JPH08246816A - Generation method due to burning exhaust gas - Google Patents

Generation method due to burning exhaust gas

Info

Publication number
JPH08246816A
JPH08246816A JP7051450A JP5145095A JPH08246816A JP H08246816 A JPH08246816 A JP H08246816A JP 7051450 A JP7051450 A JP 7051450A JP 5145095 A JP5145095 A JP 5145095A JP H08246816 A JPH08246816 A JP H08246816A
Authority
JP
Japan
Prior art keywords
exhaust gas
steam
generator
condenser
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7051450A
Other languages
Japanese (ja)
Inventor
Minoru Morita
稔 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP7051450A priority Critical patent/JPH08246816A/en
Publication of JPH08246816A publication Critical patent/JPH08246816A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE: To provide a suitability for a small-sized waste disposal power genera tion plant and makeefficient use of heat quantity included in moisture for power generation. CONSTITUTION: An absorption type heat pump is composed of a generator 1, a condenser 2, an evaporator 3 and an absorber 4. Waste M containing moisture is supplied into an incinerator, and burned by the burning air increased in its moisture. The exhaust gas is introduced into the generator 1 as driving heat source of a two-operation body, generating steam which is introduced into the condenser 2. The exhaust gas having passed through the generator 1 is purified by a wet method. The gas is fed to the evaporator 3 and used as an absorption heat source. Steam generated in the absorber 4 and the condenser 2 is introduced into the steam turbine 8 for power generation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、都市ゴミ、都市下水の
汚泥、産業有機物を含む廃棄物、産業固形廃棄物などの
廃棄物を焼却してその排ガスにより発電する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for incinerating waste such as municipal waste, sludge of municipal sewage, waste containing industrial organic substances, industrial solid waste, etc., and generating power from the exhaust gas.

【0002】[0002]

【従来の技術】この種の、廃棄物はストーカー炉、流動
層、あるいは高速流動層、移動式焼却炉等によって焼却
されているが、水分を多く含む固形廃棄物はそのまま通
常の燃焼空気(熱交換により高温としたものあるいは常
温のもの)を用いて燃焼を行っている。このため、蒸発
した水分は利用されるこなく、排ガスとともに排気され
ている。
2. Description of the Related Art This kind of waste is incinerated in a stalker furnace, a fluidized bed, a high-speed fluidized bed, a mobile incinerator, etc., but solid waste containing a large amount of water is used as it is in normal combustion air (heat Combustion is carried out using the ones that have been heated to a high temperature or those that are at room temperature. Therefore, the evaporated water is not used but is exhausted together with the exhaust gas.

【0003】通常、廃棄物自体は45〜70%程度の大
量の水分を持っており、その排ガス中の水分のもってい
る熱量は、排ガス中の有害物質を除去洗浄するための最
終段階に設けられている湿式のスクラバーにおける洗浄
液に移行することにより棄てられた後、排ガスが大気中
に放散されるか、再加熱されて白煙の発生の防止が図ら
れながら大気中に棄てられている。
Usually, the waste itself has a large amount of water of about 45 to 70%, and the heat quantity of the water in the exhaust gas is provided at the final stage for removing and cleaning harmful substances in the exhaust gas. After being discarded by being transferred to the cleaning liquid in the wet scrubber, the exhaust gas is either released into the atmosphere or is reheated and is discarded into the atmosphere while preventing the generation of white smoke.

【0004】廃棄物に由来する水分のもっている熱量を
利用する方法として、本発明者らが先に提案した特開平
5−306813号公報に示されているように、燃焼空
気中の水分を増湿させることにより、排ガス中の水分を
高温で凝縮させ(80〜85℃で凝縮を始め、60〜7
5℃で凝縮を終了させる)、排ガス中の水分の熱量を顕
熱として回収できる。
As a method of utilizing the amount of heat of water derived from waste, as disclosed in Japanese Patent Laid-Open No. 306813/1993 proposed by the present inventors, the water content in combustion air is increased. By moistening, the moisture in the exhaust gas is condensed at a high temperature (condensation starts at 80 to 85 ° C,
Condensation is completed at 5 ° C.), and the calorific value of water in the exhaust gas can be recovered as sensible heat.

【0005】従来のヒートポンプでは、駆動熱源と吸熱
熱源は別々の熱源を用いることが多い。一般的な発生
器、凝縮器、蒸発器、吸収器の4つの基本機器よりなる
吸収式冷凍機においては、吸収器および凝縮器より回収
される熱量の温度は、発生器と蒸発器の中間の温度であ
ることは知られている。
In the conventional heat pump, the driving heat source and the endothermic heat source often use different heat sources. In an absorption chiller consisting of four basic devices, a general generator, a condenser, an evaporator, and an absorber, the temperature of the amount of heat recovered from the absorber and the condenser is between the generator and the evaporator. It is known to be temperature.

