる。
As a catalyst for accelerating the entire hardening reaction of the thermosetting resin, a urethane such as triethylene diamine, tin taurylate, tin octylate, copper acetate, tributyltin acetate, etc., and a complete catalyst can be used. I can do it.

また、この発明に1月いる熱伝導性フィラーは熱伝導性
71ンーするために用いられるものであって。
Further, the thermally conductive filler used in this invention is used to increase the thermal conductivity of 71 mm.

粉末のベリリウム、アルミニウム、亜鉛、珪素。Powdered beryllium, aluminum, zinc, and silicon.

マグネシウム、チタンなどの金属酸イし物が好適である
。とくに、熱伝導性のi葡いHJ変形熱放散材組成物全
得るためには、平均粒径5()ミクロン以下の酸1こア
ルミニウム粉末と、微粉末の硬質マイカ葡併用すること
によジ、顕著な効果が得られる。
Metal oxides such as magnesium and titanium are suitable. In particular, in order to obtain a thermally conductive HJ deformed heat dissipating material composition, aluminum oxide powder with an average particle size of 5 microns or less and hard mica powder in combination are used. , a remarkable effect can be obtained.

この発明に使用する熱伝導性フィラーの添加量は、前記
熱硬化性樹脂100重針部に対し、50〜1500重址
都であるが、熱伝導性フィラーの種類および熱硬化性樹
脂の硬化前の粘度によって変えることができる。前記熱
伝導性フィラーの添7JII −tilt rrl、、
司変形放散散伺組成物VC望まれる熱伝導性によって決
定されるものでろ9.50ffit部以斗の場合、熱伝
導性が低過ぎるため放熱効果が小さい。また、150O
N針部以上になると、前記熱硬化性樹脂中に均一に分散
せず、硬化物も非常にもろいものとなるため、前記範囲
が限界となる。
The amount of the thermally conductive filler used in this invention is 50 to 1,500 needles per 100 needles of the thermosetting resin, depending on the type of the thermally conductive filler and the amount before curing of the thermosetting resin. It can be changed depending on the viscosity. Addition of the thermally conductive filler 7JII-tilt rrl,
This is determined by the desired thermal conductivity of the deformation dissipation composition VC.In the case of 9.50 ffit, the thermal conductivity is too low and the heat dissipation effect is small. Also, 150O
If the number of needles exceeds N, it will not be uniformly dispersed in the thermosetting resin and the cured product will become very brittle, so the above range becomes the limit.

この発明の実施例VLおいて、前記熱伝導性フィラーの
添加量は150〜800重量部の範囲が最も好址しい。
In Example VL of the present invention, the amount of the thermally conductive filler added is most preferably in the range of 150 to 800 parts by weight.

また、この発明のpJ変形熱放散材組成物には、硬化反
応ケ促進させるための触媒、着色のための顔料さらには
、補強材としてガラスクロス、ガラスマット、不絨布、
金縞板、カーボンクロス、カー yJピンマットなど全
使用することができる。
In addition, the pJ deformed heat dissipating material composition of the present invention includes a catalyst for accelerating the curing reaction, a pigment for coloring, and glass cloth, glass mat, nonwoven cloth, etc. as reinforcing materials.
Gold striped plates, carbon cloth, car yJ pin mats, etc. can all be used.

次に、この発明の用変形放散散材組成物の製造方法につ
いて説明する。先ず主剤であるポリヒドロキシグタヅエ
ン亜合体の水累添7Jllq9/J?r 80〜150
℃の温度で加熱し、液状の状態で熱伝導性71ンー、お
よび鳥色剤などの所定jiL奮加音訓。
Next, a method for manufacturing the deformed diffusion material composition of the present invention will be explained. First, the main ingredient, polyhydroxygutaduene submerged, is hydrogen-added to 7Jllq9/J? r 80-150
When heated at a temperature of 71°C, it has a thermal conductivity of 71°C in a liquid state, and a certain amount of coloring agent, etc.

