JPS58116725A - Cvd apparatus - Google Patents

Cvd apparatus

Info

Publication number
JPS58116725A
JPS58116725A JP21252681A JP21252681A JPS58116725A JP S58116725 A JPS58116725 A JP S58116725A JP 21252681 A JP21252681 A JP 21252681A JP 21252681 A JP21252681 A JP 21252681A JP S58116725 A JPS58116725 A JP S58116725A
Authority
JP
Japan
Prior art keywords
wafer
gas
susceptor
main surface
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21252681A
Other languages
Japanese (ja)
Inventor
Sumio Imaoka
今岡 純雄
Kenji Takahashi
謙司 高橋
Kazuya Kitajima
北島 一也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp, Pioneer Electronic Corp filed Critical Pioneer Corp
Priority to JP21252681A priority Critical patent/JPS58116725A/en
Publication of JPS58116725A publication Critical patent/JPS58116725A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45589Movable means, e.g. fans
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Abstract

PURPOSE:To realize growth of uniform film by arranging a holding means so that the main suface of wafer is faced downward and by locating a gas injecting means at the lower side of the holding means. CONSTITUTION:A susceptor 12 is closely fixed to a heater block 10 and wafers 14 are held by said susceptor with the main surfaces 18 faced downward by means of hooks 16. At the lower side of susceptor 12, a rail 50 is laid in the arranging direction of wafers 14 and a base 54 is put on the rail 50. At the upper part of base 54, a nozzle 56 is provided with the injection port 58 faced upward and a gas for growth of film is supplied through a pipe 60. In the case of this invention, gas is injected right upward to wafers and therefore a crystal powder formed in the vicinity of injection port of nozzle 56 drops downward and is hardly adhered to the main surface 18 of wafer 14.

Description

【発明の詳細な説明】 本発明は、Cv[) (Chesical  V ap
orQ epositlon )装置、とに、半導体ウ
ェハを加熱のために担持する担持手段と、担持手段に対
向し、半導体ウェハの主面に向けて気体を噴出させる気
体噴出手段とを含み、半導体ウェハの主面に気相成長層
を形成するCVD装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides Cv[) (Chemical V ap
orQ epositon) apparatus, comprising a supporting means for supporting a semiconductor wafer for heating, and a gas ejecting means facing the supporting means and ejecting gas toward the main surface of the semiconductor wafer. The present invention relates to a CVD apparatus that forms a vapor phase growth layer on a surface.

従来、CVD装置では気体噴出手段としてのノズルが担
持手段としてのサセプタの上方に設けられている。サセ
プタに固定されたたとえばシリコンなどの半導体ウェハ
が加熱され、その鏡面には、CVD成長させたい物質の
原料ガスおよびキャリアガスをノズルから下方に噴出さ
せ、ウェハの鏡面に気相成長層(Si 02 、PSG
>が形成される。ノズルから噴出したガスは、多くはウ
ェハの鏡面において結晶化して付着するが、他の一部は
ノズル噴出口付近に付着してそこに結晶性の粉末が形成
される。このような粉末はノズル周辺に付着するのみな
らず、ガスの噴出にともなって下方にあるウェハやサセ
プタの上に落下することがしばしばある。つIハ上に落
下した粉末はそのまま気相成長層成長とともにその中に
閉じ込められる。
Conventionally, in a CVD apparatus, a nozzle serving as a gas jetting means is provided above a susceptor serving as a supporting means. A semiconductor wafer, such as silicon, fixed to a susceptor is heated, and a vapor phase growth layer (Si 02 , P.S.G.
> is formed. Most of the gas ejected from the nozzle crystallizes and adheres to the mirror surface of the wafer, but some of the gas adheres to the vicinity of the nozzle outlet, forming crystalline powder there. Such powder not only adheres to the vicinity of the nozzle, but also often falls onto the wafer or susceptor below as the gas is ejected. The powder that falls onto the tube is trapped therein as the vapor phase growth layer grows.