【0006】したがって、吸収器および凝縮器Cの温度
を上げるためには、高温で発生器を運転させる必要があ
り、このためにリチューム−水とは異なった腐食性のな
い二作動流体が求められている。一方、蒸発器において
は、60〜100℃程度の吸熱熱源が要求されている。
Therefore, in order to raise the temperature of the absorber and the condenser C, it is necessary to operate the generator at a high temperature, which requires a non-corrosive two working fluid different from lithium-water. ing. On the other hand, in the evaporator, an endothermic heat source of about 60 to 100 ° C. is required.

【0007】[0007]

【発明が解決しようとする課題】一般に、廃棄物を燃焼
するにあたっては、その付属の廃熱ボイラーにおいて、
低温腐食を防止するために排ガス中の酸露点より高い温
度で運転し、かつ高温腐食を考慮してある温度以下で運
転しなければならない点の制限がある。
Generally, in burning waste, in the attached waste heat boiler,
In order to prevent low temperature corrosion, there is a limitation in that it must be operated at a temperature higher than the acid dew point in the exhaust gas and must be operated at a temperature below a certain temperature in consideration of high temperature corrosion.

【0008】このためにボイラーの蒸発圧力は高くしな
ければいけないし、一方、このような排ガスからは管壁
温度が非常に上昇するスーパーヒータの設置が無理とさ
れている。このために廃棄物ゴミ発電においては、効率
良く発電するためには、廃棄物の廃熱ボイラーより発生
した蒸気を別の熱源に加温する方法、すなわちガスター
ビンの排ガスによって加温する方法があり、また別の燃
料を用いて加温する方法がある。
For this reason, the evaporation pressure of the boiler must be raised, and on the other hand, it is impossible to install a super heater which causes the temperature of the tube wall to rise extremely from such exhaust gas. For this reason, in the power generation of waste trash, there is a method of heating the steam generated from the waste heat boiler of the waste to another heat source, that is, a method of heating by the exhaust gas of the gas turbine, in order to generate power efficiently. There is also a method of heating with another fuel.

【0009】しかし、前者の方法では、多額の設備費が
必要であり、また大型プラントでないと経済的でなく、
小型のゴミ処理発電プラントには適さない。後者の方法
においては、新しい燃料を外部より供給する必要がある
とともに、元来、大量の熱量を持っている廃棄物処理工
場に付設することは設計上好ましくない。
However, the former method requires a large amount of equipment cost and is not economical unless it is a large plant.
Not suitable for small garbage disposal power plants. In the latter method, fresh fuel needs to be supplied from the outside, and it is originally not preferable to attach it to a waste treatment plant that has a large amount of heat.

【0010】したがって、本発明の課題は、小型のゴミ
処理発電プラントとして適しており、かつ排ガス中の水
分がもっている熱量を効率よく発電により利用すること
により回収することにある。
[0010] Therefore, an object of the present invention is to be suitable as a small-sized waste treatment power generation plant, and to recover the amount of heat of moisture in exhaust gas by efficiently utilizing the power generation.

【0011】[0011]

【課題を解決するための手段】上記課題は、発生器、凝
縮器、蒸発器および吸収器により吸収式ヒートポンプを
構成し、水分を含む廃棄物を焼却炉に投入し、増湿され
た燃焼空気を用いて焼却し、その排ガスを、二作動体の
駆動熱源として前記発生器に導いて、蒸気を発生させて
これを凝縮器に導くとともに、前記発生器を通った排ガ
スを湿式処理により洗浄処理し、このガスを前記吸収器
へ送り吸熱熱源として利用し、前記吸収器での発生蒸気
と前記凝縮器での発生蒸気を蒸気タービンに導いて発電
を行うことで解決できる。
Means for Solving the Problems The above problem is that an absorption heat pump is constituted by a generator, a condenser, an evaporator, and an absorber, and waste containing water is put into an incinerator to obtain humidified combustion air. Incinerating the exhaust gas, and guiding the exhaust gas to the generator as a heat source for driving the two-acting body to generate steam to guide it to the condenser, and the exhaust gas passing through the generator is washed by a wet process. Then, this gas is sent to the absorber to be used as an endothermic heat source, and the generated steam in the absorber and the generated steam in the condenser are guided to a steam turbine for power generation.

