JPS581054B2 - Manufacturing method for optical fiber material rod - Google Patents

Manufacturing method for optical fiber material rod

Info

Publication number
JPS581054B2
JPS581054B2 JP53000281A JP28178A JPS581054B2 JP S581054 B2 JPS581054 B2 JP S581054B2 JP 53000281 A JP53000281 A JP 53000281A JP 28178 A JP28178 A JP 28178A JP S581054 B2 JPS581054 B2 JP S581054B2
Authority
JP
Japan
Prior art keywords
heating source
optical fiber
fiber material
gas
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53000281A
Other languages
Japanese (ja)
Other versions
JPS5494048A (en
Inventor
横田弘
吉田雅朗
渡辺稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP53000281A priority Critical patent/JPS581054B2/en
Publication of JPS5494048A publication Critical patent/JPS5494048A/en
Publication of JPS581054B2 publication Critical patent/JPS581054B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01257Heating devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01861Means for changing or stabilising the diameter or form of tubes or rods
    • C03B37/01869Collapsing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は径及び軸方向に均一なコア径、屈折率分布を有
する光ファイバー用素材ロンド(プリフォームと称する
)を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber material rond (referred to as a preform) having a uniform core diameter and refractive index distribution in the radial and axial directions.

プリフォーム製造の際に、管状の母体内部に反応原料ガ
スを導入し、外部の移動する加熱源を用いて管内壁上に
所定の屈折率、熱膨脹係数、粘度等の物性値を有する合
成ガラスを堆積させる化学蒸着法(CVD法)は、低損
失、広帯域ファイバーを得る方法として優れた方法であ
ることが知られている。
During preform manufacturing, a reactant gas is introduced into the tubular matrix, and a synthetic glass having predetermined physical properties such as refractive index, coefficient of thermal expansion, and viscosity is coated on the inner wall of the tube using an external moving heating source. Chemical vapor deposition (CVD) is known to be an excellent method for obtaining low-loss, broadband fibers.

この製造方法は、一般に石英管内に一方から合成ガラス
の主原料であるSiCl4と屈折率制御用の添加剤であ
るGeCl4,BBr3,POCl3等を酸素ガス(O
2)とともに導入し酸水素バーナ等の加熱源により石英
管外部より加熱し原料ガスを酸化し石英管内壁上に生成
ガラス微粒子を堆積させるとともに熔融ガラス化するも
のである。
In this manufacturing method, SiCl4, which is the main raw material of synthetic glass, and GeCl4, BBr3, POCl3, etc., which are additives for controlling the refractive index, are generally introduced into a quartz tube from one side using oxygen gas (O2).
2) is introduced and heated from the outside of the quartz tube using a heat source such as an oxyhydrogen burner to oxidize the raw material gas, deposit the resulting glass particles on the inner wall of the quartz tube, and melt and vitrify it.

このときの石英管の軸方向温度分布は、第1図に示すよ
うに唯一の温度極大部を有する。
The axial temperature distribution of the quartz tube at this time has only one temperature maximum, as shown in FIG.

しかしこの製造方法でプリフォームを作製すると反応管
である石英管の軟化点近傍まで温度を上げることが合成
ガラスを堆積させるのに必要であるため繰り返し行なう
と表面張力のために石英管の変形が生じ内径の収縮、肉
厚の増加等生ずる。
However, when a preform is manufactured using this manufacturing method, it is necessary to raise the temperature to near the softening point of the quartz tube, which is the reaction tube, in order to deposit synthetic glass. If this is repeated, the quartz tube may deform due to surface tension. This results in shrinkage of the inner diameter and increase in wall thickness.

これより原料ガスの流速、圧力、温度等の反応条件が変
化し酸化反応収率が異なってくるため均一な組成のガラ
ス微粒子が生成されず、また石英管の内壁温度堆積ガラ
ス微粒子の膜厚の変化により透明ガラス化条件が変化す
るため均一な組成のガラスが石英管内に堆積されず、光
ファイバーの寸法精度、伝送特性に著しい悪影響を及ぼ
す。
As a result, the reaction conditions such as the flow rate, pressure, and temperature of the raw material gas change and the oxidation reaction yield differs, making it impossible to produce glass particles with a uniform composition. Since the transparent vitrification conditions change due to this change, glass with a uniform composition cannot be deposited in the quartz tube, which has a significant negative effect on the dimensional accuracy and transmission characteristics of the optical fiber.

