JPS58103795A - Hot water heater - Google Patents

Hot water heater

Info

Publication number
JPS58103795A
JPS58103795A JP20433181A JP20433181A JPS58103795A JP S58103795 A JPS58103795 A JP S58103795A JP 20433181 A JP20433181 A JP 20433181A JP 20433181 A JP20433181 A JP 20433181A JP S58103795 A JPS58103795 A JP S58103795A
Authority
JP
Japan
Prior art keywords
heating element
heating
fluid
hot water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20433181A
Other languages
Japanese (ja)
Other versions
JPH027519B2 (en
Inventor
豊 高橋
良一 古閑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20433181A priority Critical patent/JPS58103795A/en
Priority to US06/455,244 priority patent/US4563571A/en
Priority to CA000417730A priority patent/CA1205841A/en
Priority to EP82306725A priority patent/EP0082025B1/en
Priority to DE8282306725T priority patent/DE3271699D1/en
Publication of JPS58103795A publication Critical patent/JPS58103795A/en
Publication of JPH027519B2 publication Critical patent/JPH027519B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は給湯用、暖房用などに用いられる温水加熱装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hot water heating device used for hot water supply, space heating, etc.

従来の温水加熱装置は第9図および第10図に示すよう
に、一端を冷水路と接続する流入口31とした円筒状の
面発熱体32と、この円筒状の面発熱体32の外周との
間に加熱流路33を形成する外ケース34とにより構成
されている。前記外ケース34には、面発熱体32の流
入口31側に位置して流出路36を設けている。また前
記円筒状の面発熱体32は円筒状のセラミック材からな
る基体A36と、シート状セラミック材から々る基体B
37とで発熱抵抗体38を挾持して構成している。そし
て前記基体に36は、成形時の歪みを小さく押さえ、か
つ円筒状の面発熱体32の機械的強度を保持するために
、所定の厚みtlを必要とし、また基体B37は基体ム
36の外周に口IJソングるため、その作業が良好に行
えるように、基体A36の厚みtlに比べ、非常に小さ
な厚みt2で構成されている。
As shown in FIGS. 9 and 10, the conventional hot water heating device includes a cylindrical surface heating element 32 having one end as an inlet 31 connected to a cold waterway, and an outer periphery of this cylindrical surface heating element 32. and an outer case 34 forming a heating flow path 33 therebetween. The outer case 34 is provided with an outlet passage 36 located on the inlet 31 side of the surface heating element 32. The cylindrical surface heating element 32 has a base A36 made of a cylindrical ceramic material, and a base B made of a sheet-like ceramic material.
37 and a heating resistor 38 sandwiched therebetween. The base body 36 requires a predetermined thickness tl in order to suppress distortion during molding and maintain the mechanical strength of the cylindrical surface heating element 32, and the base body B37 requires a predetermined thickness tl on the outer periphery of the base body 36. The base body A36 has a thickness t2 that is very small compared to the thickness t1 of the base body A36 so that the work can be carried out smoothly.

上記従来の構成において、流入口31から流入した冷水
は、円筒状の面発熱体32の内管路32′で加熱されな
がら左端開放部に達し、その後、加熱流路33に流入し
てさらに加熱され、流出路35より温水となって流出す
る。
In the above conventional configuration, the cold water flowing in from the inlet 31 reaches the open left end portion while being heated by the inner pipe 32' of the cylindrical surface heating element 32, and then flows into the heating flow path 33 where it is further heated. The hot water flows out from the outflow path 35 as hot water.

上記加熱工程において、円筒状の面発熱体32の表面温
度は、セラミック基体ム36 、B37の厚みtI 、
 t、、と前記円筒状の面発熱体320表面における水
への熱伝達率との関係により決まる。
In the above heating step, the surface temperature of the cylindrical surface heating element 32 is determined by the thickness tI of the ceramic base 36, B37,
It is determined by the relationship between t and the heat transfer coefficient to water on the surface of the cylindrical surface heating element 320.

上記従来例においては、円筒状の面発熱体32における
内管路32′の流速は、加熱流路33の流用面の水への
熱伝達率は外周面の熱伝達率より大きく々る。一方、円
筒状の面発熱体32の内周面側基体A36の厚みtlは
外周面側基体B37の厚みt2に比べて大きい。従って
、発熱抵抗体38から円筒状の面発熱体32の内周面へ
の伝熱抵抗は外周面への伝熱抵抗より大きい。その結果
、円筒状の面発熱体32の内周面は、水への熱伝達率が
大きいのに対し、発熱抵抗体38からの伝熱抵抗が太き
いため、その表面温度は第11図のTslで示すように
低下する。また円筒状の面発熱体32の外周面は、水へ
の熱伝達率が小さいのに対し、発熱抵抗体38からの伝
熱抵抗が小さいため、その表面温度は第11図の’I’
soで示すように、高くなる。
In the above-mentioned conventional example, the flow rate in the inner pipe 32' of the cylindrical surface heating element 32 is such that the heat transfer coefficient to water on the flow surface of the heating flow path 33 is greater than the heat transfer coefficient on the outer circumferential surface. On the other hand, the thickness tl of the inner peripheral surface side base body A36 of the cylindrical surface heating element 32 is larger than the thickness t2 of the outer peripheral surface side base body B37. Therefore, the heat transfer resistance from the heating resistor 38 to the inner circumferential surface of the cylindrical surface heating element 32 is greater than the heat transfer resistance to the outer circumferential surface. As a result, the inner circumferential surface of the cylindrical surface heating element 32 has a large heat transfer coefficient to water, but the heat transfer resistance from the heating resistor 38 is large, so that the surface temperature is as shown in FIG. It decreases as shown by Tsl. Further, the outer circumferential surface of the cylindrical surface heating element 32 has a small heat transfer coefficient to water, but the heat transfer resistance from the heating resistor 38 is small, so the surface temperature is 'I' in FIG.
As shown by so, it becomes high.