【0012】前記蒸気タービンに蒸気を供給する前に、
その蒸気を外部熱源によりスーパーヒートした後、発電
を行うことが望ましい。この外部熱源として、焼却排ガ
スのもっている熱量を利用することができる。
Before supplying steam to the steam turbine,
It is desirable to generate power after superheating the steam with an external heat source. As the external heat source, the amount of heat of the incineration exhaust gas can be used.

【0013】前記焼却炉としては、注水して温度を制御
している炉であるときに本発明が好適に適用される。
The present invention is preferably applied when the incinerator is a furnace in which water is poured to control the temperature.

【0014】前記発生蒸気の一部を前記発電に、残部を
工業用蒸気および冷暖房用蒸気のいずれか一つに用いる
ことができる。
A part of the generated steam can be used for the power generation, and the rest can be used for any one of industrial steam and cooling / heating steam.

【0015】前記吸収器を通った排ガスを、前記増湿時
において燃焼空気の加温に用いるのが熱利用の点で好適
である。
It is preferable in terms of heat utilization to use the exhaust gas that has passed through the absorber for heating the combustion air during the humidification.

【0016】[0016]

【作用】図1に本発明のシステムフローシートを示す。
1は発生器、2は凝縮器、3は蒸発器、4は吸収器であ
り、これらを基本機器として吸収式ヒートポンプが構成
されている。
FIG. 1 shows a system flow sheet of the present invention.
Reference numeral 1 is a generator, 2 is a condenser, 3 is an evaporator, and 4 is an absorber, and an absorption heat pump is configured with these as basic devices.

【0017】他方で、廃棄物Mは焼却炉40に供給さ
れ、これに対して増湿器50を経て増湿された燃焼空気
が供給されて、燃料41の下で、燃焼が行われる。この
焼却炉の形式は流動層であったり、ロストルを持った炉
であったり適宜の形式が用いられる。
On the other hand, the waste M is supplied to the incinerator 40, to which the combustion air that has been humidified through the humidifier 50 is supplied, and combustion is performed under the fuel 41. The type of the incinerator may be a fluidized bed, a furnace with a rustle, or an appropriate type.

【0018】焼却炉40からの排ガスは、発生器1の加
熱器1aに導かれて、発生器に蓄えられている濃厚塩類
を蒸発させる。蒸発したベーパーは、経路21を経て凝
縮器2の再過熱部2bを通り、凝縮器2で発生している
蒸気と熱交換しながら、凝縮部2aで凝縮する。同時
に、凝縮器2にある純水は蒸発されて、経路22を経て
スーパーヒータ7を経て蒸気タービン8に導かれる。
The exhaust gas from the incinerator 40 is guided to the heater 1a of the generator 1 to evaporate the concentrated salts stored in the generator. The vaporized vapor passes through the path 21 and passes through the reheating section 2b of the condenser 2 and exchanges heat with the vapor generated in the condenser 2 and is condensed in the condenser section 2a. At the same time, the pure water in the condenser 2 is evaporated and introduced into the steam turbine 8 via the route 22 and the super heater 7.

【0019】凝縮器2で凝縮した水は、熱交換器6にお
いて、これに経路23を経て流通されるタービン8のコ
ンデンセートと熱交換されて、蒸発器3に供給される。
The water condensed in the condenser 2 is heat-exchanged in the heat exchanger 6 with the condensate of the turbine 8 which flows through the path 23, and is supplied to the evaporator 3.

【0020】上述の発生器1の加熱器1aを通った排ガ
スは、経路24を経て湿式スクラバー11に導かれ、こ
こで外部から水が供給されて増湿された後、経路25を
経て蒸発器3の加熱器3aに供給される。蒸発器3で
は、加熱器3aによりコンデンセートを蒸発し、蒸発し
たベーパーを経路26を経て、発生器1から経路27を
経てくる濃厚塩と合流点28で混合して吸収器4に導
く。
The exhaust gas that has passed through the heater 1a of the generator 1 is guided to the wet scrubber 11 via the path 24, where water is supplied from the outside to increase the humidity, and then via the path 25 to the evaporator. 3 to the heater 3a. In the evaporator 3, the condensate is evaporated by the heater 3 a, and the evaporated vapor is mixed with the concentrated salt flowing from the generator 1 through the path 27 at the confluence point 28 and guided to the absorber 4.

