JPS58120590A - Production of single crystal film - Google Patents

Production of single crystal film

Info

Publication number
JPS58120590A
JPS58120590A JP390482A JP390482A JPS58120590A JP S58120590 A JPS58120590 A JP S58120590A JP 390482 A JP390482 A JP 390482A JP 390482 A JP390482 A JP 390482A JP S58120590 A JPS58120590 A JP S58120590A
Authority
JP
Japan
Prior art keywords
film
crystal
amorphous
temperature
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP390482A
Other languages
Japanese (ja)
Other versions
JPS6050757B2 (en
Inventor
Yoshihiro Matsuo
嘉浩 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP390482A priority Critical patent/JPS6050757B2/en
Publication of JPS58120590A publication Critical patent/JPS58120590A/en
Publication of JPS6050757B2 publication Critical patent/JPS6050757B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/023Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing from solids with amorphous structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To produce easily single crystal films of many inorg. materials by ion- implanting the materials for accelerating formation of crystal nuclei in one specific area of a filmy amorphous substance and heating the same by increasing temp. in two stages. CONSTITUTION:An amorphous film of about 0.01-100mum film thickness consisting of an inorg. material is formed by a vapor deposition method by sputtering or an ultra-quick cooling method for melts. Thereafter, a material for accelerating the formation of crystal nuclei consisting of other elements than the constituting elements of the above-mentioned amorphous film substance is ion- implanted into a specific area of about 10-100Angstrom in roughly the central position of the amorphous film. The film is heat-treated up to the temp. lower preferably by about >=50 deg.C than the temp. at which the crystal nuclei of the above- mentioned pure amorphous film substance are formed, whereby a single crystal nucleus is generated in the ion-implanted specific area. The film is then heated quickly to heat the amorphous film substance at the temp. at which the crystal of said substance grows and to grow the crystals in all directions around said crystal nucleus, whereby the single crystal film is obtained.

Description

【発明の詳細な説明】 本発明は単結晶膜の製造方法に関するものである。[Detailed description of the invention] The present invention relates to a method for manufacturing a single crystal film.

この方法のもっとも特徴とするところは、膜非昂質体を
結晶化させるための加熱処理に先立って、あらかじめ膜
非晶質体試料の一つの特定領域に結晶核形成を促進する
物質をイオン注入しておくことにある。本発明の方法を
適用できる物質は、有機物質以外の無機物質(イオン性
結晶、共有結合性結晶)、半金属、金属などのすべての
結晶性固体物質を含むものである。また、本発明の方法
を適用できる膜の厚みの範囲はほぼ0.01μmに10
0μmである。
The most distinctive feature of this method is that, prior to the heat treatment to crystallize the amorphous membrane sample, ions are implanted into a specific area of the amorphous membrane sample to promote crystal nucleation. It's something to keep in mind. Substances to which the method of the present invention can be applied include all crystalline solid substances such as inorganic substances (ionic crystals, covalent crystals), semimetals, and metals other than organic substances. Moreover, the range of film thickness to which the method of the present invention can be applied is approximately 10 to 0.01 μm.
It is 0 μm.

単結晶膜の製造には、従来、たとえば基板とのエピタキ
シアル成長などの方法が一般的に実施されてきたが、こ
の方法では得られる膜が多結晶化しやすく、基板の選択
、熱処理条件の制御などによりかなり制限されている。
Conventionally, methods such as epitaxial growth with a substrate have been generally used to manufacture single-crystal films, but with this method, the resulting film tends to become polycrystalline, and it is difficult to select the substrate and control the heat treatment conditions. etc. are quite limited.

本発明の単結晶膜の製造方法は多くの無機物質に適用す
ることができ、しかも容易な製造方法である点に特徴が
ある。
The method for manufacturing a single crystal film of the present invention is characterized in that it can be applied to many inorganic substances and is an easy manufacturing method.

イオン注入技術は半導体中の不純物濃度の制−を主目的
として開発された技術であり、その後、光学ガラスへの
適用による光導波路の製作、磁気バブルドメインの磁化
容易軸方向の制御、金属材料の表面処理への応用などが
試みられた。本発明はイオン注入技術を単結晶膜製造に
おける結晶核形成の促進に応用しようとするものである
Ion implantation technology was developed with the main purpose of controlling the impurity concentration in semiconductors, and has since been applied to optical glasses to create optical waveguides, control the axis of easy magnetization of magnetic bubble domains, and improve metallic materials. Attempts were made to apply it to surface treatment. The present invention seeks to apply ion implantation technology to the promotion of crystal nucleation in the production of single crystal films.