サセプタ上に落下した粉末は徐々に堆積して、ウェハを
サセプタに設定するときに飛び散ってなかにはウェハ上
にその破片が散乱し、後のCVD処理において気相成長
層の中に取り込まれたりする。
The powder that falls onto the susceptor gradually accumulates and is scattered when the wafer is placed on the susceptor, and some of the powder is scattered on the wafer and incorporated into the vapor growth layer during the subsequent CVD process.

気相成長層の中に取り込まれた粉末は、その周囲に層厚
の薄い部分を生ぜしめたり、ウェハと成長層との間の密
着性を悪くしたりする。また後にウェハ上にデバイスを
製造するときに、マスク合せにおいて成長層中の粉末が
マスクとの接触により脱落して成長層に穴があいたり、
粉末の周辺の成長層の急峻な盛上りのためにレジストに
対する密着性を悪くしたり、突出した粉末の箇所からマ
スクに垂直に応力が加わり、マスクパターンを破損させ
たり、マスクを損傷したりすることが多い。
Powder taken into the vapor phase growth layer causes a thin layer around the layer or deteriorates the adhesion between the wafer and the growth layer. Also, when devices are later manufactured on a wafer, powder in the growth layer may fall off due to contact with the mask during mask alignment, creating holes in the growth layer.
The steep growth of the growth layer around the powder may cause poor adhesion to the resist, and stress may be applied perpendicularly to the mask from protruding powder areas, damaging the mask pattern or damaging the mask. There are many things.

したがって本発明は、このような従来技術の欠点を解消
し、半導体ウェハの主゛面に結晶性粉末が飛散して気相
成長層のなかに取り込まれることがなく均一な躾を成長
させることのできるCVD装置を提供することを目的と
する。
Therefore, the present invention eliminates the drawbacks of the prior art and makes it possible to grow a uniform layer on the main surface of a semiconductor wafer without scattering crystalline powder and incorporating it into the vapor growth layer. The purpose is to provide a CVD device that can.

本発明によるcvoi曹においては、担持手段は半導体
つIハの主面が下方に向く向きに2習され、気体噴出手
段は担持手段の下方に位置し、半導体ウェハの主面に向
けて下方から気体が噴出される。
In the CVOI device according to the present invention, the supporting means is oriented so that the main surface of the semiconductor wafer faces downward, and the gas ejecting means is located below the supporting means, and the gas ejecting means is arranged from below toward the main surface of the semiconductor wafer. Gas is blown out.

次に本発明によるCVD装置の実施例を添付図面を参照
して詳細に説明する。
Next, embodiments of the CVD apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明によるcvos置の一つの実施例を概念
的に示す図であり、同図においてヒーターブロック10
にサセプタf12が密着して固定され、サセプタ12は
シリコンなどの半導体ウェハ14をつめ16などでその
鏡面18を下に向けて担持することができる。
FIG. 1 is a diagram conceptually showing one embodiment of a CVOS device according to the present invention, in which a heater block 10 is shown.
A susceptor f12 is fixed in close contact with the susceptor 12, and the susceptor 12 can support a semiconductor wafer 14 such as silicon with the pins 16 or the like with its mirror surface 18 facing downward.

サセプタ12のの下方にはレール5oがウェハ14の配
列方向に布設され、車輪52によって可動なる基台54
がレール5oの上に載冒されている。基台54の上部に
は複数のノズル56が噴出口58を上方、すなわちサセ
プタ12に対向する方向に向けて配設されている。ノズ
ル56の噴出口58とは反対側の端部にはバイブロ0が
接続され、これは基台54の外部のボンベ(図示せず)
に接続されている。これによって噴出口58からは、ウ
ェハ14の鏡面18上にCVD成長させるための物質を
含むガス、たとえば02およびSiH4などがウェハ1
4の鏡面に向けて噴出される。
A rail 5o is installed below the susceptor 12 in the direction in which the wafers 14 are arranged, and a base 54 is movable by wheels 52.
is mounted on the rail 5o. A plurality of nozzles 56 are arranged on the upper part of the base 54 with jet ports 58 directed upward, that is, in a direction facing the susceptor 12 . A vibro 0 is connected to the end of the nozzle 56 opposite to the spout 58, which is connected to a cylinder (not shown) outside the base 54.
It is connected to the. As a result, gas containing a substance to be grown by CVD on the mirror surface 18 of the wafer 14, such as 02 and SiH4, is released from the spout 58 onto the wafer 14.
It is ejected towards the mirror surface of 4.