【0021】吸収器4では蒸発ベーパーを完全に凝縮さ
せ、凝縮液はポンプ11により経路29を経て熱交換器
5を通して、希薄液として発生器1に送る。熱交換器5
では希薄液と濃厚液との熱交換を図る。
In the absorber 4, the evaporative vapor is completely condensed, and the condensed liquid is sent to the generator 1 as a dilute liquid through the heat exchanger 5 via the path 29 by the pump 11. Heat exchanger 5
Then, heat exchange between the dilute liquid and the concentrated liquid is attempted.

【0022】吸収器4の凝縮器4a内においては、純粋
な水のベーパーと濃厚塩が合流点28で混合されるため
に、沸点上昇を生じ、このために高温の加熱源となる。
そこで、蒸気タービン8のコンデンサー10からのコン
デンセートを循環ポンプ12により経路30を通して吸
収器4に供給し、コンデンセートを蒸発し、経路31を
通して、前記の凝縮器2から移行するベーパーと合流し
て、スーパーヒータ7に供給する。
In the condenser 4a of the absorber 4, the pure water vapor and the concentrated salt are mixed at the confluence 28, so that the boiling point rises, and this serves as a high temperature heating source.
Therefore, the condensate from the condenser 10 of the steam turbine 8 is supplied to the absorber 4 through the path 30 by the circulation pump 12 to evaporate the condensate, and joins the vapor that is transferred from the condenser 2 through the path 31 to obtain the supercondensate. Supply to the heater 7.

【0023】スーパーヒータ7では外部から燃料Fを供
給し、混合ベーパーをスーパーヒートしてこれを蒸気タ
ービン8に送り、エンタルピー落差を利用して発電機9
で発電を行う。操作条件によっては、スーパーヒータ7
を省略することができる。
In the super heater 7, the fuel F is supplied from the outside, the mixed vapor is superheated and sent to the steam turbine 8, and the generator 9 is utilized by utilizing the enthalpy head.
To generate electricity. Depending on the operating conditions, the super heater 7
Can be omitted.

【0024】蒸気タービン8の排気はコンデンサー10
で凝縮し、このコンデンセートはそれぞれ前述の経路2
3,30を通して凝縮器2および吸収器4の蒸発側に供
給させて、蒸発操作を行う。
The exhaust of the steam turbine 8 is a condenser 10
Condensate is condensed by the
It is supplied to the evaporation side of the condenser 2 and the absorber 4 through 3, 30 to perform the evaporation operation.

【0025】蒸発器3の加熱器3aを出た排ガスは、経
路32を経て給気送風機51によって増湿器50に送
り、送風機52で送られる燃焼用空気の加温を行う。こ
こに増湿器50では、冷却塔53からのコンデンセート
を循環ポンプ54により増湿器50に供給し、このコン
デンセートを蒸発させて燃焼空気に水分を与える。増湿
器50を通った排ガスは冷却塔53に送られて、直接冷
却、あるいは間接冷却する。最終的な排ガスは冷却塔5
3の上部より大気中に拡散される。その前に、白煙防止
のための加熱器等を取り付けるのが好適である。
The exhaust gas discharged from the heater 3a of the evaporator 3 is sent to the humidifier 50 by the supply air blower 51 via the path 32, and the combustion air sent by the blower 52 is heated. Here, in the humidifier 50, the condensate from the cooling tower 53 is supplied to the humidifier 50 by the circulation pump 54, and the condensate is evaporated to give water to the combustion air. The exhaust gas that has passed through the humidifier 50 is sent to the cooling tower 53 and is directly or indirectly cooled. Final exhaust gas is cooling tower 5
It is diffused into the atmosphere from the upper part of 3. Before that, it is preferable to attach a heater or the like for preventing white smoke.

【0026】以上のように、本発明に従って、増湿器5
0を用いて増湿空気を燃焼用空気として用いることによ
り、蒸発器3の加熱温度が高くなり、大量の凝縮熱を少
ない温度差で(温度降下量で)蒸発器3内の作動流体に
伝熱できる。
As described above, according to the present invention, the humidifier 5
By using the humidified air as combustion air by using 0, the heating temperature of the evaporator 3 becomes high, and a large amount of heat of condensation is transferred to the working fluid in the evaporator 3 with a small temperature difference (amount of temperature drop). I can heat up.

【0027】[0027]

【実施例】前記の例において、操作条件などについて付
言する。本発明におけるヒートポンプの二作動体として
は、高温溶融無機塩と水の系が望ましいが、その他の組
合せも用いることができる。本発明に好適に用いられる
濃厚塩としては、リチュームブロマイド−水系を代表的
に用いることができるが、そのほか、硝酸カリおよび硝
酸ナトリウムの混合塩の水溶液、あるいはリチューム硝
酸と硝酸カリと硝酸ソーダの混合塩の水溶液なども用い
ることができる。
EXAMPLES In the above example, the operating conditions and the like will be additionally mentioned. As the two-acting body of the heat pump in the present invention, a system of high temperature molten inorganic salt and water is desirable, but other combinations can be used. As the concentrated salt preferably used in the present invention, a lithium bromide-water system can be representatively used. An aqueous solution of salt or the like can also be used.

