JPS58112084A - Method of utilizing heat of exhaust gas - Google Patents

Method of utilizing heat of exhaust gas

Info

Publication number
JPS58112084A
JPS58112084A JP21265281A JP21265281A JPS58112084A JP S58112084 A JPS58112084 A JP S58112084A JP 21265281 A JP21265281 A JP 21265281A JP 21265281 A JP21265281 A JP 21265281A JP S58112084 A JPS58112084 A JP S58112084A
Authority
JP
Japan
Prior art keywords
hot water
temperature
exhaust gas
low
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21265281A
Other languages
Japanese (ja)
Inventor
Minoru Morita
稔 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP21265281A priority Critical patent/JPS58112084A/en
Publication of JPS58112084A publication Critical patent/JPS58112084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PURPOSE:To efficiently utilize the amount of heat, by providing a direct contact-type condenser and a multi-effect can, introducing exhaust gas to the part of said condenser for recovering high-temperature heat, and constituting a hot water-circulating line between the part for recovering high-temperature heat and the heating part of the first evaporating can. CONSTITUTION:High-temperature exhaust gas A such as exhaust gas from an incinerator is supplied to a part 1b for recovering high-temperature heat provided at the lower part of a direct contact-type condenser. A part 1a for recovering low-temperature heat is formed through a shlf body 1c to the upper part of the condenser 1, to receive circulating hot water of low-temperature. A hot water-circulating system 2 is provided between the lower stage 1b of the condenser 1 and the heating part 3a of the first evaporating can 3 of a multi- effect can, to heat the first evaporating can 3 with the circulating hot water. Hence, recovering the amount of heat is performed in the same way as the method of supplying the exhaust gas directly to the heating part 3a of the first evaporating can 3.

Description

【発明の詳細な説明】 本発明は他の設備からの排ガス、特に、高温高湿乾燥法
あるいは間接加熱型乾燥法によって・得られる乾燥機排
ガスあるいは焼却炉よりの高温ガスの直接接触によって
生じる排ガス等の高湿度排ガスの熱利用方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to exhaust gases from other equipment, particularly exhaust gases generated by direct contact with dryer exhaust gases obtained by high-temperature, high-humidity drying methods or indirect heating drying methods, or high-temperature gases from incinerators. This paper relates to a method of utilizing heat from high-humidity exhaust gas such as

一般に、乾燥機からの排ガスは温度が低く、かつ燃焼ガ
ス中の水分が少ないために露点が低い。このため、熱回
収されることなく大気へ放散されるのが普通であった。
Generally, the exhaust gas from the dryer has a low dew point because the temperature is low and the moisture content in the combustion gas is low. For this reason, heat was normally dissipated into the atmosphere without being recovered.

しかし、こ扛らの排ガスの保有する熱量も決して無視し
得る程度のものでなく、でき扛ば排ガスの保有熱量を回
収することが望ましい。ところが、一般に、他の系への
熱移動を可能にするためには温度差が必要である。乾燥
機排ガスの場合には、すでに前段の乾燥工程において最
大限の熱利用を行った後であるから、他の系への熱移動
の駆動力は小さい。ただ、排ガスの温度が低い場合であ
っても、排ガス中の乾きガスに対する蒸発水分の割合が
大きけnは排ガスの露点は高くなるので、乾燥機排ガス
の場合でも適当な低温の熱利用源があnば、熱移動は可
能である。
However, the amount of heat held by these exhaust gases is by no means negligible, and it is desirable to recover the amount of heat held by the exhaust gases if possible. However, a temperature difference is generally required to enable heat transfer to other systems. In the case of dryer exhaust gas, the maximum amount of heat has already been utilized in the previous drying process, so the driving force for heat transfer to other systems is small. However, even if the temperature of the exhaust gas is low, the ratio of evaporated moisture to dry gas in the exhaust gas is large, and the dew point of the exhaust gas is high. If so, heat transfer is possible.