以上のように従来の温水加熱装置においては、円筒状の
面発熱体32の内周面、外周面上での表面温度差が非常
に太きいため、熱交換状態にアンバランスを生じ、その
結果、発熱体の全表面が熱交換に対し有効に生かされず
、熱交換効率が低下する。
As described above, in the conventional hot water heating device, the difference in surface temperature between the inner circumferential surface and the outer circumferential surface of the cylindrical surface heating element 32 is very large, resulting in an imbalance in the heat exchange state. , the entire surface of the heating element is not effectively utilized for heat exchange, resulting in a decrease in heat exchange efficiency.

また前記面発熱体32の外周面は高温に々す、局部的な
核沸騰を起こし、スケールの主成分である重炭酸カルシ
ウム、重炭酸マグネシウムの飽和溶解度を示す温度以上
となり、スケールが面発熱体32の表面に析出する。第
12図は重炭酸カルシウムのPHと温度と溶解度の関係
を示したものである。そしてこのスケールは面発熱体3
20表面で徐々に厚みを増し、発熱抵抗体38から面発
熱体32の表面への熱伝達を悪化させ、熱交換効率を下
げるとともに、発熱抵抗体38の温度を異常に高めてし
まうため、発熱抵抗体38を断線させてしまうという欠
点を有していた。
In addition, the outer peripheral surface of the surface heating element 32 reaches a high temperature, causing local nucleate boiling, and the temperature reaches a temperature higher than the saturated solubility of calcium bicarbonate and magnesium bicarbonate, which are the main components of scale, and the scale becomes the surface heating element 32. Precipitates on the surface of 32. FIG. 12 shows the relationship between pH, temperature, and solubility of calcium bicarbonate. And this scale is surface heating element 3
The thickness gradually increases on the surface of the heating resistor 38, worsening the heat transfer from the heating resistor 38 to the surface of the surface heating element 32, lowering the heat exchange efficiency, and abnormally increasing the temperature of the heating resistor 38, which causes heat generation. This has the drawback of causing the resistor 38 to become disconnected.

本発明は、上記従来の欠点に鑑み、2つのセラミック基
体で発熱抵抗体を挾持して構成した発熱素子と、この発
熱素子の両側面に設けられ、一方は流体流入口と連通し
、かつ他方は流体流出口と連通ずる流通路とを備え、前
記発熱抵抗体から各セラミック基体への熱伝達量を、前
記発熱素子の両側面表面平均温度が略等しくなるように
構成する手段を設けることにより、前記発熱素子の表面
平均温度をスケール生成温度以下に制御または保持する
ことを容易にするとともに、熱交換効率を高めることが
できる温水加熱装置を提供しようとするものである。
In view of the above conventional drawbacks, the present invention provides a heating element configured by sandwiching a heating resistor between two ceramic substrates, and a heating element provided on both sides of the heating element, one communicating with a fluid inlet and the other. is provided with a flow path communicating with a fluid outlet, and by providing means for configuring the amount of heat transferred from the heat generating resistor to each ceramic base so that the average temperature of both side surfaces of the heat generating element is approximately equal. An object of the present invention is to provide a hot water heating device that can easily control or maintain the surface average temperature of the heating element below the scale formation temperature and can improve heat exchange efficiency.