本発明による単結晶膜の製造プロセスは大別して次の三
つのプロセスからなる。
The manufacturing process of the single crystal film according to the present invention can be roughly divided into the following three processes.

(1)非晶質膜の作製。(1) Preparation of amorphous film.

(2)結晶核形成物質のイオン注入。(2) Ion implantation of a crystal nucleating substance.

(3)結晶化のための加熱処理。(3) Heat treatment for crystallization.

まず、プロセス(1)の非晶質膜の作製については、従
来から知られている方法を適用することができる。たと
えばスパッタリング蒸着、真空蒸着、化学蒸着(CVD
)などの気相からの合成法、あるいは溶融体の超急冷法
などの液相からの合成法などである。
First, for manufacturing an amorphous film in process (1), conventionally known methods can be applied. For example, sputtering deposition, vacuum deposition, chemical vapor deposition (CVD)
), or from the liquid phase, such as ultra-quenching of a melt.

次のプロセス(2)は、これらの従来法によって作成さ
れた膜厚10oム〜1ooμmの非晶質膜のほぼ中央の
位置に結晶核形成促進物質をイオン注入するプロセスで
ある。ここで、イオン注入には従来から半導体の不純物
制御などに用いられてきたイオン注入法を適用すること
ができる。本発明一 の方法の特徴一つは注入すべきイオンが膜非晶質体の結
晶化において結晶核形成を促進する物質イオンであるこ
とにある。すなわち、加熱処理により純粋な非晶質膜そ
のものが結晶核形成をする温度(TN)に比べて、結晶
核形成を促進する物質を注入した領域の非晶質体が加熱
処理により結晶核形成をする温度(’I’ N’)が十
分種低いことである。
The next process (2) is a process in which a crystal nucleation promoting substance is ion-implanted into a substantially central position of the amorphous film having a thickness of 10 um to 1 oo um created by these conventional methods. Here, for the ion implantation, an ion implantation method that has been conventionally used for controlling impurities in semiconductors can be applied. One of the features of the first method of the present invention is that the ions to be implanted are substance ions that promote crystal nucleation during crystallization of the amorphous film. In other words, compared to the temperature (TN) at which a pure amorphous film itself forms crystal nuclei by heat treatment, the temperature at which the amorphous material in the region injected with the substance that promotes crystal nucleus formation does not form crystal nuclei by heat treatment. The temperature ('I'N') at which this happens is sufficiently low.

実用的にはTN’はT)Iよりも60°C程度、あΣい
はそれ以上の温度差だけ低いことが望ましい。次に、結
晶核形成を促進させるべき領域、すなわち、イオン注入
すべき特定領域の大きさは、基本的には生成した結晶核
が安全に存在しうる最低の大きさく物質によって異なる
が、通常数10人の径といわれている)10ム以上であ
ればよい。−また、イオン注入すべき領域の大きさが1
00OAを越えると、その値域内で多数個の結晶核発生
の確率が高くなって結晶成長が複雑になり、また多結晶
化のおそれもあるので、好ましくない。通常、数100
ム以内の大きさであればその領域内に発生する結晶核の
数は単数あるいは複数個であり、膜のほぼ中央位置の唯
一の結晶核から結成長があらゆる方向に均一に進行し、
最終的に単結晶あるいはバイ−クリスタル(bi−cr
yStal)の膜を得ることかできる。
Practically, it is desirable that TN' is lower than T)I by a temperature difference of about 60°C, or even more. Next, the size of the region where crystal nucleation should be promoted, that is, the specific region where ions should be implanted, is basically the minimum size in which the generated crystal nuclei can safely exist. It is sufficient if the diameter is 10 mm or more. -Also, the size of the region to be ion-implanted is 1
If it exceeds 00OA, the probability of generating a large number of crystal nuclei within that range increases, making crystal growth complicated, and there is also a risk of polycrystallization, which is not preferable. Usually several hundred
If the size of the film is within the range of 1.5 mm, the number of crystal nuclei generated within that region is single or multiple, and growth proceeds uniformly in all directions from the only crystal nucleus located approximately at the center of the film.
Finally, single crystal or bi-crystal (bi-cr)
yStal) membrane can be obtained.