熱伝4!l:フィラーか均一に分散するように、ニーグ
ーまたは真空加熱攪拌機で十分に混合する。2〜3時間
混合した後、n[定置のインシネートイし合物からなる
硬化剤ケカ11え、数分間混合し、ただちに室温まで冷
却する。冷却した混合物72本ロールまたは3本ロール
全通して熱伝導性フィン−全均−Vこ分散させる。前述
した方法によって狗たコアA’ウンド(il−離型紙や
グラスチックフ1ルムに挾み、所望の杉状に成形する。
Heat transfer 4! l: Thoroughly mix using a Ni-Goo or a vacuum heating stirrer to uniformly disperse the filler. After mixing for 2-3 hours, add a hardener consisting of a stationary insinate compound, mix for several minutes, and immediately cool to room temperature. The cooled mixture is passed through 72 rolls or 3 rolls to distribute the thermally conductive fins evenly throughout. The core A' wound formed by the method described above is placed between release paper or plastic film and formed into a desired cedar shape.

成形にはカレンダーロールや成形プレス金柑いるのが好
丑しい。成形温度は% 70〜150℃の範囲で行なう
。1だ、成形時に前述したガラスクロス、金鵬板などの
補強材ケ同時にザンドイツチすることができる。
It is best to use a calendar roll or molding press for molding. The molding temperature is in the range of 70 to 150°C. 1. During molding, reinforcing materials such as glass cloth and gold plate can be sanded together at the same time.

前述の方法によって得られたこの発明の”−oJ変形熱
放散拐組成物11は、第3図に示すように、50℃から
130℃以下の温度で加熱1−れば、弾性率が極端に小
さくなるため、非常に小さな圧力で自由に変形する性質
音長つ。したがって、この状態で発熱体12に灼して押
圧すれは、第3図(1))に示すような′61雑な形状
ケ持った発熱体12の表面全体に密着し、熱放散の効率
が極めて筒いものとなる。壕だ、この発明の可変形放散
14!l相組成物11μ、室温で発熱体12力・ら脱離
すれば、第3図(c)に示すように1発熱体12の形状
がそのまま転写塾れており1発熱体との密着性、装着性
が優れていることがわかる。さらに、この発明の可変形
放散散相組成物11は、再7JI熱すれば、第3図(d
)に示すように、もとの形状に戻るというオU点ヶ併せ
持っている。なお、第3図(a)ないしくd)中、13
は全域フレームなどの冷却部分である。
As shown in FIG. 3, the "-oJ deformed heat-dissipating composition 11 of the present invention obtained by the method described above has an extremely low elastic modulus when heated at a temperature of 50 to 130 degrees Celsius. Because it becomes small, it has the property of deforming freely with very small pressure.Therefore, in this state, when it is burned and pressed against the heating element 12, it has a rough shape as shown in Fig. 3 (1)). It adheres to the entire surface of the heating element 12 held, and the efficiency of heat dissipation is extremely high.The variable shape dissipation 14!L phase composition of this invention is 11μ, and the heating element 12 is heated at room temperature. Once removed, the shape of the first heating element 12 is transferred as is, as shown in FIG. When reheated for 7JI, the variable shape diffused phase composition 11 of FIG. 3 (d
), it has the combination of returning to its original shape. In addition, in Figure 3 (a) to d), 13
is a cooling part such as an area frame.

この発明ll′cよる0T変形熱放散相組成物は、各種
の機械装置や電気機器、電子機器などの冷却にきわめて
効果が高く、シかも装着性に優れ、高温下でも流動しな
いという利点があり、広範囲の発熱体への使用が可能で
ある。
The 0T deformed heat-dissipating phase composition according to the present invention is extremely effective in cooling various mechanical devices, electrical equipment, electronic equipment, etc., has excellent wearability, and has the advantage of not flowing even at high temperatures. , it can be used in a wide range of heating elements.

この発明をさらに具体的に説BAするため、参考例およ
び実施例について述べる。
In order to explain this invention more specifically, reference examples and examples will be described.

参考例1 ノニルフェノール440部(重量部、以下同じ)全1t
の四つ[二1フラスコに取り、窒累ガスを流通させなか
ら80’Cf:で加熱する。次いで、攪拌しなからフラ
スコに取す句けた滴−1漏斗によ#)2゜4′−トルエ
ンジインシアネート174部7.(30分間で滴下する
。滴下終了後、同温度で約1時間反応奮続け、その後1
反応容器から取り出す。この方法で、融点約50℃のノ
ニルフェノールでマスタされた2、4−)ルエンヅイン
ンアネ−1−6(J22全得た。
Reference example 1 440 parts of nonylphenol (parts by weight, same below) total 1 t
Place the mixture in a flask and heat at 80'Cf without flowing nitrogen gas. Then, without stirring, add 174 parts of 2°4'-toluene diincyanate to the flask via a funnel.7. (Dropped over 30 minutes. After dropping, the reaction continued for about 1 hour at the same temperature, and then 1 hour.
Remove from reaction vessel. In this way, 2,4-)ruenduyneane-1-6 (J22) mastered with nonylphenol having a melting point of about 50°C was obtained.