本発明は石英管の熱的変形を除去し均一なコア径、屈折
率分布を有する素材ロンドを製造するための方法を提供
するものである。
The present invention provides a method for manufacturing a material rondo having a uniform core diameter and refractive index distribution by eliminating thermal deformation of a quartz tube.

石英管の熱的変形を防ぐ方法には、屈折率制御用の添加
剤GeO2、P2O5、B203等の濃度を調整し透明
ガラス化温度を低下させる方法と石英管内に圧力を加え
る方法がよく知られているが、第1の方法は、石英ガラ
スと添加合成ガラスとの熱膨脹%数の差により添加濃度
が制限され、第2の方法では圧力を精密に匍御すること
が困難である。
Two well-known methods for preventing thermal deformation of a quartz tube are a method of lowering the transparent vitrification temperature by adjusting the concentration of additives such as GeO2, P2O5, and B203 for controlling the refractive index, and a method of applying pressure inside the quartz tube. However, in the first method, the additive concentration is limited due to the difference in thermal expansion percentage between the quartz glass and the additive synthetic glass, and in the second method, it is difficult to precisely control the pressure.

本発明は石英管の軸方向温度分布を第2図に示すように
2或いは2以上の極大部を有するように保持することに
より、原料ガスの酸化反応を100%進行させるととも
に透明ガラス化過程を初期焼結、透明ガラス化の2段階
に分け透明ガラス化温度を下げ、石英管の熱的変形が生
じない条件でCVD法を行なうものである。
In the present invention, by maintaining the axial temperature distribution of the quartz tube to have two or more maximum parts as shown in Fig. 2, the oxidation reaction of the raw material gas can proceed 100% and the transparent vitrification process can be completed. The CVD method is divided into two stages: initial sintering and transparent vitrification, and the transparent vitrification temperature is lowered, and the CVD method is performed under conditions that do not cause thermal deformation of the quartz tube.

2以上の極大部を有する軸方向温度分布を実現するには
、加熱源を2本以上連結することが考えられるが、この
方法では加熱源装置の大型化が必要となり加熱源の移動
距離が制限され母材反応管である石英管の有効な使用長
が減少し、ファイバーの製造コストを高くする欠点があ
り、また2以上の極大値をもつ温度分布に各加熱源を調
整するのは非常に困難であり実用上問題が存在する。
In order to achieve an axial temperature distribution with two or more local maxima, it is possible to connect two or more heating sources, but this method requires a larger heating source device and limits the moving distance of the heating source. This has the disadvantage of reducing the effective length of the quartz tube, which is the base material reaction tube, and increasing the manufacturing cost of the fiber.Also, it is very difficult to adjust each heating source to a temperature distribution with two or more maximum values. It is difficult and there are practical problems.

以下にこれらの問題を解決するため唯一の小型な加熱源
で安定に所定の温度分布を得る方法を実施例とともに説
明する。
In order to solve these problems, a method for stably obtaining a predetermined temperature distribution using only a small heating source will be described below along with examples.

実施例 1 第3図に示すような2個のノズル孔をもつ酸水素バーナ
で内部孔1に酸素ガス40l/minを、外部孔2に水
素ガス100l/minを導入し、石英管に沿って加熱
しながら移動すると内部孔から供給する酸素ガスの一部
が水素ガスと混合することなく直接石英管に吹きつけら
れ酸素ガスの一部が冷却ガスとしての作用をなし2つの
極大値1300℃(パイ口スコープによる測定温度)を
有する温度分布が唯一つの加熱源で安定に得られた。
Example 1 Using an oxyhydrogen burner with two nozzle holes as shown in Fig. 3, 40 l/min of oxygen gas was introduced into the internal hole 1 and 100 l/min of hydrogen gas was introduced into the external hole 2, and the mixture was heated along the quartz tube. As it moves while heating, part of the oxygen gas supplied from the internal hole is blown directly onto the quartz tube without mixing with hydrogen gas, and part of the oxygen gas acts as a cooling gas, resulting in two maximum values of 1300℃ ( A stable temperature distribution with a temperature distribution (temperature measured using a pie scope) was obtained using only one heating source.

