JPS58110492A - Liquid phase epitaxial growth method - Google Patents

Liquid phase epitaxial growth method

Info

Publication number
JPS58110492A
JPS58110492A JP21350181A JP21350181A JPS58110492A JP S58110492 A JPS58110492 A JP S58110492A JP 21350181 A JP21350181 A JP 21350181A JP 21350181 A JP21350181 A JP 21350181A JP S58110492 A JPS58110492 A JP S58110492A
Authority
JP
Japan
Prior art keywords
liquid phase
component elements
evaporate
epitaxial growth
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21350181A
Other languages
Japanese (ja)
Inventor
Michiharu Ito
伊藤 道春
Mitsuo Yoshikawa
吉河 満男
Kenji Maruyama
研二 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21350181A priority Critical patent/JPS58110492A/en
Publication of JPS58110492A publication Critical patent/JPS58110492A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To prevent the dissipation of easy to evaporate components by placing the liquid phase consisting of plural component elements contg. easy to evaporate component elements added with excess hard to evaporate component elements still on a substrate and forming a crystal layer while covering the surface of the liquid phase with the hard to evaporate component elements. CONSTITUTION:A sliding member 4 of a rectangular parallelopiped shape having a liquid well consisting of a square through-hole is disposed on a susceptor 1 buried with a substrate 3 in a recess 2. The plural component elements contg. easy to evaporate component elements added with excess hard to evaporate component elements are packed in the well 5. The susceptor 1 and the member 4 are inserted into a reacting tube, and are heated to melt the component elements in the well 5 and to float the hard to evaporate component elements in a supersaturated state, by which the surface of the liquid phase is covered. In this state, the member 4 is moved in an arrow A direction and the well 5 is placed still on the substrate 3, whereby an epitaxial layer is grown.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は液相エビタキVヤル成長方法、特に易蒸発性成
分元素の水銀CHg”)のような成分を含む化合物半導
体の液相エピタキシャル成長方法の改良に関するもので
ある。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to a liquid phase epitaxial growth method, particularly a liquid phase epitaxial growth method of a compound semiconductor containing a component such as mercury (CHg), which is an easily evaporable component element. It is about improvement.

(ロ)技術の背景 Hgを含む化合物半導体、例えば水銀、カドミウム、T
 1vtLy (Hgl zcd)(Te)  の結晶
はそのエネルギーギャップが狭く赤外線検知素子等の光
電変換素子の材料として用いられている。
(b) Technical background Compound semiconductors containing Hg, such as mercury, cadmium, T
1vtLy (Hgl zcd) (Te) crystal has a narrow energy gap and is used as a material for photoelectric conversion elements such as infrared detection elements.

このようなHgt xCdxTeの枯菌を素子形成を容
易とするために所定の厚さに薄く、しかも表面を平滑に
してかつ大面積で得るために液相エビタキンヤル成長方
法がとられている。
In order to make the Hgt x Cd x Te bacterium thin to a predetermined thickness in order to facilitate device formation, and to obtain a large area with a smooth surface, a liquid phase Evitae growth method has been adopted.

(C)  従来技術と問題点 ここでこのようなHg 1−xCdxTeの結晶を形成
する際の従来の液相エピタキシャル成長方法について説
明する。まずt!g1図に示すように直方体形状のカー
ボンよりなる支持台1の凹所2にテ/L’/L’化カド
虜つム(CdTe )よシなる基板8を埋設する。
(C) Prior Art and Problems Here, a conventional liquid phase epitaxial growth method for forming such a Hg 1-xCdxTe crystal will be described. First t! As shown in Fig. g1, a substrate 8 made of Te/L'/L' CdTe is embedded in the recess 2 of the support base 1 made of rectangular parallelepiped carbon.

一方該支持台上をスライドして移動し、かつカーボンよ
シなる直方体形状のスフイド部材番の方形の貫通孔より
なる液だめb内に該基板上に形成すべき結晶の材料とな
るHg、カド竺つム(Ca)、テ/L//L/(Te)
をそれぞれ所定X値を持つHg 1−xCdxTeの組
成となるように秤量して収容する。
On the other hand, Hg, which is the material of the crystal to be formed on the substrate, is moved by sliding on the support base, and is placed in a liquid reservoir b consisting of a rectangular through hole of a rectangular parallelepiped sphide member made of carbon. Shitsumu (Ca), Te/L//L/(Te)
are weighed and stored so that each has a composition of Hg 1-xCdxTe with a predetermined X value.