参考例2 分子量)fJ370のアルキルフェノール777部と4
,4′−ジフェニルメタンジインシアネート250部?
径考例1と同様の方法で反応させて。
Reference Example 2 Molecular weight) fJ370 alkylphenol 777 parts and 4
, 250 parts of 4'-diphenylmethane diincyanate?
React in the same manner as in Example 1.

融点h7U℃のアルキルフェノールでマスクされた4、
4′−ジフェニルメタンヅイソシアネート9752を得
た。
4, masked with alkylphenol with melting point h7U°C
4'-diphenylmethane diisocyanate 9752 was obtained.

実施例1 ポリヒドロキシブタジェン重合体の水素添加物(三菱化
成(株)製、ポリテールH,0)1価45)100部と
、癖考しIJ lで得たインシアネート化合物14.8
都と、オクチル酸錫0.1 !lSと、酸イしアルミニ
ウム356部奮加熱真空攪拌機の容器に取り、90℃で
約2時間混合金続ける。次いで、 4 、4’−ジフエ
ニルメタンヅイソシアネー) 2.Of kカロえ、同
条件で5分11jl攪拌?行ない、前記容器から取り出
した。得られた混合物を2本ロールで混練して酸化アル
ミニウム奮均−に分散させ、可変形熱放散コンパウンド
を得た。このコンパウンドを150 ℃で、100分間
ブレス形し、厚さ2閣の硬化ンート全得た。硬化シート
の熱伝導率は0.92KCat/m、640℃で、硬度
のai特性は後記第1表に示すとおジであり、80℃付
近で急激に変化することがわかった。また、硬1ヒシー
トを80℃に加熱し、表面形状が1閣幅で篩さ0.5 
mの凹凸全もつ発熱体に押し当てると四部、凸部のすべ
ての面に完全に密着した。さらに硬化シート全室@まで
冷却し1発熱体表面力・ら取シ外すと、硬1にシートに
発熱体の表向形状か転写されていた。
Example 1 100 parts of a hydrogenated polyhydroxybutadiene polymer (manufactured by Mitsubishi Kasei Corp., Polytail H, 0, monovalent 45) and 14.8 parts of an incyanate compound obtained by IJ I.
Miyako and tin octylate 0.1! Heat 1S and 356 parts of oxidized aluminum in a vacuum stirrer container and continue mixing at 90°C for about 2 hours. Then, 4,4'-diphenylmethane isocyanate) 2. Of karoe, stirred for 5 minutes and 11jl under the same conditions? and then removed from the container. The resulting mixture was kneaded with two rolls to evenly disperse the aluminum oxide to obtain a variable heat dissipation compound. This compound was press-molded at 150° C. for 100 minutes to obtain a cured mass of 2 mm thick. The thermal conductivity of the cured sheet was 0.92 K Cat/m at 640°C, and the ai characteristics of hardness were as shown in Table 1 below, and it was found that it changed rapidly around 80°C. In addition, hard 1hihi sheet was heated to 80℃ and the surface shape was 1 inch width and sieve size was 0.5.
When it was pressed against a heating element having all the concave and convex portions of m, it completely adhered to all four surfaces of the convex portions. Furthermore, when the hardened sheet was cooled down to the entire chamber and removed from the surface of the heating element 1, the surface shape of the heating element was transferred to the hardened sheet.

第1表 実施例2〜7 実施例1と同様の方法で後配第2表の組成からなる可変
形熱放散コンパウンド全調製し、これらのコンパウンド
1150℃の温度で成形ブレスにより淳さ2mに成形し
て硬化イードを作成した。
Table 1 Examples 2 to 7 Variable heat dissipation compounds having the compositions shown in Table 2 below were prepared in the same manner as in Example 1, and these compounds were molded into a 2 m thick piece using a molding press at a temperature of 1150°C. to create a cured eid.

