JPS58102580A - Manufacture of tunnel type josephson element - Google Patents

Manufacture of tunnel type josephson element

Info

Publication number
JPS58102580A
JPS58102580A JP56201160A JP20116081A JPS58102580A JP S58102580 A JPS58102580 A JP S58102580A JP 56201160 A JP56201160 A JP 56201160A JP 20116081 A JP20116081 A JP 20116081A JP S58102580 A JPS58102580 A JP S58102580A
Authority
JP
Japan
Prior art keywords
mask
niobium
layer
film
polyimide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56201160A
Other languages
Japanese (ja)
Inventor
Masaru Igarashi
岩田恒和
Tsunekazu Iwata
岩澤晃
Shugo Kubo
久保衆伍
Makoto Hikita
五十嵐賢
Akira Iwazawa
疋田真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56201160A priority Critical patent/JPS58102580A/en
Publication of JPS58102580A publication Critical patent/JPS58102580A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To implement the element characteristics having high reproducibility, in forming a plasma oxide film on the surface on an electrode at a ground plane which is to become a tunnel barrier in the Josephson element, by performing patterning by using a lift off mask having a double layer structure comprising a lower polyimide resin layer and an upper active metal layer, thereby reducing contamination and decreasing the reaching frequency of an impurity atoms to a junction part. CONSTITUTION:Niobium 7 is evaporated on a polyimide resin film 6 to the thickness of about 0.1-0.5mum. With an opposing negative pattern 8, which is formed by ordinary photolithography, as a mask, only niobium film is etched. Then, a photoresist 8 is removed by a solvent. Thereafter, the polyimide resin at the opening part of the niobium is removed by reactive sputter etching and an overhung structure of the niobium mask 7 is obtained. The surface of the electrode on the ground plane at the junction part 4 is shocked by argon plasma through the mask having the double structure of the polyimide resin/niobium, a contaminated layer is removed, and a clean surface is formed. Then a thin insulator film 9 which is to become the tunnel barrier is formed at the junction part.

Description

【発明の詳細な説明】 本発明は、トンネル渥ジ、セフノン素子の製造方法に係
り、特に、下地電極あるいは対向電極の超伝導薄膜回路
ノlターン金形成するに適し友リフトオフ用マスクの改
良された構成に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a tunnel gate and a Cefnon element, and in particular to an improved lift-off mask suitable for forming a superconducting thin film circuit of a base electrode or a counter electrode. Regarding the configuration.

従来のトンネル型ジ、セ7ソ/素子の製造方法では、電
極形成に用いられるリフトオフ用のマスク材料として通
常の7オトレジスト材料が便用すれており、フォトレノ
スト材料の実用上O1!用温置紘10G℃以下と低いた
め、電極材料の形成を100℃以下の比較的を偏成で行
う必要がめった。そのため、通常の金属薄臆形成法にお
いて、基板との密着性るるいは艮好な結晶性を実現する
に必要な約300℃以上の基板加熱条件下ではリフトオ
フ法は適用できなかった。例外的に、低融点合金である
鉛合金を電極とするジョセフソン素子において、電極ノ
譬ターンの形成に7オトレジストをマスクとするリフト
オフ法が用いられている。しかし鉛合金よりも強度が大
きく、信頼性に優れるニオf6るいはニオブ合金を超伝
導電極とする素子において杜、上記レジスト材料をリフ
トオフ用マスク材料として用いると、蒸着時に蒸発源か
らの輪射エネルギーによって、いかに基板を冷却しても
マスク面が変成し、マスク材料からの分解ガスの放出に
よる膜の汚染、/譬ターンだれの発生、マスクの剥1w
i現象の発生、リフトオフの不能などの問題を発生する
。また、このように基板を冷却する条件下で作製し丸編
は吸着ガス不純物を膜の構造に多量に含み、真好な超伝
導特性を示さないという欠点がおる。
In the conventional manufacturing method of tunnel type diode/sensor/device, ordinary photoresist material is used as the lift-off mask material used for electrode formation, and the practical use of photoresist material is O1! Since the heating temperature was as low as 10 G°C or less, it was necessary to form the electrode material relatively unevenly at a temperature of 100°C or less. Therefore, in the conventional metal thin film formation method, the lift-off method cannot be applied under substrate heating conditions of about 300° C. or higher, which are necessary to achieve smooth adhesion to the substrate or excellent crystallinity. Exceptionally, in a Josephson element using a lead alloy, which is a low melting point alloy, as an electrode, a lift-off method using a 7-photoresist as a mask is used to form the electrode pattern. However, in devices using niobium F6 or niobium alloys as superconducting electrodes, which have greater strength and superior reliability than lead alloys, if the above resist material is used as a lift-off mask material, the radiation energy from the evaporation source during evaporation can be removed. As a result, no matter how much the substrate is cooled, the mask surface undergoes metamorphosis, resulting in film contamination due to the release of decomposition gas from the mask material, sagging, and mask peeling.
Problems such as the occurrence of the i phenomenon and the inability to lift off occur. Further, the circular knit film produced under such conditions of cooling the substrate has the disadvantage that the film structure contains a large amount of adsorbed gas impurities and does not exhibit proper superconducting properties.