直接加熱型の乾燥機を採用する場合に、乾燥機排ガスの
露点を上げる方法として、排ガスを循環して高温燃焼ガ
スと混合し、高温高湿ガス中で乾燥を行うことにより、
低温(120〜150℃)ではあるが高湿の排ガスを生
成し、排ガスの露点を上げることが行わ扛ている。iた
、間接加熱型乾燥機の場合には、原理的には水分除去の
ためのガスを特に必要とはしないので、排ガスは比較的
水分を多く含んでおり、露点も高い。ただし物質によっ
ては減率乾燥区間での乾燥速度を早めるために僅かの空
気を使用することもあるが、この場合にも露点が大巾に
低下することはない。また焼却炉より発生する高温ガス
を除塵あるいは脱硫のために直接水溶液と接触させる必
要がある場合には、低温ではあるが湿度の高いガスが発
生する0 上記のような種々の方法により生じる高湿度排ガスの熱
量を利用する方法が従来よシ提案さ扛ている。こ扛らの
従来の方法では、低温・高湿度排ガスを多重i用缶の第
1蒸発缶の加熱器に供給し、ガスの流扛にしたがって水
分を凝縮させ、ガスが一定の温度(伝熱が効果的でなく
なる温度)に達すると、残りの水蒸気をガスに同伴させ
て大気に放散するのが一般的であった。
When using a direct heating type dryer, one way to raise the dew point of the dryer exhaust gas is to circulate the exhaust gas, mix it with high-temperature combustion gas, and dry it in high-temperature, high-humidity gas.
Efforts are being made to generate low-temperature (120-150°C) but highly humid exhaust gas to raise the dew point of the exhaust gas. In addition, in the case of an indirect heating type dryer, in principle there is no particular need for gas to remove moisture, so the exhaust gas contains a relatively large amount of moisture and has a high dew point. However, depending on the material, a small amount of air may be used to speed up the drying rate in the lapse rate drying section, but even in this case, the dew point will not drop significantly. In addition, when high-temperature gas generated from an incinerator needs to be brought into direct contact with an aqueous solution for dust removal or desulfurization, low-temperature but highly humid gas is generated. Conventionally, methods have been proposed that utilize the calorific value of exhaust gas. In these conventional methods, low-temperature, high-humidity exhaust gas is supplied to the heater of the first evaporator of the multiplex can, moisture is condensed as the gas flows, and the gas is kept at a constant temperature (heat transfer). Once the temperature reached (the temperature at which it became ineffective), it was common for the remaining water vapor to be entrained in a gas and dissipated into the atmosphere.

これらの方法によnは、排ガス中の燃焼ガスあるいは非
凝縮性ガスが水分に対して多い場合には、凝縮温度すな
わち露点が低くなり、排ガス中に含まnろ水分の保有す
る顕熱を最大限除去しようとすnば、そrにつnて露点
が低くなシ、蒸発缶への伝熱は不可能となる。また、非
凝縮性ガスが多いと、伝熱係数が悪く、必要加熱面積が
増大する。
With these methods, when the amount of combustion gas or non-condensable gas in the exhaust gas is higher than the amount of water, the condensation temperature, or dew point, is lowered, and the sensible heat held by the water contained in the exhaust gas is maximized. If you try to remove the evaporator, the dew point will be so low that heat transfer to the evaporator will be impossible. Furthermore, if there is a large amount of non-condensable gas, the heat transfer coefficient will be poor and the required heating area will increase.

