JP2662058B2 - Method for manufacturing semiconductor film - Google Patents

Method for manufacturing semiconductor film

Info

Publication number
JP2662058B2
JP2662058B2 JP1295329A JP29532989A JP2662058B2 JP 2662058 B2 JP2662058 B2 JP 2662058B2 JP 1295329 A JP1295329 A JP 1295329A JP 29532989 A JP29532989 A JP 29532989A JP 2662058 B2 JP2662058 B2 JP 2662058B2
Authority
JP
Japan
Prior art keywords
silicon
crystal
film
substrate
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1295329A
Other languages
Japanese (ja)
Other versions
JPH03155124A (en
Inventor
啓司 大吉
智則 山岡
修平 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP1295329A priority Critical patent/JP2662058B2/en
Publication of JPH03155124A publication Critical patent/JPH03155124A/en
Application granted granted Critical
Publication of JP2662058B2 publication Critical patent/JP2662058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】[Industrial applications]

本発明は、非晶質半導体膜中に結晶膜を形成する技術
に関し、特にイオンビームを用いて結晶核を形成する技
術および均一な粒径をもつ多結晶半導体膜を形成する技
術に関する。
The present invention relates to a technique for forming a crystal film in an amorphous semiconductor film, and more particularly to a technique for forming a crystal nucleus using an ion beam and a technique for forming a polycrystalline semiconductor film having a uniform grain size.

【従来の技術】[Prior art]

従来、イオンビームを用いた結晶成長に関して、珪素
基板上に形成した非晶質珪素を、砒素のイオン注入によ
り固相エピタキシャル成長させた例(J.Nakata and K.K
aijyama,Jpn.J.Appl.Phys.21(1982)Suppl.21−1,p21
1)やキセノンのイオン注入と注入時の基板加熱を組合
せた例(A.Reiberich et al,,Nuclear Instrum.Methods
Res.B19/20(1987)p457)がある。 また、ガラス基板上の半導体膜とイオン注入に関し
て、石英ガラス上に堆積した多結晶ゲルマニウム膜ある
いは珪素膜に、ゲルマニウムあるいは珪素をそれぞれ加
熱しながらイオン注入し、粒径を大きくさせた例(H.A.
Atwater et al.,J.Appl,Phys.64(1988)p2337)があ
る。これらイオンビームを用いた例は、他の方法に比
べ、低温で固相成長を行なうことが可能であり、半導体
プロセスの低温化や三次元集積回路への応用が期待され
ている。
Conventionally, with respect to crystal growth using an ion beam, an example in which amorphous silicon formed on a silicon substrate is solid-phase epitaxially grown by arsenic ion implantation (J. Nakata and KK
aijyama, Jpn. J. Appl. Phys. 21 (1982) Suppl. 21-1, p21
1) and examples of combining xenon ion implantation and substrate heating during implantation (A. Reiberich et al, Nuclear Instrum. Methods)
Res.B19 / 20 (1987) p457). Further, with respect to the semiconductor film and the ion implantation on the glass substrate, an example in which germanium or silicon is ion-implanted into a polycrystalline germanium film or a silicon film deposited on quartz glass while heating, respectively, to increase the particle size (HA
Atwater et al., J. Appl, Phys. 64 (1988) p2337). These examples using an ion beam can perform solid phase growth at a lower temperature than other methods, and are expected to be applied to a lower temperature semiconductor process and a three-dimensional integrated circuit.