合成ガラスを堆積中に石英管の熱変形はみとめられず、
素材ロンドを紡糸し評価したところコア径60μmの変
動は1%以下(従来法では3%)であり、伝送損失3.
6dB/Km伝送帯域1.1GHz・Kmの低損失・超
広帯域の集束型ファイバーを得た。
No thermal deformation of the quartz tube was observed during the deposition of synthetic glass.
When the material Rondo was spun and evaluated, the variation in the core diameter of 60 μm was less than 1% (compared to 3% with the conventional method), and the transmission loss was 3.
A low-loss, ultra-wideband focused fiber with a 6 dB/Km transmission band of 1.1 GHz/Km was obtained.

実施例 2 第4図に示すような3重管ノズル構造をもつ酸水素バー
ナの孔1に酸素ガス30l/minを、孔2に水素ガス
90l/minを、孔3に酸素ガス36l/minを導
入し、実施例1と同様に石英管を加熱したところ第2図
に示す2つの極大値1380℃(パイロスコープによる
測定値)を有する温度分布が実現された。
Example 2 In an oxyhydrogen burner having a triple tube nozzle structure as shown in Fig. 4, 30 l/min of oxygen gas was applied to hole 1, 90 l/min of hydrogen gas was applied to hole 2, and 36 l/min of oxygen gas was applied to hole 3. When the quartz tube was heated in the same manner as in Example 1, a temperature distribution having two maximum values of 1380° C. (measured using a pyroscope) as shown in FIG. 2 was realized.

この例においても石英管の熱変形はみとめられず合成ガ
ラスの安定な反応、堆積条件が実現された。
In this example, no thermal deformation of the quartz tube was observed, and stable reaction and deposition conditions for synthetic glass were achieved.

なお、本発明においては、同心円状の2以上のノズル孔
を有す酸水素バーナの各ノズル孔より、酸素ガス、水素
ガスの他に不活性ガスを各々別個の孔より導入して加熱
することもできる。
In the present invention, in addition to oxygen gas and hydrogen gas, an inert gas is introduced through separate holes for heating through each nozzle hole of an oxyhydrogen burner having two or more concentric nozzle holes. You can also do it.

例えば第4図において1にO2、2にN2、3にH2を
導入するとO2とH2の間隔が広くなるので、第2図の
極大値の間隔が広くなる。
For example, in FIG. 4, if O2 is introduced into 1, N2 is introduced into 2, and H2 is introduced into 3, the interval between O2 and H2 becomes wider, and therefore the interval between the maximum values in FIG. 2 becomes wider.

一般に、この加熱部分が長くなる程、ガラス管内で原料
ガスが反応する時間が長くなり、合成ガラス収率が高く
なる。
Generally, the longer this heating section is, the longer the raw material gas reacts within the glass tube, and the higher the yield of synthetic glass becomes.

そこで、上記の実施例1や2でなお反応時間が不足の場
合、必要に応じて不活性ガスを供給して反応収率を高め
るものである。
Therefore, if the reaction time is still insufficient in Examples 1 and 2 above, an inert gas is supplied as necessary to increase the reaction yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は石英管の軸方向温度分布に関し、第
1図は唯一の極大値を有するものであり、第2図は2個
の極大値を有する温度分布を示す。 第3図は2重管ノズルのバーナ断面図、第4図は3重管
ノズルのバーナ断熱図を示す。
1 and 2 relate to the axial temperature distribution of the quartz tube, FIG. 1 having only one maximum value, and FIG. 2 showing the temperature distribution having two maximum values. FIG. 3 shows a sectional view of the burner of a double-pipe nozzle, and FIG. 4 shows a burner insulation diagram of a triple-pipe nozzle.