硬1ヒシートは後記第3表に示す熱伝導性と′嘔気絶縁
性奮示した。、また、第3表の硬化シートはいずれも第
3図に示した工9な複雑な形状ケ持った発熱体に容易に
密着する可変形性全館した。
The hardwood sheet exhibited the thermal conductivity and heat insulation properties shown in Table 3 below. In addition, all of the cured sheets shown in Table 3 have deformable properties that allow them to easily adhere to heating elements having complex shapes as shown in FIG.

ただし、第2表中。However, in Table 2.

1)ポリヒドロギシグタヅエン(三菱化JJI4(a)
製) である。
1) Polyhydrogysigtaduene (Mitsubishi Chemical JJI4(a)
(manufactured by).

第3表 たたし、第3表中、 ■)昭和電工(株)製、熱伝導率測定器金円いて測定(
測矩温度45℃) 2)JISK6911 3)JIS 硬度計(Aタイf)全円いてflll定
In Table 3, ■) Measured using a thermal conductivity measuring instrument manufactured by Showa Denko Co., Ltd. (
Measurement rectangular temperature 45℃) 2) JISK6911 3) JIS hardness tester (A tie f) Full circle and full determination

【図面の簡単な説明】[Brief explanation of the drawing]

fjl’= I M (al )、(bl L (cl
 )は市販熱伝導性ゴムシート全互に異なった発熱体へ
装着する以前の断面図、第1図(a2) 、 (b2)
 、 (c2) tIl”J装着した後の第1図(al
)、(bl)、(cl)にそれぞれ相当する断面図、第
2図はこの発明の可変形放散散材組成物および市販熱伝
導性ゴムシートの弾性率−1M度依存曲線全示す図、第
3図(a)、Φ) 、 (e) 、 (d)にこの発明
による可変形放散散材組成物使用について説明するため
の互いに異なった状態の断面図でろる。 l・・・熱伝導性ゴムシート、2a、2b、2c・・・
発熱体、3・・・冷却部分、11・・・可変形放散散材
組成物、12・・・発熱体、13・・・冷却部分。 なお1図中同一符号は向−まfcは相当部分を示T。 代理人  葛 野 信 − 第1図 第2図 第3図 99−
fjl'= I M (al), (bl L (cl
) are cross-sectional views of commercially available thermally conductive rubber sheets before they are attached to different heating elements, Figures 1 (a2) and (b2)
, (c2) Figure 1 (al
), (bl), and (cl), respectively, and FIG. Figures 3(a), Φ), (e), and (d) are cross-sectional views of different states for explaining the use of the variable dispersion material composition according to the present invention. l...thermally conductive rubber sheet, 2a, 2b, 2c...
Heating element, 3... Cooling part, 11... Variable diffusion material composition, 12... Heating element, 13... Cooling part. Note that the same reference numerals in Figure 1 indicate the corresponding parts, and fc indicates the corresponding parts. Agent Shin Kuzuno - Figure 1 Figure 2 Figure 3 99-

Claims (1)

【特許請求の範囲】 (1)融点が40〜130℃の範囲にあって分子両末端
に水酸基を有しかつ分子量が500〜5000の範囲に
らるポリヒドロキシfヒ合物、およびその恢化剤として
分子内に1.5個以上のインシアネート基金有するイン
シア坏−ト化合物と、下記式(I)で示される (たたし、式(I)中、Rは炭素数8〜20個の脂肪族
炭イヒ水素残基?表わ丁) フェノール化合物によってマスクされたイン7アネー)
(ヒ合物の両者全併用した熱硬1し性樹脂1001に部
に対し、熱伝導性フィラー50〜1500重置部全添刀
口してなることを特徴とする可変形放散散材組成物。 (2ノポリヒドロキシ化合物がポリヒドロキシブタツエ
ン重合体の水氷添加物である特許請求の範囲第1項記載
のiiJ変形変形熱放散4成求の範囲第】狽丑だね第2
項記載のpJ変形熱放散伺組成物。 (4)熱伝導性フィシ−が平均粒径5()ミクロン以斗
の醸化アルミナ″!)たrj: l’ff 1にマグネ
シウム粉末ど硬質マイカ微粉末の混合物でめる特11’
#!¥求の範囲第1項または第2項aピ載め用変形放散
散材わ1成物。
[Scope of Claims] (1) A polyhydroxy F compound having a melting point in the range of 40 to 130°C, having hydroxyl groups at both ends of the molecule, and a molecular weight in the range of 500 to 5,000, and its aggregation. An incyanate compound having 1.5 or more incyanate groups in the molecule as an agent is used as an incyanate compound represented by the following formula (I) (wherein R is a carbon number of 8 to 20 carbon atoms). Aliphatic carboxyhydrogen residues (Table 7) Masked by phenolic compounds)
(A variable-shape dissipating material composition characterized in that 50 to 1,500 parts of a thermally conductive filler are superimposed on 1,001 parts of a thermosetting resin in which both of the composites are used in combination. (iiJ deformation heat dissipation according to claim 1, wherein the polyhydroxy compound is a water ice additive of polyhydroxybutatsuene polymer)
The pJ deformed heat dissipation composition described in Section 1. (4) Thermal conductivity is made of fermented alumina with an average particle size of 5 microns (!) and a mixture of magnesium powder and hard mica fine powder.
#! Item 1 or Item 2 (a) Deformed dispersion material for mounting on a pillar 1.
JP57005732A 1982-01-18 1982-01-18 Distortable, heat-radiating material composition Granted JPS58122914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57005732A JPS58122914A (en) 1982-01-18 1982-01-18 Distortable, heat-radiating material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57005732A JPS58122914A (en) 1982-01-18 1982-01-18 Distortable, heat-radiating material composition