その後該支持台とスライド部材とよシなる液相エピタキ
シャル成長装置を水素(Hz)ガス雰囲気内の反応管中
に導入して該反応管を約600℃の温度に加熱して前記
Hg、 Cd、 Toの材料を溶融してHgl zCd
xTeの液相6を形成する。その後スフイド部材4を矢
印A方向にスライドさせて基板8上に液だめ5を静置さ
せてから加熱炉の温度を所定の温度勾配で低下させて基
板上にHgl zcLlzTeの結晶層を形成するよう
にしている。
Thereafter, the liquid phase epitaxial growth apparatus including the support stand and the slide member was introduced into a reaction tube in a hydrogen (Hz) gas atmosphere, and the reaction tube was heated to a temperature of about 600° C. to form the above-mentioned Hg, Cd, To. Hgl zCd by melting the material
A liquid phase 6 of xTe is formed. Thereafter, the sulfid member 4 is slid in the direction of arrow A to leave the liquid reservoir 5 still on the substrate 8, and then the temperature of the heating furnace is lowered at a predetermined temperature gradient to form a crystal layer of HglzcLlzTe on the substrate. I have to.

ここでHg、Cd、Teを溶融しテHg1−XCdxT
eノ液相を形成し九場合、Teは該液相の溶媒となシH
gとCdは該液相の溶質となり、通常液相は(Hg 1
−xcdx ) 5−yTey(D形で表わされ、溶[
Teに対して、溶質C(1が1−g七μ%溶解すると飽
和状態となって液相は安定であるが、溶質cdが溶媒T
θに対して1〜8毛y%以上溶解すると、過飽和状態の
Cdが液相よシ析出してcdの比重がTeの比重より小
さいので、液相の表面にcdが浮上してくるようになる
ので、前述し九廖質Cdが溶媒Teに対して1〜8七μ
%の値となるように秤量して液だめ内に収容するように
していた。
Here, Hg, Cd, and Te are melted and TeHg1-XCdxT
When a liquid phase is formed, Te serves as a solvent for the liquid phase.
g and Cd become solutes in the liquid phase, and normally the liquid phase is (Hg 1
-xcdx) 5-yTey (represented by the D form, soluble [
When 7 μ% of solute C (1) dissolves in Te, it becomes saturated and the liquid phase is stable.
When dissolved in an amount of 1 to 8% or more with respect to θ, supersaturated Cd will precipitate from the liquid phase, and since the specific gravity of CD is smaller than the specific gravity of Te, CD will float to the surface of the liquid phase. Therefore, the above-mentioned nine-dimensional Cd has a ratio of 1 to 87μ relative to the solvent Te.
It was weighed and stored in a liquid reservoir so as to give a value of %.

しかしこのようにして形成したHg+−XCdXTeの
液相を用いて基板上にエピタキシャル成長をする際、H
gが易蒸発性成分であるのでエピタキシャル成長中にH
gの蒸気となって反応管内に逃散してしまう欠点があり
形成されるHg1−XcdXTeの結晶が所定の組成に
ならない。
However, when performing epitaxial growth on a substrate using the liquid phase of Hg+-XCdXTe formed in this way, Hg
Since g is an easily evaporable component, H
The disadvantage is that the Hg1-XcdXTe crystals formed do not have a predetermined composition because they become vapor and escape into the reaction tube.

そこで従来は液だめ内にあらかじめ酸化[率(BgOa
)を添加して該BgOaで液相の表面を被覆して液相か
らのHgの蒸発を防ぐ方法を用いていたが、このような
方法であると硼素の)が結晶層中に不純物として添加さ
れて形成される光電変換素子の特性が劣化する不具合が
生じる。
Therefore, conventionally, the oxidation [rate (BgOa)
) was used to prevent the evaporation of Hg from the liquid phase by adding BgOa to the surface of the liquid phase, but with this method, boron () was added as an impurity to the crystal layer. A problem arises in that the characteristics of the photoelectric conversion element formed by this process are deteriorated.