次に、プロセス(3)の結晶化のための加熱処理である
が、この加熱処理のスケジュールについても本発明の他
の特徴がある。純粋な非晶質膜の結晶核生成温度をTI
、その非晶質膜の結晶成長温度をTc、イオン注入した
特定領域での結晶核生成速度が最大となる温度をTN’
とすると、本発明の加熱処理は、図中に示すように、ま
ずTIよりも十分に低い温度で第1加熱処理(A)を行
ない、しかる後Tcの温度まで急速昇温し、七のTcの
温度に保持し、第2加熱処理(B)を行なう。ここで第
1加熱処理の温度(T)lよりも十分に低い温度)はT
N’であることが望ましく、これらの温度の差(T N
’−、T )I’ )差が50′C以上あることが望ま
しい。
Next, process (3) is a heat treatment for crystallization, and the schedule of this heat treatment also has other features of the present invention. TI is the crystal nucleation temperature of a pure amorphous film.
, Tc is the crystal growth temperature of the amorphous film, and TN' is the temperature at which the crystal nucleation rate in the specific region into which ions are implanted is maximum.
As shown in the figure, in the heat treatment of the present invention, the first heat treatment (A) is first performed at a temperature sufficiently lower than TI, and then the temperature is rapidly raised to a temperature of Tc of 7. The second heat treatment (B) is performed while maintaining the temperature at . Here, the temperature (T) of the first heat treatment (temperature sufficiently lower than l) is T
N' is desirable, and the difference between these temperatures (T N
It is desirable that the difference is 50'C or more.

第1加熱処理(ム)の目的は膜中央部に設定されたイオ
ン注入した特定領域ただ一ケ所においてのみ結晶核を生
成させることにある。第1加熱処理後、その処理温度(
たとえばTN′)からTcまで急速昇温を行なう。これ
は特定領域外の非晶質膜中に結、晶核が発生することを
防止するためである。このだめに、温度τN近傍を急速
に通過させる必要がある。第2加熱処理(B)の14的
は、第1加熱処理(A)で生じた特定領域の結晶核を中
心にあらゆる方向に均一に結晶成長させることにある。
The purpose of the first heat treatment (m) is to generate crystal nuclei only in a specific ion-implanted region set in the center of the film. After the first heat treatment, the treatment temperature (
For example, the temperature is rapidly raised from TN') to Tc. This is to prevent crystallization and crystal nuclei from occurring in the amorphous film outside the specific region. To avoid this, it is necessary to rapidly pass through the vicinity of the temperature τN. The fourteenth purpose of the second heat treatment (B) is to uniformly grow crystals in all directions centering on the crystal nuclei in the specific region generated in the first heat treatment (A).

膜全体を完全に結晶化させるのに必要な加熱処理の時間
は、物質によって定まる結晶成長速度および膜全体の大
きさとによって決定される。この完全結晶化に必要な時
間内で加熱処理を中止すれば、周辺部が非晶質体、内部
が結晶体である結晶質・非晶質混合体の膜を得ることも
可能である。
The heat treatment time required to completely crystallize the entire film is determined by the crystal growth rate determined by the material and the overall size of the film. If the heat treatment is stopped within the time required for complete crystallization, it is possible to obtain a film of a crystalline/amorphous mixture in which the peripheral portion is amorphous and the interior is crystalline.

、金属材料(共有結合結晶)の例として半導体Siを、
また酸化物材料(イオン結合性の強い結晶)の例として
強誘電体BtTiO5をそれぞれとりあげて実験を行な
った。
, semiconductor Si is an example of a metal material (covalently bonded crystal),
Furthermore, experiments were conducted using ferroelectric BtTiO5 as an example of an oxide material (crystal with strong ionic bonding properties).

実施例1 Co9o係−Zrlo%合金を溶融、超急冷して得た膜
厚12μmの非晶質膜を作製した。この膜非晶質体の結
晶核生成温度(Tg)は470’Cであり、結晶成長温
度(Tc)は650’Cである。この非晶質膜を高融点
ガラス基板に固定し、1朋×I NMの大きさに切り出
し、その膜表面を半導体IC製造で常用されているマス
ク法でマスクし、電子ビームエツチングにより直径1o
oムの穴を膜表面のほぼ中央の位置に一ケ所形成した。
Example 1 An amorphous film having a thickness of 12 μm was prepared by melting and ultra-quenching a Co9o-Zrlo% alloy. The crystal nucleation temperature (Tg) of this amorphous film is 470'C, and the crystal growth temperature (Tc) is 650'C. This amorphous film was fixed on a high melting point glass substrate, cut into a size of 1 mm x I NM, the surface of the film was masked using a mask method commonly used in semiconductor IC manufacturing, and etched with a diameter of 1 mm by electron beam etching.
A hole of 1.0 mm was formed at one location approximately at the center of the membrane surface.