【発明が解決しようとする課題】[Problems to be solved by the invention]

しかしながら、上記従来のイオンビームを用いた結晶
成長法は、基板あるいは膜中に既存する結晶を成長させ
る方法であり、種となる結晶がない場合あるいは膜中に
結晶核がない場合、例えばガラス上に堆積した非晶質珪
素膜について、これを結晶化させることはできなかっ
た。また、イオン注入により多結晶半導体膜の結晶粒径
を大きくさせる場合においても、粒径の最大値は膜厚に
より制限されるという重大な問題があった。 また、熱処理により固相で結晶核を形成するために
は、非晶質珪素膜について、少なくとも600℃以上の温
度が必要であり、この温度に耐えられない材料を非晶質
半導体膜の基板として使用した場合、基板形状の変形や
基板構成元素の半導体膜への拡散といった重大な問題が
あった。
However, the above-described conventional crystal growth method using an ion beam is a method of growing an existing crystal in a substrate or a film, and when there is no seed crystal or no crystal nucleus in the film, for example, on glass. The amorphous silicon film deposited on the substrate could not be crystallized. Also, when the crystal grain size of the polycrystalline semiconductor film is increased by ion implantation, there is a serious problem that the maximum value of the grain size is limited by the film thickness. In addition, in order to form crystal nuclei in a solid phase by heat treatment, a temperature of at least 600 ° C. is required for an amorphous silicon film, and a material that cannot withstand this temperature is used as a substrate for an amorphous semiconductor film. When used, there are serious problems such as deformation of the substrate shape and diffusion of substrate constituent elements into the semiconductor film.

【課題を解決するための手段】[Means for Solving the Problems]

上記従来の問題点を解決するために、本発明は、基板
上に形成した非晶質半導体膜に結晶核を形成し、形成さ
れた結晶核を基に結晶成長を行なう半導体膜の製造方法
において該結晶核をイオン注入により形成している。 非晶質半導体膜にイオン注入により結晶核を形成する
方法としては、イオン注入におけるビーム電流密度を上
昇させることによって、基板加熱を特に行なうことなし
に結晶核を形成することができる。(例えば石英基板上
の非晶質珪素に珪素を注入して結晶核を形成する場合、
イオンビーム電力密度が1W/cm2以上) また、イオンビームの電力密度が低い場合には、基板
を加熱する(50℃〜800℃)ことで、結晶核を形成する
ことも可能である。 基板加熱が必要な電流密度の境界値(結晶核生成率が
大きく低下する電力密度)は、半導体膜や基板の種類、
イオン種により大きく変化する。 イオン種は特に問わないが、結晶化させる半導体構成
元素または基板構成元素か希ガス元素が望ましい。注入
エネルギーは、半導体膜の種類や膜厚、注入イオンの種
類により変化させなければならないが、注入イオンの投
影飛程が半導体膜の膜厚より大きくなるよう設定し、注
入原子と半導体膜の構成原子のカスケード衝突による非
晶質化の効果が小さい方が、半導体膜中で結晶化させた
領域内の欠陥密度は小さく、良質の結晶核が得られる。
なお、注入イオンの投影飛程がこれより小さいか等しい
場合でも結晶核の形成は可能である。 結晶核の形成密度は、半導体膜の種類や膜厚、基板の
種類、イオン注入条件(イオン種、加速エネルギー、注
入量、ビーム電流密度、イオン注入時の基板温度等)に
より左右される。これらの条件を適当に選ぶことで、結
晶核の形成密度を制御することができる。 また、マスク(半導体膜の上に堆積したSiO2等の任意
の膜に窓を設けたものや金属板等に窓を設けたもの)を
通してイオン注入を行ない、結晶核の密度を制御するこ
ともできる。 密度を制御して結晶核の生成を行なった後に、熱処
理,イオン注入等を行なうことで、結晶を成長させ、均
一で、粒径が制御された多結晶半導体膜を形成すること
ができる。 また、マスクに代わって、集束イオンビームを用い
て、結晶核の発生位置および密度を制御してもよい。 一方、基板に到達した注入元素により光吸収が生じた
場合、2種類以上の元素をイオン注入することでこれら
を反応させ(例えば珪素注入により光吸収が発生した場
合は酸素,窒素等をイオン注入)、化合物を形成するこ
とにより光吸収を抑制した。
In order to solve the above-mentioned conventional problems, the present invention relates to a method of manufacturing a semiconductor film in which a crystal nucleus is formed in an amorphous semiconductor film formed on a substrate and crystal growth is performed based on the formed crystal nucleus. The crystal nuclei are formed by ion implantation. As a method for forming a crystal nucleus in an amorphous semiconductor film by ion implantation, a crystal nucleus can be formed without particularly performing substrate heating by increasing a beam current density in ion implantation. (For example, when crystal nuclei are formed by injecting silicon into amorphous silicon on a quartz substrate,
(Ion beam power density is 1 W / cm 2 or more) When the power density of the ion beam is low, a crystal nucleus can be formed by heating the substrate (50 ° C. to 800 ° C.). The boundary value of the current density that requires substrate heating (the power density at which the crystal nucleation rate greatly decreases) depends on the type of semiconductor film and substrate,
It changes greatly depending on the ion species. The ion species is not particularly limited, but is preferably a semiconductor constituent element, a substrate constituent element, or a rare gas element to be crystallized. The implantation energy must be changed according to the type and thickness of the semiconductor film and the type of implanted ions, but the projection range of the implanted ions is set to be larger than the thickness of the semiconductor film, and the configuration of the implanted atoms and the semiconductor film The smaller the effect of amorphization due to cascade collision of atoms, the smaller the defect density in the region crystallized in the semiconductor film, and a good crystal nucleus can be obtained.
The crystal nucleus can be formed even when the projected range of the implanted ions is smaller than or equal to the range. The formation density of crystal nuclei depends on the type and thickness of the semiconductor film, the type of substrate, and the ion implantation conditions (ion type, acceleration energy, implantation amount, beam current density, substrate temperature during ion implantation, and the like). By appropriately selecting these conditions, the formation density of crystal nuclei can be controlled. In addition, ion implantation can be performed through a mask (an arbitrary film such as SiO2 deposited on a semiconductor film provided with a window or a metal plate provided with a window) to control the density of crystal nuclei. . After the crystal nucleus is generated by controlling the density, heat treatment, ion implantation, and the like are performed to grow the crystal, whereby a polycrystalline semiconductor film having a uniform and controlled grain size can be formed. Further, instead of the mask, the generation position and density of the crystal nucleus may be controlled using a focused ion beam. On the other hand, when light absorption is caused by the implanted element that has reached the substrate, two or more elements are ion-implanted to react them (for example, when light absorption is caused by silicon implantation, oxygen, nitrogen or the like is ion-implanted). ), Forming a compound to suppress light absorption.