Publications (2)

Publication Number Publication Date
JPS58122914A true JPS58122914A (en) 1983-07-21
JPS6314728B2 JPS6314728B2 (en) 1988-04-01

Family

ID=11619276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57005732A Granted JPS58122914A (en) 1982-01-18 1982-01-18 Distortable, heat-radiating material composition

Country Status (1)

Country Link
JP (1) JPS58122914A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105843A (en) * 1991-10-15 1993-04-27 Aisin Chem Co Ltd Coating composition for forming thick film
WO2008044523A1 (en) * 2006-10-13 2008-04-17 Idemitsu Kosan Co., Ltd. Low-hardness thermally conductive resin composition and sheet-form radiating member made therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105843A (en) * 1991-10-15 1993-04-27 Aisin Chem Co Ltd Coating composition for forming thick film
WO2008044523A1 (en) * 2006-10-13 2008-04-17 Idemitsu Kosan Co., Ltd. Low-hardness thermally conductive resin composition and sheet-form radiating member made therefrom

Also Published As

Publication number Publication date
JPS6314728B2 (en) 1988-04-01

Similar Documents

Publication Publication Date Title
CN102372925B (en) Heat conduction insulating material, heat conduction insulating strip and preparation method thereof
KR101523144B1 (en) Epoxy composites with improved heat dissipation, and their applications for thermal conductive and dissipative products
JP2005538210A (en) Thermal interface material
JPS62141083A (en) Thermosetting adhesive film
KR102540533B1 (en) light-weight polymer composition with excellent thermal conductivity and manufacturing method of the same and product using the same
KR20150140125A (en) Aluminum powder and graphite composite including a thermally conductive resin composition and dissipative products
TW202041580A (en) Heat conduction sheet, equip method of thereof and manufacture method of electronic component
KR101703558B1 (en) Alumina and graphite composite including a thermally conductive resin composition and dissipative products
KR101801728B1 (en) Liquid silicone addition type adhesive composition
JPS58122914A (en) Distortable, heat-radiating material composition
JPS58219218A (en) Thermosetting epoxy resin composition
JP4474607B2 (en) Composition for thermally conductive resin molded body and molded body obtained therefrom
KR101749459B1 (en) Aluminum powder and graphite composite including a thermally conductive resin composition and dissipative products
JP4493929B2 (en) Adhesive film for coating electronic components
JPS6314726B2 (en)
JP2003026827A (en) Heat-conductive sheet, method for producing heat- conductive sheet and heat-radiating structure using the same
JPS58122913A (en) Deformable heat-radiating material composition
JP4405741B2 (en) Masterbatch type curing agent and one-part epoxy resin composition
JPS58122912A (en) Distortable, heat-radiating material composition
JP4280200B2 (en) Resin composition for heat dissipation material
TW201940657A (en) Thermally conductive thin-film cured product, method for producing same, and thermally conductive member
JPH0493343A (en) Powdered resin composition
CN111247207B (en) Thermally conductive resin composition, cured product, and heat dissipation method
JP6909281B2 (en) Thermosetting resin composition
JPS5840703A (en) Thermal conductive insulating sheet