しがる後、Cuイオンを高電圧加速し、イオン注入を行
なった。イオン注入量は1o191LtOm/。。であ
った。深さ方向のOuイオン濃度分布の最大となる深さ
は膜表面より2μmの所であった。また、Cuイオンを
注入した特定領域の結晶核生成温度(TN’)は、Go
 90% −Zr 10%の非晶質体そのものの結晶核
生成温度(TN)である470°Cに比べて、約100
℃低い360℃であった。なお、Co系金属非晶質体に
対する結晶核形成物質としてはCu以外にAu、ムgな
どが有効であった。
After this, Cu ions were accelerated at a high voltage and ion implantation was performed. The ion implantation amount was 1o191LtOm/. . Met. The maximum depth of the O ion concentration distribution in the depth direction was 2 μm from the membrane surface. In addition, the crystal nucleation temperature (TN') of the specific region into which Cu ions are implanted is Go
90% - Compared to the crystal nucleation temperature (TN) of the 10% Zr amorphous material itself, which is 470°C, it is approximately 100°C.
The temperature was 360°C, which is as low as 360°C. In addition to Cu, Au, mug, and the like were effective as crystal nucleating substances for the Co-based metal amorphous material.

Cu原子注入後の非晶質膜をまず360’Cの温度で2
時間加熱処理し、360’Cから650’Cまで加速加
熱昇温し、660’Cの温度で72時間加熱処理し、室
温まで冷却した。得られ次膜表面、および研摩により膜
内部をそれぞれ観察した結果、単結晶膜であった。
After implanting Cu atoms, the amorphous film was first heated at a temperature of 360'C for 2
The sample was heat-treated for an hour, then accelerated heating to raise the temperature from 360'C to 650'C, heat-treated at 660'C for 72 hours, and cooled to room temperature. Observation of the surface of the resulting film and the inside of the film after polishing revealed that it was a single crystal film.

実施例2 市販の非晶質シリコン膜(膜厚1o/7m)から1NM
×1MMの大きさの素片を切り出し、膜非晶質体の試料
とした。このSi非晶質体のアニールによる結晶植成温
度(TN)は約6oO°Cであり、その結晶成長温度(
Tc)は約800 ’Cであった。この膜非晶質体試料
に実施例1恒同様マスクし、電子線レジスト法により直
径1ooXの穴を膜面はぼ中央位置にただ1ケだけあけ
、イオン注入すべき特定領域とした。この試料にBイオ
ンを注入した。注入量は1−0162Lto!Il/。
Example 2 1NM from a commercially available amorphous silicon film (thickness 1o/7m)
A piece with a size of ×1 MM was cut out and used as a sample of the membrane amorphous body. The crystal implantation temperature (TN) by annealing of this Si amorphous material is approximately 6oO°C, and the crystal growth temperature (TN) is approximately 6oO°C.
Tc) was approximately 800'C. This film amorphous sample was masked in the same manner as in Example 1, and only one hole with a diameter of 10X was made at the center of the film surface using an electron beam resist method to define a specific region for ion implantation. B ions were implanted into this sample. The injection amount is 1-0162Lto! Il/.

。であり、深さ方向の最大濃度を示す位置は表面より2
μmの所であった。この深さ方向の注入距離についての
制約は特になく、必要に応じて10μm以上の深さまで
イオンを注入してもよい。このBイオンを注入した特定
領域のアニールによる結晶核生成温度はきわめて低く、
50”Cである。なお、Bの他に結晶核形成に有効な物
質としてはP(約160”C)。
. , and the position showing the maximum concentration in the depth direction is 2 points from the surface.
It was in the μm range. There are no particular restrictions on the implantation distance in the depth direction, and ions may be implanted to a depth of 10 μm or more if necessary. The crystal nucleation temperature due to annealing in the specific region into which B ions are implanted is extremely low.
50"C. In addition to B, P (approximately 160"C) is an effective substance for crystal nucleation.

AS (330°C)などがある。B原子注入後の非晶
質Siをまず50’Cで10時間加熱処理し、しかる後
126°C/秒の昇温速度でs o O’Cまで急速加
熱し、800 ’Cの温度で96時間加熱処理した。得
られた膜試料の表面および内部を電子顕微鏡観察した結
果、単結晶膜であることが確認された。
AS (330°C), etc. Amorphous Si after implantation of B atoms was first heat treated at 50'C for 10 hours, then rapidly heated at a heating rate of 126°C/sec to 96°C at a temperature of 800'C. Heat treated for hours. As a result of electron microscopic observation of the surface and interior of the obtained film sample, it was confirmed that it was a single crystal film.