【作用】[Action]

本発明によれば、加速されたイオンが半導体膜に打ち
込まれ、エネルギーを失いながら減速する過程で、格子
系に直接的に(入射原子と半導体原子の弾性衝突)ある
いは間接的に(入射原子と半導体電子系との非弾性衝
突)エネルギーを与え、半導体膜を原子レベルで局所的
に高温に加熱するよう作用する。このとき、結晶核形成
が起きるためには、それに必要な局所的温度上昇が、結
晶の臨界核のサイズ程度がそれより大きい領域で、格子
系の再配列に必要な時間以上実現しなければならない。
このイオンビームによる温度上昇は、時間的にも短く、
局所的に作用するため、平均的な基板の温度上昇はこれ
と比較して、はるかに小さく、さらに入射イオンにより
生じた欠陥が半導体原子の移動を促進することで、比較
的融点の低い基板材料の上に堆積した半導体膜に結晶核
を形成することができる。また、集束イオンビームの使
用やイオン注入時に設けたマスクは結晶核の位置および
密度を制御するよう作用する。注入した元素に関係した
光吸収が基板に発生した場合には、これと反応して化合
物を形成し、光吸収を抑制する別種の注入元素が基板の
透明性を維持するよう作用する。
According to the present invention, accelerated ions are implanted into the semiconductor film, and in the process of decelerating while losing energy, directly (elastic collision between incident atoms and semiconductor atoms) or indirectly (with incident atoms) in the lattice system. (Inelastic collision with a semiconductor electron system), and acts to locally heat the semiconductor film to a high temperature at the atomic level. At this time, in order for crystal nucleation to occur, the necessary local temperature rise must be realized in a region where the size of the critical nucleus of the crystal is larger than the time required for rearrangement of the lattice system. .
The temperature rise due to this ion beam is short in time,
Because of local effects, the average substrate temperature rise is much smaller in comparison to this, and the defects created by incident ions promote the movement of semiconductor atoms, resulting in a relatively low melting point substrate material. Crystal nuclei can be formed in the semiconductor film deposited on the substrate. The use of a focused ion beam and a mask provided during ion implantation serve to control the position and density of crystal nuclei. When light absorption related to the implanted element occurs in the substrate, it reacts therewith to form a compound, and another implanted element that suppresses light absorption acts to maintain the transparency of the substrate.