【0028】焼却炉40の排ガスにより蒸気ヒートポン
プの発生器1を駆動して用い、発生器1よりの排ガスを
湿式処理をし、高温になったガスを蒸発器1の加熱部に
導入する。これによって、通常では45〜50℃で露点
になる排ガスを80℃付近で凝縮が始まるようにし、排
ガスの持っている多くの熱量を凝縮操作の下で、蒸発器
に熱量を与えることにより吸収器および凝縮器を加温さ
せることができる。
The generator 1 of the steam heat pump is driven by the exhaust gas of the incinerator 40, the exhaust gas from the generator 1 is wet-processed, and the hot gas is introduced into the heating portion of the evaporator 1. As a result, the exhaust gas, which normally has a dew point of 45 to 50 ° C., starts to condense at around 80 ° C., and a large amount of heat of the exhaust gas is given to the evaporator under the condensing operation. And the condenser can be warmed.

【0029】発生器1の加熱器の温度、すなわち排ガス
の入口温度は800℃前後で出口温度は300ないし4
50℃とし、高温腐食および酸露点によるチューブの腐
食を避けるのが望ましい。湿式スクラバー11での洗浄
処理においては、供給される排ガスの水分および増湿空
気の度合いによっても違うが、その出口ガス温度は、7
5〜83℃前後であり、これが蒸発器3に供給されて凝
縮を始め、蒸発器3からの出口の温度は65〜75℃前
後である。この温度は比較的低温であるので、発生器1
へと同じ程度の熱量をここで供給することができる。し
たがって、この温度のベーパーが吸収器4に導かれてコ
ンデンスするために、同様の熱量が蒸気となってタービ
ンに供給される。
The temperature of the heater of the generator 1, that is, the exhaust gas inlet temperature is around 800 ° C. and the outlet temperature is 300 to 4
It is desirable to set the temperature to 50 ° C. to avoid high temperature corrosion and tube corrosion due to acid dew point. In the cleaning process with the wet scrubber 11, the outlet gas temperature is 7 depending on the moisture content of the exhaust gas supplied and the degree of humidified air.
The temperature is around 5 to 83 ° C, which is supplied to the evaporator 3 to start condensation, and the temperature at the outlet from the evaporator 3 is around 65 to 75 ° C. Since this temperature is relatively low, the generator 1
The same amount of heat can be supplied here. Therefore, since the vapor of this temperature is guided to the absorber 4 to be condensed, the same amount of heat becomes steam and is supplied to the turbine.

【0030】凝縮器2および吸収器4の蒸発部の圧力
は、1〜3kg/fcm2 程度が好ましい。また、発生器1
の濃厚塩の温度は220〜260℃前後が好ましい。ま
た、蒸発器3の圧力は0.5kg/fcm2 前後が最適であ
る。
The pressure in the evaporators of the condenser 2 and the absorber 4 is preferably about 1 to 3 kg / fcm 2 . Also, the generator 1
The temperature of the concentrated salt is preferably 220 to 260 ° C. The pressure of the evaporator 3 is optimally around 0.5 kg / fcm 2 .

【0031】以上のようにして低圧蒸気ではあるが、適
切な過熱度ベーパーを得ることによって低圧の蒸気ター
ビン8を十分駆動することができる。
As described above, the low-pressure steam turbine 8 can be sufficiently driven by obtaining an appropriate superheat degree vapor.

【0032】[0032]

【実施例】本発明の効果を図1に従う実施例により説明
する。9,900Nm3/hrの湿度45%、温度25℃の
空気を誘引ファンで直径1.2m 、伝熱面積350m2
増湿器の下部より供給し、冷却塔より発生するドレンを
供給し、温度70℃の飽和空気を得て、これを焼却炉に
供給した。
EXAMPLES The effects of the present invention will be described with reference to an example according to FIG. Air of 9,900 Nm 3 / hr with a humidity of 45% and a temperature of 25 ° C. was supplied by an induction fan from the bottom of the humidifier with a diameter of 1.2 m and a heat transfer area of 350 m 2 , and the drain generated from the cooling tower was supplied. Saturated air with a temperature of 70 ° C. was obtained and fed to the incinerator.