本発明は、上記した従来技術における問題点を解決する
ために成されたもので、本発明の目的は、高湿度排ガス
の保有する熱量を効率よく多重効用缶に利用する方法を
提供することにある。さらに詳細に記載す扛ば、排ガス
を多重効用缶の第1蒸発缶の加熱部に直接入社るのでは
なく、排ガスをいったん直接接触式凝縮器の高温熱回収
部に導き、第1蒸発缶の加熱部と凝縮器の高温熱回収部
との間に熱水を循環させ、循環熱水の一部を後続段の蒸
発缶の加熱部に付設さ扛るフラッシュ缶へ供給し、最終
段のフラッシュ缶からの低温熱水を凝縮器の低温熱回収
部に供給して凝縮器内で循環熱水と合流させ、循環を繰
シ返すことによって、排ガスを直接第1蒸発缶の加熱部
に供給する場合には温度低下に限界があるのを、最終段
のフラッシュ缶から得た低温の循環熱水により、排ガス
を直接凝縮させるよりもさらに温度を低下させることが
できる排ガスの熱利用方法を提供することを目的とする
0 すなわち、本発明は、上部の低温熱回収部お拳 よび下部の高温熱回収部を有する直接接触式凝縮器と、
多重効用缶とを設け、他の設備からの排ガスを前記高温
熱回収部に導くとともに、高温熱回収部と第1蒸発缶の
加熱部との間に熱水循環路を構成し、その熱水循環路の
熱水の一部を後続する蒸発缶の加熱部に付設されている
フラッシュ缶へ供給して対応する蒸発缶の加熱源として
利用し、少くとも最終のフラッシュ缶からの低温熱水を
前記低温熱回収部に戻した後凝縮器内において熱水と合
流させることを特徴とするものである。
The present invention has been made to solve the problems in the prior art described above, and an object of the present invention is to provide a method for efficiently utilizing the amount of heat possessed by high-humidity exhaust gas in a multi-effect can. be. In more detail, instead of directly entering the heating section of the first evaporator of the multiple effect can, the exhaust gas is first led to the high-temperature heat recovery section of the direct contact condenser. Hot water is circulated between the heating section and the high-temperature heat recovery section of the condenser, and a part of the circulating hot water is supplied to the flash can attached to the heating section of the subsequent stage evaporator, and then the final stage flash The low-temperature hot water from the can is supplied to the low-temperature heat recovery section of the condenser and combined with the circulating hot water in the condenser, and by repeating the circulation, the exhaust gas is directly supplied to the heating section of the first evaporator. To provide a heat utilization method of exhaust gas that can lower the temperature further than directly condensing the exhaust gas by using low-temperature circulating hot water obtained from the final stage flash can, even though there is a limit to temperature reduction in some cases. In other words, the present invention provides a direct contact condenser having an upper low temperature heat recovery section and a lower high temperature heat recovery section;
A multi-effect can is provided to guide exhaust gas from other equipment to the high-temperature heat recovery section, and a hot water circulation path is configured between the high-temperature heat recovery section and the heating section of the first evaporator, and the hot water is A portion of the hot water in the circulation path is supplied to a flash can attached to the heating section of the subsequent evaporator and used as a heating source for the corresponding evaporator, and at least the low-temperature hot water from the final flash can is supplied. It is characterized in that after being returned to the low-temperature heat recovery section, it is combined with hot water in a condenser.