以下、本発明の一実施例について、第1図〜第4図にも
とづいて説明する。第1図、第2図において、1は円筒
状に構成された発熱素子で、この発熱素子1はセラミッ
ク基体A2とセラミック基体B3とで発熱抵抗体4を挾
持することにより構成している。そして前記セラミック
基体A2は、成形時の歪みを極力小さく押さえ、かつ発
熱素子1の機械的強度を保持するため所定の厚みtAを
必要とし、またセラミック基体B3はセラミック基体A
2の外周にローリングするため、セラミック基体ム2の
厚みtAに比べ非常に小さな厚みtBで構成されている
。また円筒状に構成された発熱素子1は内管路5を有す
るとともに、一端には、冷水供給管への接続ねじ6を取
付けた流体流入ロアを内管路6と連通するように設けて
いる。8は外ケースで、この外ケース8は発熱素子10
列周との間に加熱流路9を形成し、かつ前記発熱素子1
の内管路6の他端側を閉塞し、さらに前記流体流入ロア
側に位置して流体流出口10を設けている。前記加熱流
路e内には、被加熱流体に旋回流を与えて加熱流路9内
における加熱流体の流速を高めるため、螺旋状のインナ
ーフィン11を挿入している。121Lは発熱抵抗体4
への通電用リード線、12bは制御部、120はセンサ
ーである。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 1 to 4. In FIGS. 1 and 2, reference numeral 1 denotes a cylindrical heating element, and this heating element 1 is constructed by sandwiching a heating resistor 4 between a ceramic base A2 and a ceramic base B3. The ceramic substrate A2 requires a predetermined thickness tA in order to minimize distortion during molding and maintain the mechanical strength of the heating element 1, and the ceramic substrate B3 requires a predetermined thickness tA to suppress distortion during molding as much as possible and maintain the mechanical strength of the heating element 1.
2, the thickness tB is much smaller than the thickness tA of the ceramic base 2. Further, the heating element 1 having a cylindrical shape has an inner pipe line 5, and a fluid inflow lower having a connecting screw 6 for connecting to a cold water supply pipe is provided at one end so as to communicate with the inner pipe line 6. . 8 is an outer case, and this outer case 8 houses a heating element 10.
A heating channel 9 is formed between the heating element 1 and the heating element 1.
The other end side of the inner pipe line 6 is closed, and a fluid outlet 10 is further provided located on the lower fluid inflow side. A spiral inner fin 11 is inserted into the heating channel e in order to give a swirling flow to the fluid to be heated and increase the flow velocity of the heating fluid in the heating channel 9. 121L is heating resistor 4
12b is a control unit, and 120 is a sensor.

また第1図におけるLは加熱流路9の流路長さであり、
第2図におけるDは加熱流路9の中心直径である。
Moreover, L in FIG. 1 is the flow path length of the heating flow path 9,
D in FIG. 2 is the center diameter of the heating channel 9.

第3図a、bは上記一実施例における温水加熱装置の要
部断面斜視図と流れのベクトル図を示したもので、Vが
流速ベクトノペNはインナーフィン11の巻き数である
FIGS. 3a and 3b show a cross-sectional perspective view of the main part of the hot water heating device in the above embodiment and a flow vector diagram, where V is the flow velocity and N is the number of turns of the inner fin 11.

第4図は、発熱素子1の表面温度を展開グラフとして示
したもので、この第4図中TAは発熱素子1における内
管路6側の表面温度、TBは加熱流路9側の表面温度を
示す。
FIG. 4 shows the surface temperature of the heating element 1 as an expanded graph. In FIG. shows.

都電源に接続して発熱抵抗体4に通電し、流量が温水加
熱装置の使用最低水量または設定水量値である冷水を流
体流入ロアより第1図の矢印で示すように供給する。こ
の場合、前記最低水量または設定水量は、温水加熱装置
の使用水量範囲において最もスケール付着が厳しい条件
である。従って、前記最低水量または設定水量値におい
て、スケール付着温度以下に制御まだは保持することに
よって、スケール付着は解消できる。流入した冷水は内
管路5で加熱されながら左端開放部に達し、その後、発
熱素子1の外周に位置する加熱流路9に流入し、そして
インナーフィン11により形成された螺旋状の加熱流路
9内を旋回しながら加熱され、流体流出口10より温水
となって流出する。
It is connected to the city power supply, the heat generating resistor 4 is energized, and cold water having a flow rate equal to the minimum water amount used by the hot water heating device or the set water amount value is supplied from the fluid inflow lower as shown by the arrow in FIG. In this case, the minimum amount of water or the set amount of water is the condition under which scale adhesion is most severe in the range of amount of water used by the hot water heating device. Therefore, scale adhesion can be eliminated by controlling or maintaining the water amount below the scale adhesion temperature at the minimum water amount or set water amount value. The inflowing cold water reaches the open left end portion while being heated in the inner pipe 5, then flows into the heating channel 9 located on the outer periphery of the heating element 1, and then flows into the spiral heating channel formed by the inner fin 11. It is heated while swirling in the fluid outlet 9 and flows out from the fluid outlet 10 as hot water.

この加熱工程において、水への熱伝達率、各基体ム2.
B3の厚みtA、 tBおよび熱伝導率との関係を用い
ると、発熱素子1の表面温度算出式は次のようになる。
In this heating step, the heat transfer coefficient to water, each base layer 2.
Using the relationship between the thicknesses tA and tB of B3 and the thermal conductivity, the formula for calculating the surface temperature of the heating element 1 is as follows.