基台54はレール50の上を矢印Aの方向に移動するこ
とができる。この移動中、ガスはノズル56の噴出口5
8からウェハ14に向けて真上に吹き上げる。
The base 54 can move on the rail 50 in the direction of arrow A. During this movement, the gas flows through the spout 5 of the nozzle 56.
8 and blows directly upward toward the wafer 14.

第2図は本発明によるCVD@置の他の実施例を示し、
第1図の実施例と同様の要素は同一の参照符号で示され
ている。この例では、基台54は固定され、サセプタ1
2およびヒーターブロック10はアーム22に装着され
た車輪24がレール26の上を走行するごとによって矢
印Aの方向に移動することができる。
FIG. 2 shows another embodiment of the CVD @ device according to the present invention,
Elements similar to the embodiment of FIG. 1 are designated with the same reference numerals. In this example, the base 54 is fixed and the susceptor 1
2 and the heater block 10 can be moved in the direction of arrow A each time a wheel 24 mounted on an arm 22 runs on a rail 26.

第3A図および第3B図はウェハ14をサセプタ12に
装着する方法の他の例を示す断面図である。サセプタ1
2Aにはウェハ14を装着する箇所にウェハ14の外形
より大きい寸法形状の凹み100が設けられ、この凹み
100の中にウェハ14を配置して第3A図に示すよう
にウェハ支持板102によって下方からウェハ14を押
し上げ、第3B図に示すようにロック部材104によっ
て支持′1f1102をサセプタ12Aに固着させる。
3A and 3B are cross-sectional views showing another example of a method for mounting the wafer 14 on the susceptor 12. FIG. Susceptor 1
2A is provided with a recess 100 having a size and shape larger than the outer diameter of the wafer 14 at a location where the wafer 14 is mounted, and the wafer 14 is placed in this recess 100 and is held downward by the wafer support plate 102 as shown in FIG. 3A. Then, as shown in FIG. 3B, the support '1f1102 is fixed to the susceptor 12A by the locking member 104.

支持板102には凹み100に対応してウェハ14の外
径より小さい寸法形状の開口106が設けられている。
An opening 106 having a size and shape smaller than the outer diameter of the wafer 14 is provided in the support plate 102 in correspondence with the recess 100 .

したがってこの開口106を通してノズル56からガス
をウェハ14の主面18に吹きつけることができる。こ
の構造ではつIハ14がサセプタ12Aに密着するので
、ヒーターブロック10からサセプタ12Aを介して伝
わる熱が有効にウェハ14に伝導する。
Therefore, gas can be blown onto the main surface 18 of the wafer 14 from the nozzle 56 through this opening 106. In this structure, since the wafer 14 is in close contact with the susceptor 12A, the heat transmitted from the heater block 10 via the susceptor 12A is effectively conducted to the wafer 14.

いずれの実施例においても、ヒーター1Oツク10で発
生した熱はサセプタ12または12Aを介してウェハ1
4に伝わり、CVD反応に必要な温度がウェハ、14の
表面18に得られる。ノズル56がサセプタ12または
12Aに対して相対的に徐々に移動するにつれ、下方の
ノズル56の噴出口58からガスがサセプタ12または
12Aに向けて噴出される。各ノズル56から吹き出し
たガスはウェハ14の表面18の近傍で適当に混合され
、表面18の熱によって科学的に反応し、たとえばシリ
コン酸化Ill (Si 02 )などの気相成長層が
ウェハ14の表面に均一に形成される。このようにガス
はすべてのウェハ14にまんべんなく噴出して分布し、
各ウェハ14に一様の酸化膜層が成長する。
In either embodiment, the heat generated by the heater 10 is transferred to the wafer 1 through the susceptor 12 or 12A.
4 and the temperature required for the CVD reaction is obtained at the surface 18 of the wafer 14. As the nozzle 56 gradually moves relative to the susceptor 12 or 12A, gas is ejected from the ejection port 58 of the lower nozzle 56 toward the susceptor 12 or 12A. The gas blown out from each nozzle 56 is appropriately mixed near the surface 18 of the wafer 14, and chemically reacts with the heat of the surface 18, so that a vapor phase growth layer such as silicon oxide Ill (Si 02 ) is formed on the wafer 14. Formed uniformly on the surface. In this way, the gas is ejected and distributed evenly over all the wafers 14,
A uniform oxide layer is grown on each wafer 14.