Claims (1)

【特許請求の範囲】 1 管状の母体内部に反応原料ガスを導入し、外部の移
動する加熱源を用いて管内壁上に合成ガラスを堆積させ
、光ファイバー用の素材ロンドを製造する化学蒸着法(
CVD法)において、唯一の加熱源の温度分布が加熱源
の移動方向に沿って2以上の高温域を有することを特徴
とする、光ファイバー用素材ロンドの製造方法。 2 唯一の加熱源として、同心円状の2以上のノズル孔
を有す酸水素バーナを用い、各ノズル孔より酸素ガス、
水素ガスを別個に導入して加熱することからなる、特許
請求の範囲第1項記載の光ファイバー用素材ロンドの製
造方法。 3 唯一の加熱源として、同心円状の2以上のノズル孔
を有す酸水素バーナを用い、各ノズル孔より酸素ガス、
水素ガス、不活性ガスを別個に導入して加熱することか
らなる、特許請求の範囲第1項記載の光ファイバー用素
材ロンドの製造方法。
[Claims] 1. A chemical vapor deposition method (1) in which a reactant gas is introduced into a tubular matrix and synthetic glass is deposited on the inner wall of the tube using an external moving heating source to produce a material for optical fibers.
1. A method for producing an optical fiber material rondo, in which the temperature distribution of the only heating source has two or more high-temperature regions along the moving direction of the heating source in the CVD method. 2 As the only heating source, an oxyhydrogen burner with two or more concentric nozzle holes is used, and oxygen gas,
A method for producing an optical fiber material rondo according to claim 1, which comprises separately introducing hydrogen gas and heating it. 3 As the only heating source, an oxyhydrogen burner with two or more concentric nozzle holes is used, and oxygen gas,
A method for producing an optical fiber material rondo according to claim 1, which comprises separately introducing hydrogen gas and an inert gas and heating them.
JP53000281A 1978-01-06 1978-01-06 Manufacturing method for optical fiber material rod Expired JPS581054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53000281A JPS581054B2 (en) 1978-01-06 1978-01-06 Manufacturing method for optical fiber material rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53000281A JPS581054B2 (en) 1978-01-06 1978-01-06 Manufacturing method for optical fiber material rod

Publications (2)

Publication Number Publication Date
JPS5494048A JPS5494048A (en) 1979-07-25
JPS581054B2 true JPS581054B2 (en) 1983-01-10

Family

ID=11469511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53000281A Expired JPS581054B2 (en) 1978-01-06 1978-01-06 Manufacturing method for optical fiber material rod

Country Status (1)

Country Link
JP (1) JPS581054B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246348U (en) * 1975-09-30 1977-04-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246348U (en) * 1975-09-30 1977-04-01

Also Published As

Publication number Publication date
JPS5494048A (en) 1979-07-25

Similar Documents

Publication Publication Date Title
KR900003449B1 (en) Dispersion-shift fiber and its production
Blankenship et al. The outside vapor deposition method of fabricating optical waveguide fibers
US4235616A (en) Optical waveguide manufacturing process and article
JP5697065B2 (en) Manufacturing method of glass base material
US8820121B2 (en) Method of manufacturing optical fiber base material
CN114994830A (en) Low-loss bending-resistant single-mode optical fiber and manufacturing method thereof
CN114057388A (en) Method for manufacturing optical fiber preform, and optical fiber
JPS581054B2 (en) Manufacturing method for optical fiber material rod
JPH07230015A (en) Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture
CN113716861A (en) Method for preparing bending insensitive optical fiber by external gas phase deposition method
JP3517848B2 (en) Manufacturing method of optical fiber preform
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
JPH0210095B2 (en)
JPS60264338A (en) Manufacture of optical fiber preform
JPS6259063B2 (en)
JPS591222B2 (en) Optical fiber manufacturing method
US6865327B2 (en) Method of making optical fiber with reduced E-band and L-band loss peaks
JPS595532B2 (en) Manufacturing method of glass fiber for optical transmission
KR100641941B1 (en) Method for fabricating multimode optical fiber for gigabit class transmission system having longitudnal uniformity
JPS603020B2 (en) Method of manufacturing fiber for optical communication
Schultz Vapor phase materials and processes for glass optical waveguides
US4804393A (en) Methods for producing optical fiber preform and optical fiber
JPH0488306A (en) Dispersion shift optical fiber
JPS6144821B2 (en)
JPS5911881B2 (en) Optical fiber manufacturing method