本発明の目的は、特に、ニオブめるい扛窒化ニオノのよ
うな高融点超伝導体を電極物質とするトンネル型ゾ、セ
フソン素子の製造においてtlその超伝導体電極のノ譬
ターニングに上述の欠点なしにリフトオフ法を用い得る
方法を提供することにある。
The purpose of the present invention is to solve the above-mentioned drawbacks in turning the superconductor electrode, particularly in the production of tunnel-type devices using a high-melting point superconductor such as niobium nitride as an electrode material. The object of the present invention is to provide a method in which the lift-off method can be used without using the lift-off method.

このような本発明の目的は、超伝導体電極の/譬!−二
ンダのためのリフトオフ用マスクとして、通常のフォト
レジストと同様の簡便なスピンコード法により薄膜状に
塗布可能でありかつ耐熱性に富むポリイミド樹脂からな
る下層膜と、このポリイミPIEのエツチング用マスク
として作用する活性金属薄膜からなる上層膜との二層積
層構造を用いることにより達成される。
The purpose of the present invention is to solve the problem of superconductor electrodes. - As a lift-off mask for the secondary, a lower layer film made of polyimide resin, which can be coated in a thin film form by a simple spin code method similar to ordinary photoresist and has high heat resistance, and an etching mask for this polyimide PIE. This is achieved by using a two-layer stack structure with an upper layer consisting of a thin active metal film acting as a mask.

即ち、本発明のトンネル型ソ、セフソン素子O脚造方法
は、 上S活性金属層と下部ポリイミド樹脂層とからなる二層
積層構造金マスクとして用いて、リフトオフによ〕超伝
導簿膜電極のノ臂ターニングを行なうことを特徴とする
That is, the method for constructing the tunnel-type Sefson element O legs of the present invention uses a two-layer laminated gold mask consisting of an upper S active metal layer and a lower polyimide resin layer to form a superconducting membrane electrode by lift-off. It is characterized by turning the arm.

本発明の方法において、活性金属マスクは、Iリイミド
膜を1Iil素プラズマ中でドライエツチングする際の
マスクとして作用するだけでなく、リフトオフマスクの
形成後、ジョセフソン素子製造工程において接合部のゾ
ラズマクリーニングの際に表面を活性化し、続くグラズ
マ鍍化工程においてrツタ作用をなし、マスク材料及び
試料保持機構からのバックスキャツタ不純物の接合部へ
の混入を低減せしむる作用をも有し、その結果、曳好な
接合特性おへよびその再現性の向上が達成される。
In the method of the present invention, the active metal mask not only acts as a mask during dry etching of the Iliimide film in a 1Iil elemental plasma, but also serves as a mask for dry etching the I-Liimide film in a 1Iil elementary plasma. It also has the effect of activating the surface during cleaning, creating an r ivy effect in the subsequent glazma coating process, and reducing the incorporation of backscattering impurities from the mask material and sample holding mechanism into the joint, As a result, good bonding properties and improved reproducibility are achieved.