【実施例】【Example】

(実施例1) 石英、アルカリ土類・アルミナボロシリケート、とい
った2種のガラス基板上に、スパッタリング法により非
晶質珪素膜を150nmの膜厚で堆積した(第1図
(a))。次に、珪素を、加速エネルギー:180keV、ド
ーズ量:3×1016ions/cm2、ビーム電流密度:10μA/cm2
基板加熱なし、の条件でイオン注入した(第1図
(b))。注入珪素の分布の様子を第3図に示す。これ
ら試料を、透過電子顕微鏡観察および透過電子線回折に
よりイオン注入の前後で比較した。イオン注入前には非
晶質であった珪素膜に、イオン注入により結晶核が形成
され、さらに初期に形成された核が600nm程度の粒系に
成長している様子が確認できた。イオンビームの電流密
度を変化させたところ、これ以上の電流密度ではより高
密度に結晶核が形成され、これ以下の電流密度では結晶
核の形成密度が極端に低下することが明らかとなった。
また、ドーズ量を増加させると結晶の密度は更に増加
し、非晶質珪素層の全域が多結晶に変化した。さらに、
400℃程度に基板を加熱して先の条件でイオン注入を行
なったところ、基板加熱を行なわない場合と比較して高
密度に結晶核が形成された。 (実施例2) 実施例1においてガラス基板上に形成した結晶核を含
む非晶質珪素膜に、次の2通りの方法により結晶成長を
施し、均一な粒径を有する多結晶珪素膜を形成した(第
1図(c))。 1)結晶核を形成した膜に、以下の条件のイオン注入に
より、固相における結晶成長を行なった。 結晶成長に用いたイオン注入条件は、珪素の加速エネ
ルギー:180keV、珪素のドーズ量:5×1016ions/cm2、ビ
ーム電流密度:2μA/cm2、および基板温度:250℃であっ
た。 これらを透過電子顕微鏡観察および透過電子線回折に
より評価したところ、膜全域が結晶化しており、実施例
1でドーズ量を増加させ膜全域を結晶化した試料と比較
して、粒径が揃った多結晶珪素膜が得られた。さらに、
結晶核の形成や結晶成長を行なうために基板中に注入し
た珪素を酸化させるために、酸素を、加速エネルギー:1
10keV、ドーズ量:1.6×1017ions/cm2注入した。酸素の
注入深さは珪素と一致させ、注入量は珪素の2倍とした
(第4図)。この後、多結晶珪素膜にパターンを形成
し、珪素をエッチングした部分の光吸収を調べたとこ
ろ、酸素注入を行なっていない場合と比較して光吸収の
顕著な抑制効果が認められた。 2)結晶核を形成した膜に熱処理を加え、固相で結晶成
長を行なった。熱処理は、窒素雰囲気中、600℃で10時
間行なった。これらを透過電子顕微鏡観察および透過電
子線回折により評価したところ、膜全域が結晶化してお
り、実施例1でドーズ量を増加させ膜全域を結晶化した
試料と比較して、粒径が揃った多結晶性珪素膜が得られ
た。なお、熱処理による結晶成長は、レーザーアニール
やランプアニールでも可能であった。 (実施例3) 石英、アルカリ土類・アルミナボロシリケート、とい
った2種のガラス基板上に、スパッタリング法により非
晶質珪素膜を150nmの膜厚で堆積した。この上に第2図
(a)に示すように、酸化珪素をスパッタリング法によ
り500nm堆積し、酸化膜にフォトリソグラフィー工程を
通して縦横200nmの窓を縦横3μm毎に設けた。次に、
珪素を、加速エネルギー:180keV、ドーズ量:3×1016ion
s/cm2、ビーム電流密度:10μA/cm2、基板加熱なし、の
条件でイオン注入した(第2図(b))。この後、酸化
珪素膜を除去し、透過電子顕微鏡観察および透過電子線
回折により評価したところ、窓の下部に結晶核が1〜2
個形成されたことが確認された。これに、実施例2で述
べた2種の結晶成長法を施した後(第2図(c))、透
過電子顕微鏡観察および透過電子回折により評価した。
その結果、3μm程度の比較的粒径の揃った多結晶珪素
膜が形成されてることが解った。
Example 1 An amorphous silicon film having a thickness of 150 nm was deposited on two kinds of glass substrates such as quartz and alkaline earth / alumina borosilicate by a sputtering method (FIG. 1A). Next, silicon was accelerated at an acceleration energy of 180 keV, a dose of 3 × 10 16 ions / cm 2 , a beam current density of 10 μA / cm 2 ,
Ion implantation was performed under the condition of no substrate heating (FIG. 1 (b)). FIG. 3 shows the distribution of the implanted silicon. These samples were compared before and after ion implantation by transmission electron microscope observation and transmission electron beam diffraction. It was confirmed that crystal nuclei were formed by ion implantation in the amorphous silicon film before the ion implantation, and the nuclei formed in the initial stage were growing into a grain system of about 600 nm. When the current density of the ion beam was changed, it was found that crystal nuclei were formed at higher densities at higher current densities, and the formation densities of crystal nuclei were extremely reduced at current densities lower than this.
When the dose was increased, the density of the crystal further increased, and the entire region of the amorphous silicon layer was changed to polycrystalline. further,