式は、各基体A2 、B3から水への熱伝達率を各々α
A、αB、セラミック基体A2.B3の熱伝導率をλ、
各基体&2 、B3の厚みをtA、tB、水と接する発
熱素子1の表面積をSA、SBとし、また発熱素子10
発熱抵抗体4の温度をTH1発熱素子1の各基体ム2.
B3の表面温度を各々TA 、 TB、内管路6内の水
温をTWA、加熱流路e内の水温をTWBとすると、発
熱抵抗体4から各基体A2,83表面への伝熱量QA1
. QBOは、QA−λ・(TH−TA )・SA・−
tA QB−λ・(T)(−TB)・8B・1B となる。また、発熱素子1の基体A2.B3の表面から
水への熱伝達量を各々1%A + 11.Bとすると、
争A:αA・(TA−TWA ) @axす、二α8・
(TB  Twn)・Sgとなる。まだ熱バランスの関
係からQ〔1A+QB=鉤となる。よって QB  tB、J−(TH−TB)・sB’ tBl 
The formula calculates the heat transfer coefficient from each substrate A2 and B3 to water by α
A, αB, ceramic substrate A2. The thermal conductivity of B3 is λ,
The thickness of each base &2, B3 is tA, tB, the surface area of the heating element 1 in contact with water is SA, SB, and the heating element 10 is
The temperature of the heating resistor 4 is determined by adjusting the temperature of each base member 2 of the heating element 1.
When the surface temperatures of B3 are TA and TB, the water temperature in the inner pipe 6 is TWA, and the water temperature in the heating channel e is TWB, the amount of heat transferred from the heating resistor 4 to the surface of each base A2, 83 is QA1.
.. QBO is QA-λ・(TH-TA)・SA・-
tA QB-λ・(T)(-TB)・8B・1B. Further, the base body A2 of the heating element 1. The amount of heat transferred from the surface of B3 to water is 1%A + 11. If it is B,
Conflict A: αA・(TA-TWA) @axsu, 2 α8・
(TB Twn)・Sg. Due to the heat balance, Q [1A + QB = hook. Therefore, QB tB, J-(TH-TB)・sB' tBl
.

α8・(TB−TWB)・SB となる。従って、これから TH−TB   αB°tB”(TB−TWB)1にす
るとTA=TBとなり、発熱素子1の表面温度は等しく
力る。
α8・(TB−TWB)・SB becomes. Therefore, if TH-TB αB°tB'' (TB-TWB) is set to 1 from now on, TA=TB, and the surface temperature of the heating element 1 becomes equal.

上記一実施例で示すように、外ケース8の内径が発熱素
子1の外径に比べて大きい場合、加熱流路9内にインナ
ーフィン11を挿入しないと、加熱流路9における流速
は発熱素子1における内管路5の流速より小さいため、
基体A2 、B3の表面から水への熱伝達率はαえ〉α
8となり、また基体A2 、B3の厚みtA、tBはt
A>tBであるだめ、Rは1を越え非常に大きな値とな
る。そしてまた第4図の点線で示すように、基体B3の
表面温度TB1′は、基体A2の表面温度TA 、rに
比べて高くなる。
As shown in the above embodiment, when the inner diameter of the outer case 8 is larger than the outer diameter of the heating element 1, if the inner fin 11 is not inserted into the heating passage 9, the flow velocity in the heating passage 9 will be lower than that of the heating element 1. Since it is smaller than the flow velocity of the inner pipe 5 in 1,
The heat transfer coefficient from the surfaces of substrates A2 and B3 to water is α〉α
8, and the thicknesses tA and tB of the bases A2 and B3 are t
Unless A>tB, R exceeds 1 and becomes a very large value. Also, as shown by the dotted line in FIG. 4, the surface temperature TB1' of the base body B3 is higher than the surface temperature TA, r of the base body A2.

次に、加熱流路9内にインナーフィン11を挿入すると
、流体の流れは旋回流となる。この時の旋回流路長さL
oは第3図より、 となり、旋回流の流路長さLoは平行流の流路長さLの
IAinθ倍長くなり、かつ流速も1/1sinθ倍と
なる。従って、θの値を選定することにより、α□〈α
8を満たすようにαBを増大させることがすなわち、第
4図の実線で示すようにTA j + TB 1をほぼ
等しい値に近づけることができる。また制御部12bで
入力を制御することにより、発熱素子10表面温度をス
ケール付着温度以下に保つことができる。
Next, when the inner fin 11 is inserted into the heating channel 9, the fluid flow becomes a swirling flow. The swirl flow path length L at this time
According to FIG. 3, o is as follows, the flow path length Lo of the swirling flow is IAinθ times longer than the flow path length L of the parallel flow, and the flow velocity is also 1/1 sinθ times. Therefore, by selecting the value of θ, α□〈α
In other words, by increasing αB so as to satisfy 8, it is possible to bring TA j + TB 1 close to approximately equal values, as shown by the solid line in FIG. Furthermore, by controlling the input with the control section 12b, the surface temperature of the heating element 10 can be kept below the scale adhesion temperature.