以下、図面を参照して、本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例によシ得たインライン型ジ、
セフノン接合の完成図である0図中、1は下地電極、2
は層間絶縁層、Sは対向電極、4は接合部である。第2
図は第1図OA −A’における断面構造を示したもの
で、1は基板でおる。接合部は下地電極と対向電極の間
に数ナノートルという極めて薄い絶縁体薄膜からなるト
ンネルバリア層を設けることによって構成される。20
層間絶縁層は一合5e)一様性、接合部面積精度を高め
るためのものであって、はぶいても本発明の趣旨をそこ
なうものではない。また、下地電極と対向電極が直焚す
るか、適当な角fをなして、接合部において又又するよ
うな電極配置會とっても同様に本−A明の趣旨金そこな
うものではない。さらに、通常ジョセフソン優合を1数
1vA含む回路においては、ジョセフソン接合は超伝導
体の接地面の上に適当な絶縁層を介して配置される。従
ってノ、セフソン接合の下層構造は厳低@度において、
基板材料/超伝導体電極1[i/層間絶縁層、の三層構
造を持つものでるるか、このような下J一槽構造本発明
の趣旨を何らそこなうものではないので、ここではジョ
セフソン素子の下層構造のすべてを含めて基板とみなす
こととする。
FIG. 1 shows an in-line type diode obtained according to an embodiment of the present invention.
In Figure 0, which is a completed diagram of Cefnon junction, 1 is the base electrode, 2
is an interlayer insulating layer, S is a counter electrode, and 4 is a bonding portion. Second
The figure shows a cross-sectional structure taken along line OA-A' in FIG. 1, where 1 is a substrate. The junction is constructed by providing a tunnel barrier layer made of an extremely thin insulating film of several nanometers between the underlying electrode and the counter electrode. 20
The purpose of the interlayer insulating layer is to improve the uniformity and accuracy of the joint area, and even if it is removed, it will not impair the purpose of the present invention. Furthermore, the spirit of the present invention will not be impaired if the underlying electrode and the counter electrode are arranged directly or at an appropriate angle f and are arranged over and over again at the junction. Furthermore, in circuits that typically include a Josephson dominant of several 1 vA, the Josephson junction is placed on the ground plane of the superconductor via a suitable insulating layer. Therefore, the underlying structure of the Sefson junction is
Is it possible to have a three-layer structure of substrate material/superconductor electrode 1 [i/interlayer insulating layer? The entire underlying structure of the element is considered to be the substrate.

第3@は第1図のジ、セフソ/素子の製造1楢における
対向電極形成用リフトオフマスクを示した′ものであり
、6はポリイミド樹脂膜、1はニオブ膜でbる。第4図
は第3図のB −B’における断面構造を示したもので
ある。
3 shows a lift-off mask for forming a counter electrode in the step 1 of manufacturing the device shown in FIG. 1, 6 is a polyimide resin film, and 1 is a niobium film. FIG. 4 shows a cross-sectional structure taken along line B-B' in FIG. 3.

第3図の構造に至る工程の主なものを工程虜に列挙する
と、■下地電極の形成、■接合部層間絶′−縁層形成、
■& IJイミド樹脂と二オノ薄属の二層構造膜および
その4ター/の形成、でめり、■の工程に本発明の方法
が・適用される。
The main steps leading to the structure shown in Figure 3 are briefly listed as follows: 1. Formation of the base electrode, 2. Formation of the interlayer insulation layer at the junction,
(2) & The method of the present invention is applied to the steps of (2) forming, demolition, and forming a two-layer structure film of IJ imide resin and Niono thin metal, and its four-layer structure.

■の下地電極形成は、7オトレジストマスクを用い喪化
学エツチング又はドライエツチングによるか、適当なリ
フトオフ工程によって行いうるものでめ9、リフトオフ
工程を用いる場合には本発明の適用も可能でるる。
Formation of the base electrode (1) can be performed by chemical etching or dry etching using an photoresist mask, or by a suitable lift-off process.9 The present invention can also be applied when a lift-off process is used.