When the substrate was heated to about 400 ° C. and ion implantation was performed under the above conditions, crystal nuclei were formed at a higher density than when the substrate was not heated. Example 2 A polycrystalline silicon film having a uniform grain size is formed on an amorphous silicon film including a crystal nucleus formed on a glass substrate in Example 1 by the following two methods. (FIG. 1 (c)). 1) Crystal growth in a solid phase was performed on the film on which crystal nuclei were formed by ion implantation under the following conditions. The ion implantation conditions used for crystal growth were as follows: acceleration energy of silicon: 180 keV, dose of silicon: 5 × 10 16 ions / cm 2 , beam current density: 2 μA / cm 2 , and substrate temperature: 250 ° C. When these were evaluated by transmission electron microscope observation and transmission electron beam diffraction, the entire area of the film was crystallized, and the particle size was uniform as compared with the sample in which the dose was increased and the entire area was crystallized in Example 1. A polycrystalline silicon film was obtained. further,
In order to oxidize silicon implanted in the substrate to form a crystal nucleus or grow a crystal, oxygen is accelerated at an energy of 1: 1.
10 keV, dose amount: 1.6 × 10 17 ions / cm 2 were implanted. The implantation depth of oxygen was matched with that of silicon, and the implantation amount was twice that of silicon (FIG. 4). Thereafter, a pattern was formed on the polycrystalline silicon film, and the light absorption of the etched silicon portion was examined. As a result, a remarkable effect of suppressing light absorption was observed as compared with the case where oxygen was not injected. 2) Heat treatment was applied to the film on which the crystal nuclei were formed, and crystal growth was performed in a solid phase. The heat treatment was performed at 600 ° C. for 10 hours in a nitrogen atmosphere. When these were evaluated by observation with a transmission electron microscope and transmission electron beam diffraction, the entire area of the film was crystallized, and the particle size was uniform as compared with the sample in Example 1 in which the dose was increased and the entire area was crystallized. A polycrystalline silicon film was obtained. The crystal growth by the heat treatment was also possible by laser annealing or lamp annealing. Example 3 An amorphous silicon film having a thickness of 150 nm was deposited on two kinds of glass substrates such as quartz and alkaline earth / alumina borosilicate by a sputtering method. As shown in FIG. 2A, silicon oxide was deposited thereon to a thickness of 500 nm by a sputtering method, and windows of 200 nm in length and width were formed on the oxide film by photolithography at intervals of 3 μm. next,
Silicon, acceleration energy: 180 keV, dose: 3 × 10 16 ion
Ions were implanted under the following conditions: s / cm 2 , beam current density: 10 μA / cm 2 , and no substrate heating (FIG. 2B). Thereafter, the silicon oxide film was removed, and the film was evaluated by observation with a transmission electron microscope and transmission electron beam diffraction.
It was confirmed that individual pieces were formed. After the two types of crystal growth methods described in Example 2 were applied thereto (FIG. 2 (c)), evaluation was made by transmission electron microscope observation and transmission electron diffraction.
As a result, it was found that a polycrystalline silicon film having a relatively uniform grain size of about 3 μm was formed.