本発明の基本原理を図面により説明する。図面は本発明
の構成の一例を示す概要図であるOAは、他の設備から
得ら扛る高湿度排ガス、例えば、高温高湿乾燥法あるい
は間接加熱型乾燥法によって得ら扛る乾燥機排ガス、あ
るいは、焼却炉排ガスである。本発明で対象とする高湿
度排ガスとは、たとえば約70℃以上の水蒸気の飽和に
近い湿度を有するものである0高湿度排ガスAは、直接
接触式凝縮器1の下部に設けられた高温熱回収部1bに
供給さ扛る。直接接触式凝縮器1の上部には棚体1cを
介して低温熱回収部1aが形成さ扛ており、後述する低
温の循環熱水を受ける。凝縮器1の下段1bと多重効用
缶の第1蒸発缶3の加熱部3aとの間には熱水循環系2
が設けらnており、第1蒸発缶2の加熱は循環熱水によ
り行われる。したがって、ここでは、排ガスを直接第1
蒸発缶3の加熱部3aに供給するのと同様な熱量回収が
行われる。熱水循環系2における、第1蒸発缶3の加熱
部3aからの戻り熱水の一部は、後続する第2.第3蒸
発缶4,5の加熱器4a、5aにそnぞn付設されるフ
ラッシュ缶4b、5bに順次供給さ、n、各缶における
凝縮器だけ熱水が自己蒸発してそnぞ扛の加熱器に供給
さnる。
The basic principle of the present invention will be explained with reference to the drawings. The drawing is a schematic diagram showing an example of the configuration of the present invention. , or incinerator exhaust gas. The high-humidity exhaust gas targeted by the present invention is, for example, one having a humidity of about 70° C. or higher and close to the saturation of water vapor. It is supplied to the recovery section 1b and collected. A low-temperature heat recovery section 1a is formed in the upper part of the direct contact condenser 1 via a shelf 1c, and receives low-temperature circulating hot water, which will be described later. A hot water circulation system 2 is provided between the lower stage 1b of the condenser 1 and the heating section 3a of the first evaporator 3 of the multi-effect can.
The first evaporator 2 is heated by circulating hot water. Therefore, here, the exhaust gas is directly
The same amount of heat is recovered as that supplied to the heating section 3a of the evaporator 3. In the hot water circulation system 2, a part of the return hot water from the heating section 3a of the first evaporator 3 is transferred to the following second evaporator 3. The hot water is sequentially supplied to the flash cans 4b and 5b attached to the heaters 4a and 5a of the third evaporator cans 4 and 5, and the hot water self-evaporates only in the condenser of each can. is supplied to the heater.

上記したように、最終段のフラッシュ缶5bにおいて得
らnる低温の循環熱水は戻り循環ポンプ6により凝縮器
1に戻さ扛、凝縮器1の上段の低温熱回収部1aの頂部
より低温熱回収部1a内にスプレーによって散布さn1
下部の高温熱回収部1bから棚体ICを介して上部に昇
ってくる排ガスAと直接接触してこnを凝縮させ、熱水
の形で熱回収さ扛る。低温熱回収部la内の熱水が一定
量になると棚体ICに設けた下降管1dを通って下部の
高温熱回収部1bに流下する。一方、高温熱回収部1’
bには、上記したように、第1蒸発缶3の加熱部3aか
ら熱水が循環さnており、この循環熱水はスプレーによ
り回収部lb内に散布さ扛、回収部1bに供給る。この
結果“、排ガスAの熱量は熱水の形で回収さnる。この
熱水は、上部の低温熱回収部1aから下降管1dを介し
て流下する熱水と合流し、ポンプ2aKより第1蒸発缶
3の加熱部3aへさらに循環さ扛る。高温回収部1bで
発生するガスは棚体ICの中央の上昇口を抜け、凝縮器
1上部から排出される。
As mentioned above, the low-temperature circulating hot water obtained in the final stage flash can 5b is returned to the condenser 1 by the return circulation pump 6, and the low-temperature heat is collected from the top of the low-temperature heat recovery section 1a in the upper stage of the condenser 1. Sprayed n1 into the collection section 1a by spraying
It comes into direct contact with exhaust gas A rising from the lower high-temperature heat recovery section 1b to the upper part via the shelf IC, condenses it, and recovers the heat in the form of hot water. When the hot water in the low-temperature heat recovery section la reaches a certain amount, it flows down to the high-temperature heat recovery section 1b in the lower part through the downcomer pipe 1d provided on the shelf IC. On the other hand, high temperature heat recovery section 1'
As described above, in b, hot water is circulated from the heating section 3a of the first evaporator 3, and this circulating hot water is sprayed into the recovery section 1b and supplied to the recovery section 1b. . As a result, the amount of heat in the exhaust gas A is recovered in the form of hot water. The gas generated in the high-temperature recovery section 1b passes through the rising port in the center of the shelf IC and is discharged from the upper part of the condenser 1.