またこの他に反応管を内管、外管の二重管構造となし、
内管の端部にHgを収容する液だめを設け、ま表内管の
内部にエピタキシャル成長用装置を設け、HgO液だめ
とエピタキシャル成長用装置とを別個に加熱する加熱炉
を設けて外管内に非酸化性ガスを流した状態で内管内を
常に一定のHgの蒸気圧になるようにして液だめ内の液
相よりエピタキシャル成長中にHgが逃散しないように
したエピタキシャル成長装置を本発明者らは特願昭55
−11556!3号においてすでに提案している。
In addition, the reaction tube has a double tube structure with an inner tube and an outer tube,
A liquid reservoir containing Hg is provided at the end of the inner tube, an epitaxial growth device is provided inside the inner tube, and a heating furnace is provided to separately heat the HgO liquid reservoir and the epitaxial growth device. The present inventors have filed a patent application for an epitaxial growth apparatus that maintains a constant Hg vapor pressure inside the inner tube while flowing an oxidizing gas to prevent Hg from escaping from the liquid phase in the liquid reservoir during epitaxial growth. Showa 55
-11556! It has already been proposed in No. 3.

しかしこのような方法であると装置が複雑で装置に要す
るコストが高くなシまたHgの蒸気圧を制御するのが困
難であるといった不都合を生じる。
However, such a method has disadvantages such as a complicated apparatus, high cost, and difficulty in controlling the vapor pressure of Hg.

に)発明の目的 本発明は上述した欠点を除去し、簡単な方法でしかも素
子形成上悪影響を及ぼす異種の不純物が結晶層中に混入
されず、またエピタキシャル成長過程で易蒸発性成分の
Hgが逃散し力いような液相エピタキシャル成長方法の
提供を目的とするものである。
B) Purpose of the Invention The present invention eliminates the above-mentioned drawbacks, uses a simple method, prevents foreign impurities that have an adverse effect on device formation from being mixed into the crystal layer, and allows Hg, an easily evaporable component, to escape during the epitaxial growth process. The purpose of this invention is to provide a liquid phase epitaxial growth method that is highly efficient.

(e)  発明の構成 かかる目的を達成するための本発明の液相エヒ。(e) Structure of the invention The liquid phase liquid of the present invention is used to achieve the above object.

タキシャル成長方法は基板上に易蒸発性成分元素を含ん
だ複数個の成分元素よりなる液相を静置させて、該液相
の組成よりなる結晶層な形成する液相エピタキシャル成
長方法において、前記液相を形成する複数個の成分元素
のうち難蒸発性成分元素をあらかじめ所定の値より多く
含有させて液相となし、該液相表面を前記過剰の難蒸発
性成分元素で覆いながら基板上に結晶層を形成すること
を特徴とするものである。
The taxial growth method is a liquid phase epitaxial growth method in which a liquid phase consisting of a plurality of component elements including an easily evaporated component element is allowed to stand on a substrate, and a crystal layer having the composition of the liquid phase is formed. Among a plurality of component elements forming a phase, a non-evaporable component element is preliminarily contained in an amount larger than a predetermined value to form a liquid phase, and the surface of the liquid phase is covered with the excess non-evaporable component element while being placed on a substrate. It is characterized by forming a crystal layer.

つまり、本発明の従来の方法と異なる薇はHg。In other words, the method of the present invention differs from the conventional method in that Hg is used.

C(1,Toをそれぞれ秤量して液だめ内に収容したの
ち、溶融して液相とする際、溶媒Tθに対して飽和量以
上にCdを添加し、それによって過飽和状部となって溶
媒Te内に溶解せずに液相上に浮び上ってきた過剰難蒸
発成分のC(1の成分で液相上を被覆し、この過剰0(
1成分の被覆によってエピタキシャル成長中に液相より
易蒸発性成分のHgが蒸発するのを防止するものである
After weighing each of C(1 and To) and storing them in a liquid reservoir, when melting them to form a liquid phase, Cd is added in an amount exceeding the saturation amount to the solvent Tθ, thereby forming a supersaturated portion and dissolving the solvent. The excess 0(
The one-component coating prevents Hg, which is an easily evaporable component, from evaporating from the liquid phase during epitaxial growth.

(0発明の実施例 以下本発明の実施例につき図面を用いて詳細に説明する
(Embodiments of the invention) Hereinafter, embodiments of the invention will be described in detail with reference to the drawings.