実施例3 集積回路用アルミナ基板上にBaTiOs を室温でス
パッタ蒸着し、膜厚0.8μmのBaTi03非晶質膜
を作製した。この非晶質体のアニールによる結晶核生成
温度(T)I)は約660°Cであり、その結晶成長温
度(Tc)は約860°Cであった。この非晶質膜から
0.6MM×0.6MMの大きさの試料を切り出し、そ
の表面を実施例1と同様マスクし、電子線レジスト法に
より直径50Aの穴を膜表面のほぼ中央位置に一つ設け
て、イオン注入すべき特定領域とした。
Example 3 BaTiOs was sputter-deposited on an alumina substrate for an integrated circuit at room temperature to produce a BaTi03 amorphous film with a thickness of 0.8 μm. The crystal nucleation temperature (T)I) due to annealing of this amorphous material was about 660°C, and the crystal growth temperature (Tc) was about 860°C. A sample with a size of 0.6 MM x 0.6 MM was cut out from this amorphous film, its surface was masked in the same manner as in Example 1, and a hole with a diameter of 50 A was aligned approximately at the center of the film surface using the electron beam resist method. A specific area for ion implantation was provided.

このようにして得た試料にムSイオンを注入した。注入
量は” ”atom/cc であり、深さ方向の最大濃
度を示す位置は表面より0.36 p mの所であった
。ムSイオ/を注入した特定領域のアニールによる結晶
核生成温度は470°C<あった。
MuS ions were implanted into the sample thus obtained. The implantation amount was ``atom/cc'', and the position showing the maximum concentration in the depth direction was 0.36 pm from the surface. The crystal nucleation temperature due to annealing in a specific region into which muS ion was implanted was <470°C.

ムS注人後の非晶質BaTi05をまず470°Cで3
時間加熱保持し、その温度から昇温速度66°(:7秒
で850’Cまで急速加熱し、850’Cの温度で60
時間加熱保持した後、室温まで冷却し〆。
After injection, the amorphous BaTi05 was first heated at 470°C for 3 hours.
Heating and holding for an hour, then rapidly heating up to 850'C in 7 seconds from that temperature at a heating rate of 66° (66°) at a temperature of 850'C.
After heating and holding for a while, cool to room temperature.

?8−られた膜試料の表1niおよび内部を電子顕微鏡
観察した結果、この膜試料はBaTiOs の単結晶膜
であった。
? As a result of electron microscopy observation of Table 1 and the inside of the film sample, the film sample was found to be a BaTiOs single crystal film.

以上のように、本発明の方法によれば、膜非晶質体中の
あらかじめ定められた一つの特定領域に、この膜非晶質
の構成元素とは異なる結晶核形成促進物質をイオン注入
した後、膜非晶質体の結晶核生成温度よりも低い温度で
第1の加熱処理をして、上記特定領域のみに結晶核を形
成させ、さらに膜非晶質体の結晶成長温度で第2の加熱
処理をして、上記結晶核を中心に結晶成長させているの
で、容易に単結晶の膜を形成することができる。
As described above, according to the method of the present invention, a crystal nucleation promoting substance different from the constituent elements of the amorphous film is ion-implanted into one specific region determined in advance in the amorphous film. After that, a first heat treatment is performed at a temperature lower than the crystal nucleation temperature of the amorphous film to form crystal nuclei only in the specific region, and a second heat treatment is performed at a crystal growth temperature of the amorphous film. Since the heat treatment is performed to grow crystals centering on the crystal nuclei, a single crystal film can be easily formed.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の方法を実施する際の加熱処理スケジュール
の一例を示すものである。 代理人の氏名 弁理士 中 尾 敏 男 はが1名7i
lff
The figure shows an example of a heat treatment schedule when carrying out the method of the present invention. Name of agent: Patent attorney Toshio Nakao
lff

Claims (1)