本発明における低温熱回収の効果は、上記の3重効用缶
を例にとって考えてみると、低温熱回収部1aで回収さ
nた熱量の約60〜70チが第2蒸−発缶4において蒸
気となり、第2蒸発缶4および第3蒸発缶5の蒸発にあ
ずかる。残りの30〜40%の熱量は第3蒸発缶5での
蒸発にあずかる。いま、高温熱回収の熱量を1.0とし
、低温熱回収の熱量を0.6〜0.65とすると、第2
蒸発缶以降のフラッシュ缶で得られる蒸発量は、潜熱の
違いを無視す扛ば、第2蒸発缶4で0.40フラツシユ
したペーパは第3蒸発缶5で再び、0.40の蒸発を行
い、第3蒸発缶4での循環水のフラッシュは0.20で
あるため、全体としては1.0の蒸発量となるOしたが
って、単純な計算でも、フラッシュを行わないものに比
べて33%の蒸発量の増大となる。
Considering the above-mentioned triple-effect can as an example, the effect of low-temperature heat recovery in the present invention is that approximately 60 to 70 of the amount of heat recovered in the low-temperature heat recovery section 1a is transferred to the second evaporator 4. It becomes steam and participates in the evaporation of the second evaporator 4 and the third evaporator 5. The remaining 30 to 40% of the heat is used for evaporation in the third evaporator 5. Now, if the amount of heat for high-temperature heat recovery is 1.0 and the amount of heat for low-temperature heat recovery is 0.6 to 0.65, then the second
The amount of evaporation obtained in the flash cans after the evaporator is, if the difference in latent heat is ignored, the paper flashed by 0.40 in the second evaporator 4 will be evaporated by 0.40 again in the third evaporator 5. , since the amount of flushing of the circulating water in the third evaporator 4 is 0.20, the overall evaporation amount is 1.0. Therefore, even by simple calculation, the amount of evaporation is 33% compared to that without flushing. This will increase the amount of evaporation.

次に、本発明の効果を実施例によって説明する0 実施例 ビート処理量1000 t / dayの工場において
、直径2000φX 20 mの、内部に掻上げ羽根を
有する回転乾燥機を3RPMで運転し7’Coこの乾燥
機に水分80〜82%のビートパイプを供給し、水分9
〜10%になるまで乾燥して排出した。乾燥に用いた重
油はs 45 kl?/hr−燃焼用空気は10,03
0kg/hrであったO排気ガスの絶対湿度はo、77
8に9H20/に9dr)’ air s温度は200
〜205℃でおった0乾燥機出口でのガス量は乾燥ガス
で18,560kg/hrであったが、この一部の8、
530 kg/hrは加熱炉に再循環させ、残りの約1
0.000に9/ hrは、直径2000111に%下
段8mおよび上段3mの2段から成シ、下段が熱水循環
系を介して伝熱面積1500mを有する3重効用缶の第
1蒸発缶に接続さ扛ている凝縮器に導き、熱水循環系の
戻シ熱水(温度75℃)によってガス温75℃まで冷却
さ扛たO凝縮器出口温水は84℃となり、第1蒸発缶の
加熱部に供給さ扛た。この熱水の循環量は27511?
/hrであつ7’C。
Next, the effects of the present invention will be explained with reference to examples.0ExampleIn a factory with a beet throughput of 1000 t/day, a rotary dryer with a diameter of 2000 φ x 20 m and internal raking blades was operated at 3 RPM. CoFeed beet pipe with a moisture content of 80 to 82% to this dryer, and
It was dried to ~10% and discharged. The heavy oil used for drying was s 45 kl? /hr - Combustion air is 10,03
The absolute humidity of the O exhaust gas, which was 0 kg/hr, was o, 77.
8 to 9H20/to 9dr)' air temperature is 200
The amount of gas at the outlet of the dryer heated to ~205°C was 18,560 kg/hr of dry gas;
530 kg/hr is recycled to the heating furnace, and the remaining approximately 1
0.000 to 9/hr consists of two stages with a diameter of 2000111%, a lower stage of 8 m and an upper stage of 3 m, and the lower stage is the first evaporator of a triple-effect can with a heat transfer area of 1500 m through a hot water circulation system. The hot water at the outlet of the O condenser becomes 84°C, and the hot water at the outlet of the O condenser is heated to 84°C. It was supplied to the department. The amount of circulating hot water is 27511?
/hr and 7'C.