上記説明からも明らかなように、流速の遅い加熱流路9
内にインナーフィン11を挿入して加熱流路9内に旋回
流を発生させることにより、加熱流路9内の流速は速く
なり、その結果、熱伝達率が大きくなって、発熱素子1
の表面平均温度ははインナーフィン11を挿入すること
により、加熱流路9に発生する旋回流に比べ、発熱素子
1の外周全面を均一な流速で流れる。そのだめ、発熱素
子1の表面上で局部的に高温となる部分はなくなり、そ
の結果、局部沸騰や、異常高温による発熱素子1の破壊
等を防ぐことができる。
As is clear from the above description, the heating channel 9 with a slow flow rate
By inserting the inner fins 11 into the heating channel 9 and generating a swirling flow in the heating channel 9, the flow velocity in the heating channel 9 increases, and as a result, the heat transfer coefficient increases, and the heating element 1
By inserting the inner fins 11, the average surface temperature of the heat generating element 1 flows at a uniform velocity over the entire outer periphery of the heating element 1, compared to the swirling flow generated in the heating channel 9. As a result, there will be no locally heated portions on the surface of the heating element 1, and as a result, local boiling and destruction of the heating element 1 due to abnormally high temperatures can be prevented.

次に本発明の他の実施例について、第6図〜第6図にも
とづいて説明する。この実施例は、発熱素子の電気入力
を大きくするために、基体の径を太きくし、かつ外ケー
スの内径を小さくして、加熱流路幅を比較的狭くした場
合の実施例を示したものである。この第6図、第6図に
おいて、13は円筒状に構成された発熱素子で、この発
熱素子13はセラミック基体A14とセラミック基体B
15とで発熱抵抗体16を挾持することにより構成して
いる。そして前記基体ム14は、成形時の歪みを極力押
さえ、かつ発熱素子13の機械的強度を保持するため所
定の厚みtAを必要とし、また基体B16は基体A14
の外周にローリングす 3 るため、基体A14の厚みtAに比べ非常に小さな厚み
tBで構成されている。また円筒状に構成された発熱素
子13は内管路17を有するとともに、一端には、冷供
給管への接続ねじ18を取付けた流体流入口19を内管
路17と連通するように設けている。20は外ケースで
、この外ケース20は発熱素子13の外周との間に加熱
流路21を形成し、かつ前記発熱素子13の内管路17
の他端側を閉塞し、さらに前記流体流入口19側に位置
して流体流出口22を設けている。また前記発熱素子1
3の内管路17内には被加熱流体の流速を高めるため、
中子23を挿入している。そしてこの中子23は左端で
前記外ケース2oに袋ナツト24により固定され、かつ
右方において、支持材26により、発熱素子13の中央
部に位置するように支持されている。261Lは発熱抵
抗体16への通電用リード線、26bは制御部、260
はセンサーである。
Next, another embodiment of the present invention will be described based on FIGS. This example shows an example in which the diameter of the base body is increased, the inner diameter of the outer case is decreased, and the width of the heating channel is made relatively narrow, in order to increase the electrical input to the heating element. It is. 6, 13 is a cylindrical heating element, and this heating element 13 is composed of a ceramic substrate A 14 and a ceramic substrate B.
15 and a heat generating resistor 16 sandwiched therebetween. The base member 14 requires a predetermined thickness tA in order to suppress distortion during molding as much as possible and maintain the mechanical strength of the heating element 13, and the base member B16 requires a predetermined thickness tA to suppress distortion during molding as much as possible and maintain the mechanical strength of the heat generating element 13.
The base body A14 has a thickness tB that is much smaller than the thickness tA of the base body A14. The heating element 13 having a cylindrical shape has an inner pipe line 17, and a fluid inlet port 19 with a connecting screw 18 to the cold supply pipe is provided at one end so as to communicate with the inner pipe line 17. There is. Reference numeral 20 denotes an outer case, and this outer case 20 forms a heating passage 21 between it and the outer periphery of the heating element 13, and the inner pipe 17 of the heating element 13.
The other end is closed, and a fluid outlet 22 is further provided on the fluid inlet 19 side. Further, the heating element 1
In order to increase the flow velocity of the fluid to be heated,
Core 23 is inserted. The core 23 is fixed to the outer case 2o at the left end with a cap nut 24, and is supported at the right by a support member 26 so as to be located at the center of the heating element 13. 261L is a lead wire for energizing the heating resistor 16, 26b is a control unit, 260
is a sensor.

第7図a、bは各流水路の断面積を示したもので、Sl
は発熱素子13の内管路17の断面積、 4 S2は加熱流路21の断面積、S3は中子23の断面積
、S4は内管路17の断面積S1より中子23の断面積
S3を差し引いた断面積である。
Figures 7a and b show the cross-sectional area of each flow channel.
is the cross-sectional area of the inner pipe 17 of the heating element 13, 4 S2 is the cross-sectional area of the heating channel 21, S3 is the cross-sectional area of the core 23, and S4 is the cross-sectional area of the core 23 from the cross-sectional area S1 of the inner pipe 17. This is the cross-sectional area after subtracting S3.