前述した図に示す支持台1の凹所2にCdTeの基板を
埋設する。一方スライド部材4の液だめにHgを950
11g%Teを8050wag、Cdを26011gそ
れぞれ秤量して充填したのち、該支持台と7フイド部材
とをH2ガス雰囲気内の反応管中に挿入して加熱炉にて
該反応管を約500℃の温度に加熱する。
A CdTe substrate is buried in the recess 2 of the support base 1 shown in the above-mentioned figure. On the other hand, add 950 Hg to the liquid reservoir of slide member 4.
After weighing and filling 8,050 wag of 11 g% Te and 26,011 g of Cd, the support stand and the 7-fid member were inserted into a reaction tube in an H2 gas atmosphere, and the reaction tube was heated to about 500°C in a heating furnace. Heat to temperature.

このようにして液だめ内のHg、 Ccl、 Teが溶
融し、Teを溶媒としてHg、Cdを溶質した(Hgl
−xCdxh−yTθyの組成の液相が形成されCdが
Teに対して10モル%添加されたことになる。ここで
CdがTeに対してl−2モル%の割合であると平衡状
態となってCdがTe内に溶解するが、CdをTeに対
して10モル%添加するとTeがcdに対して過飽和の
状態になり溶解しないCdの成分が液相の表面に浮び上
ってくる。この状態で前述したスライド部材4を矢印A
方向に移動させてCdTeの基板8上に液だめbを静置
させ、基板と液相とを充分になじませたのち、加熱炉を
所定の温度勾配により徐冷させて液相よりHg 1−x
odxTeの結晶をCdTe基板上にエピタキシャル成
長させて析出させる。このエピタキシャル成長の過程で
液相は表面に浮き出たCdの成分で被覆されるので、液
相から易蒸発性成分のHgが蒸発して損失することがな
くなり、組成の安定したエピタキシャル結晶層が得られ
る。以上の東施例においてはC(1の添加kをTeに対
して1〇七ル%としたが、2モル5以上10セル%まで
なら適当な値に選んで差し支えない。このようにして峡
相上に形成されるCdの成分を分厚くすると前述した二
重管構造の複雑な液相エピタキシャル成長装置を用いな
くても簡単な従来の構造の反応管が開管状縣の装置を用
いて所望の組成のエビタギシャρ結晶の成長が可能とな
る。
In this way, Hg, Ccl, and Te in the liquid reservoir were melted, and Hg and Cd were soluted using Te as a solvent (Hgl
A liquid phase having a composition of -xCdxh-yTθy was formed, and 10 mol% of Cd was added to Te. Here, when Cd is at a ratio of 1-2 mol% to Te, an equilibrium state occurs and Cd dissolves in Te, but when Cd is added at 10 mol% to Te, Te becomes supersaturated with respect to cd. In this state, undissolved Cd components float to the surface of the liquid phase. In this state, move the slide member 4 as indicated by the arrow A.
After the liquid reservoir b is placed on the CdTe substrate 8 and the substrate and the liquid phase are thoroughly blended, the heating furnace is slowly cooled with a predetermined temperature gradient to remove Hg 1− from the liquid phase. x
An odxTe crystal is epitaxially grown and deposited on a CdTe substrate. During this epitaxial growth process, the liquid phase is covered with the Cd component floating on the surface, so Hg, an easily evaporable component, is not lost by evaporation from the liquid phase, and an epitaxial crystal layer with a stable composition can be obtained. . In the above example, the addition k of C(1) was set at 107% with respect to Te, but an appropriate value may be selected as long as it is 2 mol 5 or more and up to 10 cell %. By thickening the Cd component formed on the phase, it is possible to obtain the desired composition using an open tube-shaped reaction tube with a simple conventional structure without using the complex liquid-phase epitaxial growth apparatus with the double-tube structure described above. This makes it possible to grow Evitagisha rho crystals.