【0033】発熱量2,000kcal/kgの廃棄物は流動
焼却炉に2.7Ton /hrの割合で供給されて焼却が行わ
れ、燃焼排ガス温度として840〜850℃で運転され
た。
Waste having a calorific value of 2,000 kcal / kg was supplied to a fluidized incinerator at a rate of 2.7 Ton / hr for incineration, and the combustion exhaust gas temperature was operated at 840 to 850 ° C.

【0034】燃焼排ガス量は13,300kg/hrであ
り、これが本発明の発生器を構成する、伝熱面積150
m2の煙管型ボイラーに供給された。ここでは、入口温度
840〜850℃、出口温度440〜450℃で運転を
した。ボイラー内部にはトータル塩濃度90%、そのう
ち硝酸ナトリウム19%、硝酸カリウム28%、硝酸リ
チューム53%の濃厚塩を2.3kg/fcm2 Abで227
℃で蒸発を行い、発生したベーパーは伝熱面積250m2
の凝縮器に供給し、缶外にはボイラー水が沸騰し、操作
圧力2.3kg/fcm2 Ab、蒸発量は3.8Ton /hrであ
る。
The amount of combustion exhaust gas is 13,300 kg / hr, which constitutes the generator of the present invention.
Supplied to a smoke tube boiler of m 2 . Here, the operation was performed at an inlet temperature of 840 to 850 ° C and an outlet temperature of 440 to 450 ° C. 90% total salt concentration, of which 19% sodium nitrate, 28% potassium nitrate, 53% nitrate nitrate, concentrated salt of 227 at 2.3 kg / fcm 2 Ab
Evaporate at ℃, the generated vapor has a heat transfer area of 250m 2
Boiler water boils outside the can, the operating pressure is 2.3 kg / fcm 2 Ab, and the evaporation amount is 3.8 Ton / hr.

【0035】次いでこの排ガスは、直径2.4m ×高さ
10m 湿式スクラバーを通して洗浄処理された後、加熱
器の伝熱面積150m2の横型多管式の蒸発器に供給され
た。
Next, this exhaust gas was washed through a wet scrubber having a diameter of 2.4 m and a height of 10 m, and then fed to a horizontal multi-tube evaporator having a heat transfer area of 150 m 2 of the heater.

【0036】蒸発器の運転は入口温度81〜82℃、出
口温度72℃とされた。一方、蒸発器の蒸発側は0.5
kg/fcm2 Abの圧力下で、凝縮器のコンデンセートを蒸
発した。蒸発器からのベーパーは、発生器の濃厚塩と混
合されて、温度135℃となって吸収器の加熱器の内部
で凝縮された。
The evaporator was operated at an inlet temperature of 81 to 82 ° C and an outlet temperature of 72 ° C. On the other hand, the evaporation side of the evaporator is 0.5
The condensate of the condenser was evaporated under a pressure of kg / fcm 2 Ab. The vapor from the evaporator was mixed with the concentrated salt of the generator to a temperature of 135 ° C and condensed inside the heater of the absorber.

【0037】この吸収器の外部は、蒸発側となってお
り、蒸気タービン排気のコンデンセートが供給され、こ
れを3.9Ton /hrの割合で蒸発させて、スーパーヒー
タ7に送られた。一方、ここで得られた凝縮液すなわち
希薄溶液は、ポンプにより熱交換器を経て発生器に返さ
れ、前記の操作が繰り返えされた。
The outside of this absorber is on the evaporation side, and the condensate of the steam turbine exhaust was supplied, and this was evaporated at a rate of 3.9 Ton / hr and sent to the super heater 7. On the other hand, the condensate obtained here, that is, the dilute solution, was returned to the generator via the heat exchanger by the pump, and the above operation was repeated.

【0038】この吸収器での発生蒸気と前記凝縮器から
の発生した蒸気を合流させて、灯油を燃料とする45m2
のスーパーヒータにより温度を300℃とし、3段の蒸
気タービンに供給し、それに付属している発電機によっ
て発電を行った。その際、排気蒸気は250m2のコンデ
ンサーによって0.07kg/fcm2 の真空下で運転し
た。発電機では1,080kwの発電量を得ることができ
た。
The steam generated in this absorber and the steam generated in the condenser are merged, and 45 m 2 using kerosene as fuel
The temperature was raised to 300 ° C. by the super heater of No. 3 and supplied to a three-stage steam turbine, and power was generated by the generator attached to it. At that time, the exhaust steam was operated under a vacuum of 0.07 kg / fcm 2 with a condenser of 250 m 2 . With the generator, we were able to obtain a power output of 1,080 kw.