第8図は発熱素子130表面温度を示しだもので、実線
TA2は内管路17側の表面温度、実線TB2は加熱流
路21側の表面温度を示す。また点線TA21 、 T
B21 は中子23を挿入する前の内管路17側および
加熱流路21側の各表面温度を示す。
FIG. 8 shows the surface temperature of the heating element 130, where the solid line TA2 shows the surface temperature on the inner pipe line 17 side, and the solid line TB2 shows the surface temperature on the heating channel 21 side. Also dotted lines TA21, T
B21 indicates each surface temperature on the inner pipe path 17 side and the heating flow path 21 side before inserting the core 23.

上記構成において、通電用リード線26を外部電源に接
続して発熱抵抗体16に通電し、冷水を流体流入口19
より第5図の矢印で示すように萩給する。そして流入し
た冷水は内管路17で加熱されながら左端開放部に達し
、その後、発熱素子13の外周に位置する加熱流路21
に流入し、ここでさらに加熱され、流体流出口22より
温水となって流出する。この加熱工程において、中子2
3が挿入されていない場合の発熱素子13の表面温度算
出式は前述した一実施例の説明時に求めた次式になる。
In the above configuration, the energizing lead wire 26 is connected to an external power source to energize the heating resistor 16, and the cold water is supplied to the fluid inlet 19.
Then feed the bushes as shown by the arrow in Figure 5. The inflowing cold water is heated in the inner pipe 17 and reaches the open left end, and then flows through the heating channel 21 located on the outer periphery of the heating element 13.
The water flows into the water, is further heated here, and flows out from the fluid outlet 22 as hot water. In this heating process, the core 2
The formula for calculating the surface temperature of the heating element 13 in the case where the heat generating element 13 is not inserted is the following formula, which was obtained when the above-mentioned embodiment was explained.

15 TH−TB   αB・tB”(TB  ”WB)上記
第6図〜第6図で示す他の実施例のように、発熱素子1
3の内径が大きく、かつ加熱流路210幅が狭い場合は
、内管路17内に中子23を挿入しないと、内管路17
内の流速は加熱流路21の流速に比べて小さくなる。そ
のため、基体A14、B15の表面から水への熱伝達率
はαよ(に対し非常に小さな値となる。その結果、第8
図に示すように、基体A14の表面温度TA2′は基体
B16の表面温度TB(に比べて高くなる。
15 TH-TB αB・tB” (TB “WB) As in the other embodiments shown in FIGS. 6 to 6 above, the heating element 1
3 has a large inner diameter and the width of the heating channel 210 is narrow, if the core 23 is not inserted into the inner pipe 17, the inner pipe 17
The flow velocity in the heating channel 21 is smaller than that in the heating channel 21. Therefore, the heat transfer coefficient from the surfaces of the substrates A14 and B15 to water becomes a very small value with respect to α.
As shown in the figure, the surface temperature TA2' of the substrate A14 is higher than the surface temperature TB of the substrate B16.

次に内管路17内に中子23を挿入すると、内管路17
の断面積S4は54−8l−83となって断面積が減少
する。したがって内管路17内の流速は断面積の減少の
割合S4/S、  に逆比例して増加するため、中子2
3の径を選定することにより、TH−TB2 の値が1に近づき、第8図の実線で示すように、TA2
 + ’rB、、をほぼ等しい値に近づけることができ
る。寸だ制御部26bで入力を制御することにより、発
熱素子13の表面温度をスケール付着温度以下に保つこ
とができる。
Next, when inserting the core 23 into the inner pipe line 17, the inner pipe line 17
The cross-sectional area S4 becomes 54-8l-83, and the cross-sectional area decreases. Therefore, the flow velocity in the inner pipe 17 increases in inverse proportion to the rate of decrease in cross-sectional area S4/S,
By selecting a diameter of 3, the value of TH-TB2 approaches 1, and as shown by the solid line in Fig. 8, TA2
+ 'rB, , can be brought close to approximately equal values. By controlling the input with the scale control section 26b, the surface temperature of the heating element 13 can be kept below the scale adhesion temperature.

上記説明からも明らかなように、流速の遅い発熱素子1
3の内管路17内に中子23を挿入して内管路17内の
流速を速め、内管路17側の熱伝達率を高めることによ
って、発熱素子130表面表面温度はほぼ等しい値とな
る。また中子23により流れのコア部が破壊されて乱れ
が増加し、熱伝達率が増大する。さらに、中子23が発
熱素子13の支持部材となるだめ、発熱素子13を外ケ
ース2oの中心位置に支持できる等の特徴を有する。
As is clear from the above description, the heating element 1 with a slow flow rate
By inserting the core 23 into the inner pipe line 17 of No. 3 to increase the flow velocity in the inner pipe line 17 and increase the heat transfer coefficient on the inner pipe line 17 side, the surface temperature of the heating element 130 can be made to be approximately the same value. Become. Further, the core portion of the flow is destroyed by the core 23, turbulence increases, and the heat transfer coefficient increases. Furthermore, since the core 23 serves as a support member for the heating element 13, it has features such as being able to support the heating element 13 at the center of the outer case 2o.