本発明によるCVD装置では、ノズル56の噴出口付近
に形成された結晶性粉末は下方に落下するので、ウェハ
14の主面18に付着することははとんどない。ガスの
噴出にともなってこのような粉末の一部が吹き上げられ
て主面18に付着する可能性はいくらかあるが、その機
会は非常に少なく、たとえ付着したとしても主面18が
下方を向いているので永くその表面上にとどまる可能性
はさらに少ない。また、サセプタ12または12A自体
が下方を向いているので、ウェハ14をサセプタ12ま
たは12Aに段重するときに結晶性粉末がサセプタ12
または12Aから飛散しても、ウェハ14の主面18に
載って残留することは稀である。
In the CVD apparatus according to the present invention, the crystalline powder formed near the spout of the nozzle 56 falls downward, so it is unlikely to adhere to the main surface 18 of the wafer 14. There is some possibility that some of this powder will be blown up and attached to the main surface 18 as the gas blows out, but that chance is very small, and even if it does, the main surface 18 will be facing downward. It is even less likely that it will remain on the surface for long. In addition, since the susceptor 12 or 12A itself faces downward, when the wafer 14 is stacked on the susceptor 12 or 12A, the crystalline powder is transferred to the susceptor 12 or 12A.
Even if it scatters from the wafer 12A, it rarely remains on the main surface 18 of the wafer 14.

したがって本発明によれば、結晶性粉末の混在しないき
れいな膜を半導体ウェハに成長させることができる。な
お空気より重い比重の気体、たとえば5iHiなどは、
従来の方式のようにつIハの主面が上方を向き、上方か
ら下方に向けてこのような気体が噴出される構造ではウ
ェハの主面付近にこのような気体がよどむ可能性が大き
く、これが膜の均一な形成に悪影響を与えている。しか
し本発明によるCVD装置ではこのような空気より若干
比重の重い気体の場合でも、ウェハ主面の付近をノズル
が通過して後にその付近にこの気体が残留することはな
く、気相成長のより均一な形成が実現される。
Therefore, according to the present invention, a clean film free of crystalline powder can be grown on a semiconductor wafer. Note that gases with specific gravity heavier than air, such as 5iHi,
In the conventional method, where the main surface of the wafer faces upward and the gas is ejected from above to the bottom, there is a high possibility that such gas will remain near the main surface of the wafer. This adversely affects the uniform formation of the film. However, in the CVD apparatus according to the present invention, even in the case of a gas having a specific gravity slightly heavier than air, this gas does not remain in the vicinity of the main surface of the wafer after the nozzle passes, and the vapor phase growth is improved. Uniform formation is achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明にょるCVD装置の実施例
を示す概念図1.第3A図および第3B図は第1図また
は第2mIfに示すサセプタの他の何を示す断面図であ
る。 主要部分の符号の説明 10・・・・・・ヒーターブロック 12・・・・・・サセプタ 14・・・・・・半導体ウェハ 16・・・・・・つめ    26.5o・・・・・・
レール24.52・・・・・・車輪 56・・・・・・ノズル   58・・・・・・噴出口
102・・・・・・ウェハ支持板 出願人   パイオニア株式会社 代理人   弁理士 腺村元彦 !/図 /θ
1 and 2 are conceptual diagrams showing an embodiment of a CVD apparatus according to the present invention. 3A and 3B are cross-sectional views showing other parts of the susceptor shown in FIG. 1 or 2 mIf. Explanation of symbols of main parts 10... Heater block 12... Susceptor 14... Semiconductor wafer 16... Pawl 26.5o...
Rail 24.52...Wheel 56...Nozzle 58...Spout port 102...Wafer support plate Applicant Pioneer Corporation Agent Patent attorney Motohiko Sunomura ! /Figure/θ