この熱量を受ける第1缶の蒸発温度は65℃で、発生し
たベーパは第2缶で凝縮さ扛、液温52℃で蒸発を行っ
た0発生ベーノ(は第3缶へ供給され、この最終缶では
液温42℃で蒸発を行った〇 一方、第1蒸発缶出口の熱水の一部727F+”/hr
を第2缶加熱部に付設さ扛た第1フラッシュ缶に導き、
断熱冷却による発生ベーノくを第2缶加熱部へ供給し、
第1フラッシュ缶出口の循環水を第2フラッシュ缶に供
給し、前記の第1フラッシュ缶と同様に発生ペーパを第
3缶に供給した。第2フラッシュ缶下部からは熱水(約
50℃)を凝縮器の低温熱回収部へ循環させたO第1缶
、第2缶および第3缶のそnぞ扛の蒸発量は4,020
に9/hr 、 5.560kg/ hrおよび6,3
80に9//hr士あり、全蒸発量は15.960に9
/hrであった。低温熱回収部を持たず、かつ、フラッ
シュを行わない3重効用の方法と比較して約35%以上
も蒸発量の多いことが確認さnた。
The evaporation temperature of the first can that receives this amount of heat is 65℃, and the generated vapor is condensed in the second can. In the can, evaporation was carried out at a liquid temperature of 42°C. On the other hand, a portion of the hot water at the outlet of the first evaporator was 727F+"/hr.
is guided to the first flash can attached to the second can heating section,
Supplying the waste produced by adiabatic cooling to the second can heating section,
The circulating water at the outlet of the first flash can was supplied to the second flash can, and the generated paper was supplied to the third can in the same manner as the first flash can. Hot water (approximately 50°C) was circulated from the bottom of the second flash can to the low-temperature heat recovery section of the condenser.The amount of evaporation from each of the first, second and third cans was 4,020.
9/hr, 5.560kg/hr and 6,3
There is 9//hr in 80, and the total evaporation amount is 9 in 15.960.
/hr. It was confirmed that the amount of evaporation was about 35% higher than that of the triple effect method that does not have a low-temperature heat recovery section and does not perform flashing.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明による排ガスの熱利用方法の一例を示す
概要図である。 1・・凝縮器    1a・・低温熱回収部1b・・高
温熱回収部 2・・熱水循環系3、4.5・・蒸発缶 
 3a、 4a s 5a・・加熱部4b、5b・・フ
ラッシュ缶
The drawing is a schematic diagram showing an example of the method for utilizing heat from exhaust gas according to the present invention. 1. Condenser 1a.. Low temperature heat recovery section 1b.. High temperature heat recovery section 2.. Hot water circulation system 3, 4.5.. Evaporator
3a, 4a s 5a...Heating section 4b, 5b...Flash can

Claims (1)