【発明の効果】【The invention's effect】

本発明によれば、従来不可能であった大粒径で、しか
も粒径の揃った多結晶半導体膜の形成を、これまでにな
い低温で実現できる。さらに、従来の高温プロセスでは
様々な理由(例えば、熱による変形や基板構成元素の拡
散等)で半導体用として使用できなかった基板が、本発
明により使用可能となる。
According to the present invention, it is possible to form a polycrystalline semiconductor film having a large grain size and a uniform grain size, which was impossible in the past, at a lower temperature than ever before. Further, a substrate that cannot be used as a semiconductor for various reasons (for example, deformation due to heat or diffusion of a substrate constituent element) in a conventional high-temperature process can be used according to the present invention.

【図面の簡単な説明】[Brief description of the drawings]

第1図および第2図は、本発明による多結晶珪素膜の製
造方法を示したものである。第3図は、実施例1〜3で
結晶核の形成に用いた注入珪素の分布を示したものであ
る。第4図は、実施例2(1)において注入した酸素の
分布を示したものである。
FIG. 1 and FIG. 2 show a method of manufacturing a polycrystalline silicon film according to the present invention. FIG. 3 shows the distribution of implanted silicon used for forming the crystal nuclei in Examples 1 to 3. FIG. 4 shows the distribution of oxygen injected in Example 2 (1).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−253616(JP,A) 特開 昭62−120014(JP,A) 特開 平3−120715(JP,A) 特開 平2−260524(JP,A) 特開 平2−288328(JP,A) 特開 平3−29316(JP,A) 特開 平2−165619(JP,A) 特開 平3−120715(JP,A) 特開 昭63−185016(JP,A) 特開 昭60−37719(JP,A) 特開 昭62−230017(JP,A) 特公 昭61−30018(JP,B2) 伊藤糾次 他3名著「イオン・インプ ランテーション」(昭51−10−25)昭晃 堂 P143−144 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-253616 (JP, A) JP-A-62-120014 (JP, A) JP-A-3-120715 (JP, A) JP-A-2- 260524 (JP, A) JP-A-2-288328 (JP, A) JP-A-3-29316 (JP, A) JP-A-2-165519 (JP, A) JP-A-3-120715 (JP, A) JP-A-63-185016 (JP, A) JP-A-60-37719 (JP, A) JP-A-62-230017 (JP, A) JP-B-61-30018 (JP, B2) Kenji Ito and 3 other authors "Ion implantation" (Showa 51-10-25) Shokodo P143-144