(ロ)発明の効果 以上述べたように本発明の方法により易蒸発性成分の逃
散を防止した形で液相エピタキシャル成長が可能となり
、したがって形成されるエピタキシャル結晶層の組成が
安定しこのような材料を用いて赤外線検知素子を形成す
れば形成される素子の特性が安定して素子の製造歩留が
向上する利点を生じる。
(B) Effects of the Invention As described above, the method of the present invention enables liquid phase epitaxial growth while preventing the escape of easily evaporable components, thereby stabilizing the composition of the epitaxial crystal layer formed and making it possible to use such materials. If an infrared sensing element is formed using this method, the characteristics of the formed element will be stabilized and the manufacturing yield of the element will be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図は従来および本発明のエピタキシャル成長方法に用い
たエピタキシャル成長装置の断面図である。 図において、lは支持台、2は凹所、8は基板、会はス
ライド部材、5は液だめ、6はHg1−xCdxTeの
液相、Aはスライド方向を示す矢印である。
The figure is a cross-sectional view of an epitaxial growth apparatus used in the conventional epitaxial growth method and the epitaxial growth method of the present invention. In the figure, l is a support base, 2 is a recess, 8 is a substrate, 5 is a slide member, 5 is a liquid reservoir, 6 is a liquid phase of Hg1-xCdxTe, and A is an arrow indicating the sliding direction.

Claims (1)

【特許請求の範囲】[Claims] 基板上に易蒸発性成分元素を含んだ複数個の成分元素よ
シなる液相を静置させて、該液相の組成よりなる結晶層
を形成する液相エピタキシャル成長方法において、前記
液相を形成する複数個の成分元素のうち難蒸発性成分元
素をあらかじめ所定の値より多く含有させて液相となし
、該液相表面を前記過剰の難蒸発性成分元素で覆いなが
ら基板上に結晶層を形成することを特徴とする液相エピ
タキシャル成長方法。
In a liquid phase epitaxial growth method in which a liquid phase consisting of a plurality of component elements including an easily evaporable component element is allowed to stand on a substrate to form a crystal layer having the composition of the liquid phase, forming the liquid phase. Among the plurality of component elements, a non-evaporable component element is preliminarily contained in an amount larger than a predetermined value to form a liquid phase, and a crystal layer is formed on the substrate while covering the surface of the liquid phase with the excess non-evaporable component element. A liquid phase epitaxial growth method characterized by forming.
JP21350181A 1981-12-23 1981-12-23 Liquid phase epitaxial growth method Pending JPS58110492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21350181A JPS58110492A (en) 1981-12-23 1981-12-23 Liquid phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21350181A JPS58110492A (en) 1981-12-23 1981-12-23 Liquid phase epitaxial growth method

Publications (1)

Publication Number Publication Date
JPS58110492A true JPS58110492A (en) 1983-07-01

Family

ID=16640236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21350181A Pending JPS58110492A (en) 1981-12-23 1981-12-23 Liquid phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPS58110492A (en)

Similar Documents

Publication Publication Date Title
Dang et al. Recent progress in the synthesis of hybrid halide perovskite single crystals
US3093517A (en) Intermetallic semiconductor body formation
US4315796A (en) Crystal growth of compound semiconductor mixed crystals under controlled vapor pressure
US3933538A (en) Method and apparatus for production of liquid phase epitaxial layers of semiconductors
Harman Slider LPE of Hg 1-x Cd x Te using mercury pressure controlled growth solutions
US4642142A (en) Process for making mercury cadmium telluride
Laugier et al. Ternary phase diagram and liquid phase epitaxy of Pb-Sn-Se and Pb-Sn-Te
Lynch Vapor growth of Cadmium Telluride single crystals
US3853487A (en) Method of forming crystals by the control of volatile constituent diffusion path distances through a melt
JP3087065B1 (en) Method for growing liquid phase of single crystal SiC
US4906325A (en) Method of making single-crystal mercury cadmium telluride layers
JPS58110492A (en) Liquid phase epitaxial growth method
US3933539A (en) Solution growth system for the preparation of semiconductor materials
US3840652A (en) Method of removing foreign phases from the crystals of a compound
Kakehi et al. Epitaxial vapor growth of gallium antimonide
JP3891722B2 (en) Method for producing iron silicide crystal
JPS582036A (en) Manufacture of semiconductor device
JPS5834925A (en) Liquid phase epitaxial growth device
Yellin et al. Electrical properties of CdTe crystals grown by vuvg from nonstoichiometric charges
JP2732573B2 (en) Manufacturing method of compound semiconductor single crystal
US3600143A (en) Growth of crystalline chalcogenide spinels
JPH01246199A (en) Production of single crystal of compound semiconductor
JPH01208393A (en) Slider boat for liquid-phase epitaxial growth
JPH03194922A (en) Device for crystal-growing ii-vi compound semiconductor
JPS6296393A (en) Crystal growth of mercury cadmium telluride