【0039】[0039]

【発明の効果】本発明によれば、発電熱効率として約1
4.3%であり、通常の小型ゴミ処理発電プラントでの
発電量と比較してきわめて高い。水分および有害物質を
多く含む廃棄物を増湿燃焼をし、そのガスを再生器に供
給し、出口の高温ガスを湿式処理し、それをさらに蒸発
器に入れることにより従来よりも約2倍の蒸気発生量を
得て、これをスーパーヒートすることにより低圧蒸気で
はあるが、有効な発電を行わせることができる。この発
電量は通常のボイラーの2倍であり、したがって、発電
量も約2倍となる。
According to the present invention, the thermal efficiency of power generation is about 1
This is 4.3%, which is extremely high compared to the amount of power generated by a normal small-sized waste treatment power plant. The waste containing a lot of water and harmful substances is humidified and burned, the gas is supplied to the regenerator, the hot gas at the outlet is wet-processed, and it is further put in the evaporator, so that it is about twice as much as before. By obtaining the steam generation amount and superheating this, it is possible to generate effective power though it is low pressure steam. The amount of power generation is twice that of a normal boiler, and therefore the amount of power generation is also about double.

【0040】なお、本発明は小型の200Ton /day 程
度までの大きさの焼却炉に付設することにより優れた利
点がもたらされる。
The present invention provides excellent advantages by being attached to a small incinerator having a size of up to about 200 Ton / day.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成例を示すフローシートである。FIG. 1 is a flow sheet showing a configuration example of the present invention.

【符号の説明】[Explanation of symbols]

1…発生器、1a…加熱器、2…凝縮器、2b…再過熱
器、3…蒸発器、3a…加熱器、4…吸収器、5,6…
熱交換器、7…スーパーヒータ、8…蒸気タービン、9
…発電機、10…コンデンサー、11…湿式スクラバ
ー、40…焼却炉、50…増湿器。
1 ... Generator, 1a ... Heater, 2 ... Condenser, 2b ... Reheater, 3 ... Evaporator, 3a ... Heater, 4 ... Absorber, 5, 6 ...
Heat exchanger, 7 ... Super heater, 8 ... Steam turbine, 9
... generator, 10 ... condenser, 11 ... wet scrubber, 40 ... incinerator, 50 ... humidifier.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】発生器、凝縮器、蒸発器および吸収器によ
り吸収式ヒートポンプを構成し、 水分を含む廃棄物を焼却炉に投入し、増湿された燃焼空
気を用いて焼却し、 その排ガスを、二作動体の駆動熱源として前記発生器に
導いて、蒸気を発生させてこれを凝縮器に導くととも
に、前記発生器を通った排ガスを湿式処理により洗浄処
理し、このガスを前記吸収器へ送り吸熱熱源として利用
し、 前記吸収器での発生蒸気と前記凝縮器での発生蒸気を蒸
気タービンに導いて発電を行うことを特徴とする焼却排
ガスによる発電方法。
1. An absorption heat pump comprising a generator, a condenser, an evaporator and an absorber. Waste containing water is put into an incinerator and incinerated using humidified combustion air. Is introduced into the generator as a driving heat source for the two-actuator to generate steam and guide it to the condenser, and the exhaust gas passing through the generator is washed by a wet process, and the gas is absorbed into the absorber. Is used as an endothermic heat source, and is used as an endothermic heat source to guide the steam generated in the absorber and the steam generated in the condenser to a steam turbine to generate electric power.
【請求項2】前記蒸気タービンに蒸気を供給する前に、
その蒸気を外部熱源によりスーパーヒートした後、発電
を行う請求項1記載の焼却排ガスによる発電方法。
2. Before supplying steam to the steam turbine,
The power generation method using incineration exhaust gas according to claim 1, wherein the steam is superheated by an external heat source and then power is generated.
【請求項3】外部熱源として、焼却排ガスを利用する請
求項1記載の焼却排ガスによる発電方法。
3. The power generation method using incineration exhaust gas according to claim 1, wherein incineration exhaust gas is used as the external heat source.
【請求項4】前記焼却炉は、注水して温度を制御してい
る炉である請求項1記載の焼却排ガスによる発電方法。
4. The power generation method using incinerator exhaust gas according to claim 1, wherein the incinerator is a furnace in which water is injected to control the temperature.
【請求項5】前記発生蒸気の一部を前記発電に、残部を
工業用蒸気および冷暖房用蒸気のいずれか一つに用いる
請求項1記載の焼却排ガスによる発電方法。
5. The power generation method using incineration exhaust gas according to claim 1, wherein a part of the generated steam is used for the power generation and the rest is used for any one of industrial steam and cooling / heating steam.
【請求項6】前記吸収器を通った排ガスを、前記増湿時
において燃焼空気の加温に用いる請求項1記載の焼却排
ガスによる発電方法。
6. The power generation method using incineration exhaust gas according to claim 1, wherein the exhaust gas that has passed through the absorber is used for heating combustion air during the humidification.
JP7051450A 1995-03-10 1995-03-10 Generation method due to burning exhaust gas Pending JPH08246816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7051450A JPH08246816A (en) 1995-03-10 1995-03-10 Generation method due to burning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7051450A JPH08246816A (en) 1995-03-10 1995-03-10 Generation method due to burning exhaust gas