なお、上記実施例においては、円筒状に構成された発熱
素子を用いたものについて説明したが、Nの発熱素子で
、その両側面に流通路を形成し 7 たものでも上記実施例と同様の効果が得られることは言
うまでもない。
In the above embodiment, a heating element having a cylindrical shape was used. However, an N heating element with flow passages formed on both sides can also be used in the same manner as in the above embodiment. Needless to say, it is effective.

以上のように本発明の温水加熱装置は、流体の流速を変
え、流体への熱伝達率を変えることによって、発熱素子
の発熱抵抗体からセラミック基体−\の熱伝達量を発熱
素子の両側面の表面平均温度が略等しくなるようにして
いるため、前記発熱素子の表面平均温度をスケール生成
温度以下に制御または保持することが容易となり、また
発熱素子の表面平均温度がほぼ等しいことから、発熱素
子の全表面を最適々熱交換条件に保つことができ、その
結果、発熱素子表面の熱交換効率を高めることができる
等のすぐれた効果を奏するものである。
As described above, the hot water heating device of the present invention changes the amount of heat transferred from the heating resistor of the heating element to the ceramic substrate \ on both sides of the heating element by changing the flow rate of the fluid and changing the heat transfer coefficient to the fluid. Since the average surface temperatures of the heating elements are made to be approximately equal, it is easy to control or maintain the average surface temperature of the heating element below the scale generation temperature. The entire surface of the element can be maintained under optimal heat exchange conditions, and as a result, excellent effects such as the ability to increase the heat exchange efficiency on the surface of the heating element can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す温水加熱装置の一部破
断側面図、第2図は第1図のA−A′線断面図、第3図
a、bは第1図の要部拡大断面斜視図および流れのベク
トル図、第4図は同温水加熱装置における発熱素子の表
面温度の展開グラフ、第6図は本発明の他の実施例を示
す温水加熱装置 8 の一部破断側面図、第6図は第6図のB−B’巌断面図
、第7図a、bは第5図の各流路の流路断面積を示す断
面図、第8図は第6図の実施例における発熱素子の表面
温度の展開グラフ、第9図は従来の温水力1熱装置の一
部破断側面図、第1o図は第9図のc−c’線断面図、
第11図は従来の円筒状面発熱体の表面温度を示す展開
グラフ、第12図は重炭酸カルシウムのPHと温度と溶
解度との関係を示すグラフである。 1.13・・・・・発熱素子、2,14・・・・・・基
体人、3.15・・・重体B、4,16・・・・発熱抵
抗体、6.17・・・・・内管路、9.21・・印・加
熱流路、7゜19・・・・・・流体流入口、8,20・
・・・・外ケース、10.22・・・・・・流体流出口
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 /27 第2図 0 第3図 第4図 角 度0(°ン 第5図 第6図 2? 第7図 第8図 角屓θ/’J 第9図 第10図 第12図 水温(6C) 49
FIG. 1 is a partially cutaway side view of a hot water heating device showing an embodiment of the present invention, FIG. 2 is a sectional view taken along line A-A' in FIG. 1, and FIGS. 3a and 3b are main points of FIG. 4 is a developed graph of the surface temperature of the heating element in the hot water heating device, and FIG. 6 is a partially broken view of the hot water heating device 8 showing another embodiment of the present invention. A side view, FIG. 6 is a cross-sectional view taken along line B-B' in FIG. 6, FIG. 7 a and b are cross-sectional views showing the cross-sectional area of each channel in FIG. FIG. 9 is a partially cutaway side view of a conventional hydronic single-heat device; FIG. 1o is a cross-sectional view taken along line c-c' in FIG. 9;
FIG. 11 is a developed graph showing the surface temperature of a conventional cylindrical surface heating element, and FIG. 12 is a graph showing the relationship between pH, temperature, and solubility of calcium bicarbonate. 1.13... Heat generating element, 2,14... Base person, 3.15... Heavy body B, 4,16... Heat generating resistor, 6.17...・Inner pipe line, 9.21...mark ・Heating channel, 7°19...Fluid inlet, 8,20...
...Outer case, 10.22...Fluid outlet. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure/27 Figure 2 Figure 0 Figure 3 Figure 4 Angle 0 (°) Figure 5 Figure 6 Figure 2? Figure 7 Figure 8 Angle angle θ/'J Figure 9 Figure 10 Figure 12 Water temperature ( 6C) 49

Claims (3)