【特許請求の範囲】[Claims] 膜非晶質体の中のあらかじめ定められた一つの特定領域
に、上記膜非晶質体の構成元素以外からなる結晶核形成
促進物質をイオン注入した後、上記膜非晶質体の結晶核
生成温度よシも低い温度で第1の加熱処理をすることに
より、まず上記特定領域のみに結晶核を形成させ、しか
る後に上記膜非晶質体の結晶成長温度で第2の加熱処理
をして、上記結晶核を中心に結晶成長させることを特徴
とする単結晶膜の製造方法。
After ion-implanting a crystal nucleation promoting substance made of elements other than the constituent elements of the membrane amorphous body into a predetermined specific region in the membrane amorphous body, crystal nuclei of the membrane amorphous body are ion-implanted. By performing a first heat treatment at a temperature lower than the formation temperature, crystal nuclei are first formed only in the specific region, and then a second heat treatment is performed at a crystal growth temperature of the film amorphous body. A method for producing a single crystal film, characterized in that crystal growth is performed centering on the crystal nucleus.
JP390482A 1982-01-12 1982-01-12 Method for manufacturing single crystal film Expired JPS6050757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP390482A JPS6050757B2 (en) 1982-01-12 1982-01-12 Method for manufacturing single crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP390482A JPS6050757B2 (en) 1982-01-12 1982-01-12 Method for manufacturing single crystal film

Publications (2)

Publication Number Publication Date
JPS58120590A true JPS58120590A (en) 1983-07-18
JPS6050757B2 JPS6050757B2 (en) 1985-11-09

Family

ID=11570175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP390482A Expired JPS6050757B2 (en) 1982-01-12 1982-01-12 Method for manufacturing single crystal film

Country Status (1)

Country Link
JP (1) JPS6050757B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120014A (en) * 1985-11-20 1987-06-01 Nec Corp Manufacture of substrate for semiconductor device
JPS63185016A (en) * 1987-01-27 1988-07-30 Sony Corp Forming method for semiconductor thin film
JPH0489030U (en) * 1990-12-12 1992-08-03
US5733369A (en) * 1986-03-28 1998-03-31 Canon Kabushiki Kaisha Method for forming crystal
US5846320A (en) * 1986-03-31 1998-12-08 Canon Kabushiki Kaisha Method for forming crystal and crystal article obtained by said method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120014A (en) * 1985-11-20 1987-06-01 Nec Corp Manufacture of substrate for semiconductor device
US5733369A (en) * 1986-03-28 1998-03-31 Canon Kabushiki Kaisha Method for forming crystal
US5853478A (en) * 1986-03-28 1998-12-29 Canon Kabushiki Kaisha Method for forming crystal and crystal article obtained by said method
US5846320A (en) * 1986-03-31 1998-12-08 Canon Kabushiki Kaisha Method for forming crystal and crystal article obtained by said method
JPS63185016A (en) * 1987-01-27 1988-07-30 Sony Corp Forming method for semiconductor thin film
JPH0489030U (en) * 1990-12-12 1992-08-03

Also Published As

Publication number Publication date
JPS6050757B2 (en) 1985-11-09

Similar Documents

Publication Publication Date Title
TWI284685B (en) Silicon semiconductor substrate and preparation thereof
JPS58120590A (en) Production of single crystal film
JP3172389B2 (en) Manufacturing method of silicon wafer
JPS58116739A (en) Controlling method for particle size of film polycrystal
JPS6130018B2 (en)
JP3345363B2 (en) Method for forming polycrystalline silicon thin film and method for manufacturing thin film transistor
JP2662058B2 (en) Method for manufacturing semiconductor film
US4637927A (en) Process for accelerating of amorphization of intermetallic compounds by a chemical reaction using lattice defects
JPS5880831A (en) Manufacture of substrate for semiconductor device
JPH03159116A (en) Method for thermally treating thin polycrystal semiconductor film
JPS58184720A (en) Manufacture of semiconductor film
JPS6164119A (en) Manufacture of semiconductor device
JPS6175513A (en) Manufacture of silicon crystal film
JPS59121829A (en) Fabrication of single crystal silicon thin film
JPS60150614A (en) Manufacture of magnetic thin film
JPH0337191A (en) Method for forming semiconductor polycrystal thin film
JPS59163817A (en) Substrate for semiconductor device
JPH02143414A (en) Formation of single crystal film
JPS58172238A (en) Processing and treatment of glass
JP2833878B2 (en) Method of forming semiconductor thin film
JPS61261286A (en) Production of substrate for semiconductor device
JPS6276710A (en) Manufacture of magnetic thin film
JPS5928326A (en) Preparation of member for three-dimensional integrated circuit
JPH03109717A (en) Forming of semiconductor thin film
JPH01136343A (en) Method for implementing no-defect state in surface layer of semiconductor substrate