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガラス基板上に非晶質珪素膜を形成する工
程と、 前記非晶質珪素膜に珪素イオンビームを注入し、珪素イ
オン注入された箇所を、注入された珪素イオンにより原
子レベルで局所的に高温に加熱して、結晶核を形成する
工程と、 珪素イオン注入または熱処理により、前記結晶核を基に
結晶成長を行ない、多結晶珪素膜を形成する工程と、 を含むことを特徴とする半導体膜の製造方法。
A step of forming an amorphous silicon film on a glass substrate; and implanting a silicon ion beam into the amorphous silicon film. Forming a polycrystalline silicon film by locally heating to a high temperature to form a crystal nucleus; and performing a crystal growth based on the crystal nucleus by silicon ion implantation or heat treatment to form a polycrystalline silicon film. A method for manufacturing a semiconductor film.
【請求項2】前記結晶核の形成において、集束珪素イオ
ンビームおよび/またはマスク材を用いて、結晶核の形
成密度および/または結晶核形成位置を制御し、均一で
制御された粒径をもつ多結晶珪素膜を形成する請求項1
記載の半導体膜の製造方法。
2. The method according to claim 1, wherein the formation of the crystal nuclei is controlled by using a focused silicon ion beam and / or a mask material to control the density of the crystal nuclei and / or the position of the crystal nuclei to form a uniform and controlled grain size. 2. A polycrystalline silicon film is formed.
The method for manufacturing a semiconductor film according to the above.
【請求項3】前記非晶質珪素膜への珪素イオンビームの
注入を基板の加熱下で行なう請求項1または2記載の半
導体膜の製造方法。
3. The method according to claim 1, wherein the implantation of the silicon ion beam into the amorphous silicon film is performed while heating the substrate.
【請求項4】前記ガラス基板に注入された珪素イオンと
化合物を形成する酸素イオンを注入し、前記基板に注入
された珪素イオンによる光吸収を抑制する請求項1〜3
のいずれかに記載の半導体膜の製造方法。
4. The method according to claim 1, wherein oxygen ions forming a compound with silicon ions implanted into said glass substrate are implanted to suppress light absorption by said silicon ions implanted into said substrate.
The method for manufacturing a semiconductor film according to any one of the above.
【請求項5】ガラス基板上に形成された非晶質珪素膜に
珪素イオンビームを注入し、珪素イオン注入された箇所
を、注入された珪素イオンにより原子レベルで局所的に
高温に加熱して結晶核を形成する結晶核形成方法。
5. An amorphous silicon film formed on a glass substrate is implanted with a silicon ion beam, and the implanted silicon ions are locally heated to a high temperature at the atomic level by the implanted silicon ions. A crystal nucleus forming method for forming a crystal nucleus.
【請求項6】前記非晶質珪素膜への珪素イオンビームの
注入を基板の加熱下で行なう請求項5記載の結晶核形成
方法。
6. The method according to claim 5, wherein the implantation of the silicon ion beam into the amorphous silicon film is performed while heating the substrate.
JP1295329A 1989-11-14 1989-11-14 Method for manufacturing semiconductor film Expired - Lifetime JP2662058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1295329A JP2662058B2 (en) 1989-11-14 1989-11-14 Method for manufacturing semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1295329A JP2662058B2 (en) 1989-11-14 1989-11-14 Method for manufacturing semiconductor film

Publications (2)

Publication Number Publication Date
JPH03155124A JPH03155124A (en) 1991-07-03
JP2662058B2 true JP2662058B2 (en) 1997-10-08

Family

ID=17819205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1295329A Expired - Lifetime JP2662058B2 (en) 1989-11-14 1989-11-14 Method for manufacturing semiconductor film

Country Status (1)

Country Link
JP (1) JP2662058B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349735A (en) * 1993-06-12 1994-12-22 Semiconductor Energy Lab Co Ltd Semiconductor device
JP3422435B2 (en) * 1994-07-06 2003-06-30 シャープ株式会社 Method for manufacturing crystalline silicon film, crystalline silicon film, semiconductor device, and active matrix substrate
JP3072005B2 (en) * 1994-08-25 2000-07-31 シャープ株式会社 Semiconductor device and manufacturing method thereof
KR100460209B1 (en) * 2002-11-08 2004-12-04 엘지.필립스 엘시디 주식회사 Method of Solidification for Amorphous Silicon layer
US20090124064A1 (en) * 2007-11-13 2009-05-14 Varian Semiconductor Equipment Associates, Inc. Particle beam assisted modification of thin film materials