【特許請求の範囲】[Claims] (1)上部の低温熱回収部および下部の高温熱回収部を
有する直接接触式凝縮器と、多重効用缶とを設け、他の
設備からの排ガスを前記高温熱回収部に導くとともに、
高温熱回収部と第1蒸発缶の加熱部との間に熱水循環路
を構成し、その熱水循環路の熱水の一部を後続する蒸発
缶の加熱部に付設さnているフラッシュ缶へ供給して対
応する蒸発缶の加熱源として利用し、少くとも最終のフ
ラッシュ缶からの低温熱水を前記低温熱回収部に戻した
後、凝縮器内において熱水と合流させることを特徴とす
る排ガスの熱利用方法0
(1) A direct contact condenser having an upper low-temperature heat recovery section and a lower high-temperature heat recovery section and a multiple-effect can are provided, and exhaust gas from other equipment is guided to the high-temperature heat recovery section, and
A hot water circulation path is configured between the high temperature heat recovery section and the heating section of the first evaporator, and a flash is attached to the heating section of the subsequent evaporator to transfer a part of the hot water in the hot water circulation path to the heating section of the subsequent evaporator. The low-temperature hot water is supplied to the can and used as a heating source for the corresponding evaporator, and after returning at least the low-temperature hot water from the final flash can to the low-temperature heat recovery section, it is combined with the hot water in the condenser. How to utilize heat from exhaust gas
JP21265281A 1981-12-24 1981-12-24 Method of utilizing heat of exhaust gas Pending JPS58112084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21265281A JPS58112084A (en) 1981-12-24 1981-12-24 Method of utilizing heat of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21265281A JPS58112084A (en) 1981-12-24 1981-12-24 Method of utilizing heat of exhaust gas

Publications (1)

Publication Number Publication Date
JPS58112084A true JPS58112084A (en) 1983-07-04

Family

ID=16626167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21265281A Pending JPS58112084A (en) 1981-12-24 1981-12-24 Method of utilizing heat of exhaust gas

Country Status (1)

Country Link
JP (1) JPS58112084A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224672A (en) * 1990-01-31 1991-10-03 Seiwa Kogyo Kk Method and device for thickening waste photographic solution
CN104211130A (en) * 2014-09-16 2014-12-17 凯姆德(北京)能源环境科技有限公司 Low-temperature evaporation, concentration and crystallization system and method using waste heat

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224672A (en) * 1990-01-31 1991-10-03 Seiwa Kogyo Kk Method and device for thickening waste photographic solution
CN104211130A (en) * 2014-09-16 2014-12-17 凯姆德(北京)能源环境科技有限公司 Low-temperature evaporation, concentration and crystallization system and method using waste heat
CN104211130B (en) * 2014-09-16 2016-07-06 凯姆德(北京)能源环境科技有限公司 A kind of low-temperature evaporation condensing crystallizing system and method utilizing used heat

Similar Documents

Publication Publication Date Title
US3638708A (en) Methods of multiple stage evaporation from heat sources other than steam
CA1213127A (en) Energy and water recovery from flue gases
US4350570A (en) Water desalination method
CA1222940A (en) Process and apparatus for a recovery of heat comprising a heat-recovering absorption of water vapor from gases
CN1038774A (en) Liquid method of evaporating and equipment
US3131035A (en) Method of heat recovery from waste gases containing vapor
US2902414A (en) Method and apparatus for extracting pure water
RU2006124748A (en) EVAPORATION
US3920505A (en) Method and apparatus for removing volatile fluids
CZ280570B6 (en) Process of diluted acid concentration in a triple-effect vacuum forced circulation evaporator
EP0042605A1 (en) Method of operating a vapour-heated process system
BR9205800A (en) Process and plant for the preparation of waste liquids, especially industrial waste water with a high solids content
JPS58112084A (en) Method of utilizing heat of exhaust gas
KR910011323A (en) Vapor recovery systems
JPS60257801A (en) Evaporative concentration of dilute solution
CN108026694B (en) System and method for stripping volatile organic compounds from dirty condensate
JPS57194001A (en) Circulating method for waste gas of indirect type dryer
JPS61209099A (en) Method and apparatus for drying and incinerating sludge
US1820986A (en) Odorless desiccating method and system
JPH08246816A (en) Generation method due to burning exhaust gas
KR20010060469A (en) Dryer with Dehumidification System by Loop Thermosyphon Heat Exchanger
CN217154923U (en) Material drying waste gas cyclic heating utilizes system
JPS5929990A (en) Waste heat retrieving system
SE522676C2 (en) Method and apparatus for combustion of black liquor
JPS5496864A (en) Sludge dryer