Publications (1)

Publication Number Publication Date
JPH08246816A true JPH08246816A (en) 1996-09-24

Family

ID=12887277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7051450A Pending JPH08246816A (en) 1995-03-10 1995-03-10 Generation method due to burning exhaust gas

Country Status (1)

Country Link
JP (1) JPH08246816A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105257353A (en) * 2015-10-13 2016-01-20 雷衍章 Absorption type circulation system and method
CN106352590A (en) * 2016-06-15 2017-01-25 李华玉 Combined heating and power system
CN106440469A (en) * 2016-05-30 2017-02-22 李华玉 Combined heating and power system
CN106440467A (en) * 2016-05-30 2017-02-22 李华玉 Heat and power combined supply system
CN106440468A (en) * 2016-06-15 2017-02-22 李华玉 Combined heating and power system
CN106524560A (en) * 2016-06-15 2017-03-22 李华玉 Heat-power combined supply system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105257353A (en) * 2015-10-13 2016-01-20 雷衍章 Absorption type circulation system and method
CN106440469A (en) * 2016-05-30 2017-02-22 李华玉 Combined heating and power system
CN106440467A (en) * 2016-05-30 2017-02-22 李华玉 Heat and power combined supply system
CN106440469B (en) * 2016-05-30 2020-01-31 李华玉 Combined heat and power system
CN106440467B (en) * 2016-05-30 2020-05-01 李华玉 Combined heat and power system
CN106352590A (en) * 2016-06-15 2017-01-25 李华玉 Combined heating and power system
CN106440468A (en) * 2016-06-15 2017-02-22 李华玉 Combined heating and power system
CN106524560A (en) * 2016-06-15 2017-03-22 李华玉 Heat-power combined supply system
CN106440468B (en) * 2016-06-15 2020-03-17 李华玉 Combined heat and power system
CN106524560B (en) * 2016-06-15 2020-05-01 李华玉 Combined heat and power system
CN106352590B (en) * 2016-06-15 2020-06-16 李华玉 Combined heat and power system

Similar Documents

Publication Publication Date Title
JP3119718B2 (en) Low voltage power generation method and device
CN208011678U (en) The afterheat utilizing system of waste incineration
JP6009009B2 (en) Heat recovery power generation facility from combustion exhaust gas
JP4155898B2 (en) High moisture waste incineration facility equipped with gas turbine
KR20140081943A (en) District heating system including absorption heat pump for increasing production amount of electricity and heat
JP6522085B1 (en) Heat recovery power generation equipment from flue gas and control method thereof
JP3042394B2 (en) Power generation system utilizing waste incineration heat
JP2005098552A5 (en)
JPH08246816A (en) Generation method due to burning exhaust gas
JP3905967B2 (en) Power generation / hot water system
CN109163477A (en) A kind of absorption type heat pump system of gas fired-boiler fume afterheat and condensate-water polishing
JPH08261600A (en) Recovering method for exhaust heat
EP0639254B1 (en) Method in small-power plant use
CN114034074A (en) Nuclear power unit cogeneration system utilizing condensate water waste heat and working method
JP2655227B2 (en) Absorption double-effect generator
JP2703147B2 (en) Power generation equipment
JP7490186B1 (en) Waste treatment facility exhaust heat recovery system and method
JPH09256818A (en) Waste incinerating exhaust heat using power generation plant
JP2001029939A (en) Wastewater treatment facility
JPH062508A (en) Absorption power generating device
CN113739162B (en) Flue gas waste heat recovery device of garbage incineration system
JPH0626310A (en) Waste heat recovery method in wet sulfurization system
JP2001115855A (en) Gas turbine system
JP2750783B2 (en) Exhaust heat recovery method in cogeneration system
CN209744401U (en) Waste incineration flue gas waste heat utilization system based on absorption heat pump