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037719A (en) * 1983-08-10 1985-02-27 Seiko Epson Corp Manufacture of semiconductor device
JPS6130018A (en) * 1984-07-20 1986-02-12 日本電信電話株式会社 Thick film capacitor and method of producing same
JPS6212001A (en) * 1985-07-08 1987-01-21 オムロン株式会社 Coaxial color digital lighting apparatus
JPH0732123B2 (en) * 1985-11-20 1995-04-10 日本電気株式会社 Method for manufacturing substrate for semiconductor device
JPS62230017A (en) * 1986-03-31 1987-10-08 Agency Of Ind Science & Technol Single crystal film forming method
JPS63185016A (en) * 1987-01-27 1988-07-30 Sony Corp Forming method for semiconductor thin film
JP2595525B2 (en) * 1987-04-10 1997-04-02 ソニー株式会社 Method of forming semiconductor thin film
JPH01257643A (en) * 1988-04-08 1989-10-13 Honda Motor Co Ltd Wiper device
JPH02165619A (en) * 1988-12-20 1990-06-26 Seiko Epson Corp Crystal growth of semiconductor thin film
JPH02260524A (en) * 1989-03-31 1990-10-23 Canon Inc Crystalline semiconductor film and formation thereof
JPH0329316A (en) * 1989-06-26 1991-02-07 Canon Inc Formation of semiconductor thin film
JP2695466B2 (en) * 1989-04-28 1997-12-24 キヤノン株式会社 Crystal growth method
JPH03120715A (en) * 1989-10-04 1991-05-22 Canon Inc Method of crystal growth and crystal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
伊藤糾次 他3名著「イオン・インプランテーション」(昭51−10−25)昭晃堂 P143−144

Also Published As

Publication number Publication date
JPH03155124A (en) 1991-07-03

Similar Documents

Publication Publication Date Title
EP1402567B1 (en) Film or layer made of semi-conductive material and method for producing said film or layer
Narayan et al. Characteristics of Ion‐Implantation Damage and Annealing Phenomena in Semiconductors
JPS63142655A (en) Manufacture of device containing buried sio2 layer
Eaglesham et al. Fabrication of amorphous‐crystalline superlattices in GeSi‐Si and GaAs‐AlAs
JP2662058B2 (en) Method for manufacturing semiconductor film
US5075243A (en) Fabrication of nanometer single crystal metallic CoSi2 structures on Si
JPS6271217A (en) Manufacture of semiconductor thin film
JP2800060B2 (en) Method for manufacturing semiconductor film
US5495824A (en) Method for forming semiconductor thin film
US5234843A (en) Method of making a semiconductor film where the hydrogen and/or fluorine is released prior to ion beam crystallization
JPH10223551A (en) Method for manufacturing soi substrate
JP2541456B2 (en) Microstructure fabrication method
JPS6360518A (en) Growing method for crystal of semiconductor layer
EP0420516B1 (en) Method for forming semiconductor thin film
JPH06263599A (en) Processing of substrate
JPH0442918A (en) Formation of semiconductor thin film
JPS5892227A (en) Gettering for crystal defect
JPS58112324A (en) Manufacture of semiconductor device
JPH06247797A (en) Production of tio2-sno2 film
JP2833878B2 (en) Method of forming semiconductor thin film
JP2844601B2 (en) Method of forming semiconductor thin film
GB2244284A (en) A method of manufacturing a polycrystalline semiconductor film by ion implantation
Weber et al. Precipitation studies in oxygen-and nitrogen-rich silicon formed by high dose implantation
Jones et al. Direct fabrication of nanometre-scale structures in semiconductors with 500 keV lithography
JPH0797556B2 (en) Method for manufacturing SOI substrate