【特許請求の範囲】[Claims] (1)2つのセラミック基体で発熱抵抗体を挾持して構
成した発熱素子と、この発熱素子の両側面に設けられ、
一方は流体流入口と連通し、かつ他方は流体流出口と連
通ずる流通路とを備え、前記流体流入口より供給される
使用最低流量または設定流量において、発熱抵抗体から
2つのセラミック基体への熱伝達量を、前記発熱素子の
両側面表面平均温度が略等しくなるように構成する手段
を設けるとともに、前記発熱素子の表面平均温度はスケ
ール生成温度以下に制御または保持するようにした温水
加熱装置。
(1) A heating element configured by sandwiching a heating resistor between two ceramic substrates, and a heating element provided on both sides of the heating element,
A flow path is provided, one of which communicates with the fluid inlet, and the other communicates with the fluid outlet, and the heating resistor is connected to the two ceramic substrates at the lowest operating flow rate or set flow rate supplied from the fluid inlet. A hot water heating device comprising a means for configuring the amount of heat transfer so that the average temperatures of the surfaces of both side surfaces of the heating element are approximately equal, and the average surface temperature of the heating element is controlled or maintained below a scale generation temperature. .
(2)前記発熱抵抗体から2つのセラミック基体への熱
伝達量を、前記発熱素子の両側面平均温度が略等しくな
るように構成する手段として、前記流体流出口と連通ず
る流通路に、加熱流体の流速を高める螺旋状のインナー
フィンを設けた特許請求の範囲第1項記載の温水加熱装
置。
(2) As a means for configuring the amount of heat transferred from the heating resistor to the two ceramic substrates so that the average temperature on both sides of the heating element is approximately equal, heating is applied to the flow path communicating with the fluid outlet. The hot water heating device according to claim 1, further comprising a spiral inner fin that increases the flow velocity of the fluid.
(3)前記発熱抵抗体から2つのセラミック基体への熱
伝達量を、前記発熱素子の両側面平均温度が略等しくな
るように構成する手段として、前記流体流入口と連通ず
る流通路の断面積を、流体流出口と連通ずる流通路の断
面積より大きくした際に、前記流体流入口と連通ずる流
通路に、加熱流体の流速を高める中子を挿入した特許請
求の範囲第1項記載の温水加熱装置。
(3) A cross-sectional area of a flow path communicating with the fluid inlet as means for configuring the amount of heat transferred from the heating resistor to the two ceramic substrates so that the average temperature on both sides of the heating element is approximately equal. Claim 1, wherein a core is inserted into the flow passage communicating with the fluid inlet to increase the flow velocity of the heated fluid when the cross-sectional area of the flow passage communicating with the fluid outlet is made larger than the cross-sectional area of the flow passage communicating with the fluid outlet. Hot water heating device.
JP20433181A 1981-12-16 1981-12-16 Hot water heater Granted JPS58103795A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP20433181A JPS58103795A (en) 1981-12-16 1981-12-16 Hot water heater
US06/455,244 US4563571A (en) 1981-12-16 1982-12-10 Electric water heating device with decreased mineral scale deposition
CA000417730A CA1205841A (en) 1981-12-16 1982-12-15 Water heating device
EP82306725A EP0082025B1 (en) 1981-12-16 1982-12-16 Water heating device
DE8282306725T DE3271699D1 (en) 1981-12-16 1982-12-16 Water heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20433181A JPS58103795A (en) 1981-12-16 1981-12-16 Hot water heater

Publications (2)

Publication Number Publication Date
JPS58103795A true JPS58103795A (en) 1983-06-20
JPH027519B2 JPH027519B2 (en) 1990-02-19

Family

ID=16488719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20433181A Granted JPS58103795A (en) 1981-12-16 1981-12-16 Hot water heater

Country Status (1)

Country Link
JP (1) JPS58103795A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249109A (en) * 1985-08-29 1987-03-03 Idemitsu Kosan Co Ltd Fluid heating heater device
GB2391610A (en) * 2002-07-19 2004-02-11 Elite Plus Internat Inc A heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5581332U (en) * 1978-11-30 1980-06-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5581332U (en) * 1978-11-30 1980-06-04

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249109A (en) * 1985-08-29 1987-03-03 Idemitsu Kosan Co Ltd Fluid heating heater device
JPH0328654B2 (en) * 1985-08-29 1991-04-19 Idemitsu Kosan Kk
GB2391610A (en) * 2002-07-19 2004-02-11 Elite Plus Internat Inc A heat exchanger

Also Published As

Publication number Publication date
JPH027519B2 (en) 1990-02-19

Similar Documents

Publication Publication Date Title
US4563571A (en) Electric water heating device with decreased mineral scale deposition
JPS58103795A (en) Hot water heater
JPS58120039A (en) Water heater
JPS58184498A (en) Heat exchanger
JPS58120040A (en) Hot-water heater
JPS58106351A (en) Water heater
JPS58103796A (en) Heating element
JPS6026240A (en) Electrical instantaneous hot-water heater
JPS61143652A (en) Electric instantaneous water heater
JPS5840A (en) Heat exchanger
JPS58179765A (en) Water heater
JPS5810904Y2 (en) heating device
JPS58106785A (en) Heating element
JPS607187B2 (en) Heat exchanger
JPS6237074Y2 (en)
JPS5625688A (en) Radiator for use in hothouse
JPH0445357A (en) Heating device
KR100292151B1 (en) Electric heating bar of boiler
JPH0218430Y2 (en)
KR890005743Y1 (en) Hot-water heat exchanger
JPH0354369Y2 (en)
JPS585055Y2 (en) Thermostat mounting device
KR20000006306U (en) Instant water heater using heater pipe
JPS6043939U (en) Water heater for bathtub
JPS59158935A (en) Water heating device