Claims (2)

【特許請求の範囲】[Claims] (1) 半導体ウェハを加熱のために担持する担持手段
と、該担持手段に対向し、該半導体ウェハの主面に向け
て気体を噴出させる気体噴出手段とを含み、該半導体ウ
ェハの主面に気相成長層を形成するCVD装置において
、前記担持手段は前記半導体ウェハの主面が下方に向く
向きに配置され、前記気体噴出手段は該担持手段の下方
に位冒して前記半導体ウェハの主面に向けて下方から前
記気体を噴出させることを特徴とするCVD装置。
(1) A supporting means for supporting a semiconductor wafer for heating, and a gas ejecting means facing the supporting means and ejecting gas toward the main surface of the semiconductor wafer, In the CVD apparatus for forming a vapor-phase growth layer, the supporting means is disposed with the main surface of the semiconductor wafer facing downward, and the gas ejecting means is positioned below the supporting means so that the main surface of the semiconductor wafer faces downward. A CVD apparatus characterized in that the gas is ejected from below toward.
(2) 前記担持手段は複数の半導体ウェハを担持し、
前記担持手段および気体噴出手段のいずれか一方が他方
に対して該複数の半導体ウェハの配列方向に沿って相対
的に移動することができることを特徴とする特許請求の
範囲第1項記載のCVDI習。
(2) the supporting means supports a plurality of semiconductor wafers;
The CVDI training according to claim 1, wherein either one of the supporting means and the gas ejecting means is movable relative to the other along the arrangement direction of the plurality of semiconductor wafers. .
JP21252681A 1981-12-29 1981-12-29 Cvd apparatus Pending JPS58116725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21252681A JPS58116725A (en) 1981-12-29 1981-12-29 Cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21252681A JPS58116725A (en) 1981-12-29 1981-12-29 Cvd apparatus

Publications (1)

Publication Number Publication Date
JPS58116725A true JPS58116725A (en) 1983-07-12

Family

ID=16624126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21252681A Pending JPS58116725A (en) 1981-12-29 1981-12-29 Cvd apparatus

Country Status (1)

Country Link
JP (1) JPS58116725A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01273310A (en) * 1988-04-25 1989-11-01 Nec Corp Manufacturing device for semiconductor integrated circuit device
US5725672A (en) * 1984-02-13 1998-03-10 Jet Process Corporation Apparatus for the high speed, low pressure gas jet deposition of conducting and dielectric thin sold films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725672A (en) * 1984-02-13 1998-03-10 Jet Process Corporation Apparatus for the high speed, low pressure gas jet deposition of conducting and dielectric thin sold films
JPH01273310A (en) * 1988-04-25 1989-11-01 Nec Corp Manufacturing device for semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
GB2282825A (en) Chemical vapour deposition apparatus
JPS58116725A (en) Cvd apparatus
JPS6396912A (en) Substrate holder
JP2781814B2 (en) Vertical vapor phase growth equipment
JPS61271822A (en) Continuous vapor growth apparatus
JPS6058613A (en) Epitaxial apparatus
JPS6318618A (en) Susceptor cover
JPS59150417A (en) Vapor growth and equipment for the same
JPH0437901Y2 (en)
JPH0530350Y2 (en)
JPH10275776A (en) Semiconductor wafer manufacturing equipment
JPH04320025A (en) Chemical vapor growth apparatus
JPH0713946B2 (en) CVD equipment
JPH08139028A (en) Vertical vapor growth equipment
JPH05217903A (en) Method and apparatus for vapor growth
JPS63199412A (en) Vapor growth device
JPH0662534U (en) Chemical vapor deposition equipment
JPS6355192A (en) Normal-pressure vapor growth apparatus
JPH0897154A (en) Vacuum film formation system
JPS60236217A (en) Vapor-phase growth device
JP3613099B2 (en) Vapor growth equipment
JPS62158867A (en) Cvd thin film forming device
JPH01169922A (en) Semiconductor manufacturing device
JPS6247134A (en) Semiconductor manufacturing equipment
JPH06232054A (en) Manufacture of susceptor