■の接合部層間絶縁層についても同様にエツチング又は
り7トオフエ程によって)臂ター/形成を行いうる0層
間絶縁体としては二酸化ケイ素、アルミナ等の酸化MX
あるいは窒化ケイ素などの窒化膜が用いられる。
As for the interlayer insulating layer at the junction part (2), the interlayer insulating material that can be similarly formed by etching or etching is MX oxide such as silicon dioxide or alumina.
Alternatively, a nitride film such as silicon nitride is used.

次に、本発明の一実施例について図を参照して詳細に説
明する。第5図は本発明の一実施例を工程順に示す断面
図でるる。
Next, one embodiment of the present invention will be described in detail with reference to the drawings. FIG. 5 is a sectional view showing an embodiment of the present invention in the order of steps.

まず、4リイミド**をN−メチル−2−ピロドリフ等
の溶剤で希釈して、粘Wtl&1111iシた後、スピ
ンコーティング法によって、下地電極1および層間絶縁
層2が形成された基板5上に0.3〜2声鋼の厚みに塗
布する。次に約130℃に徐徐に加熱して浴剤f:除去
した後、約300℃に適当時間保持して熱閉槙反応させ
、耐熱フィルム6とする0次に、ポリイミド樹脂フィル
ムG上にニオf1を約0.1〜0.5μ肩の厚みに蒸着
し、二層構造膜とする。第5図C1)は以上の工程の終
了段階を示すものである。
First, 4-imide** was diluted with a solvent such as N-methyl-2-pyrodrif, and then coated with viscous Wtl&1111i. Then, by spin coating, 4-limide** was coated on the substrate 5 on which the base electrode 1 and the interlayer insulating layer 2 were formed. .Apply to the thickness of 3 to 2 tone steel. Next, after gradually heating to about 130°C to remove the bath agent f, it is kept at about 300°C for an appropriate time to undergo a heat-sealing reaction to form a heat-resistant film 6. f1 is deposited to a thickness of about 0.1 to 0.5 μm to form a two-layer film. FIG. 5C1) shows the final stage of the above process.

次に通常のフォトリングラフィによって形成したフォト
レジストの対向電極ネガノ4ターン8をマスクとして、
ニオブ膜のみの工、テングを竹う、エツチングは適当組
成のm酸、弗酸、乳酸の混合濡液によるか、弗るいはC
F4グラズマ中でのドライエツチングによって行われる
。第!5IQ(2)は以上の工程の終了段階を示すもの
でるる。
Next, using a photoresist negative electrode 4 turn 8 formed by normal photolithography as a mask,
Processing of niobium film only, bamboo coating, and etching are performed using a mixed wet solution of m acid, hydrofluoric acid, and lactic acid of appropriate composition, or using fluorinated or carbon
This is done by dry etching in an F4 Glazma. No.! 5IQ(2) indicates the end stage of the above process.

次に、フォトレノストをアセトン等のIII剤で除去し
た後、酸素プラズマによる反応性スz4 yタエ、チン
ダによって、二オシマスク開口部のポリイミド樹脂を除
去する。このとき、エツチング時間を適当に選択すると
、二オシマスク1のオーパーツ1ング構造を得ることが
できる。この形状はリフトオフ工程の信頼性の確保、・
譬ターン端部のばりの発生の抑制のために好ましいもの
である。なお、ポリイミド樹脂のエツチングを一素グラ
ズマに依らず、ヒドラジン浴液あるいは塩化アンチモン
溶液などで化学的に行うことも可能である。第5図(3
)は以上の工程の終了段階を示すものであり、第3図、
第4図と同じである・ 次にノ臂ター/形成の終了したポリイミド樹Vニオゾ二
層構造マスクを介して、接合部4の下地電極表面をアル
ゴングラズマによって衝撃して、汚染層を除去すること
により、清浄な表向を形成する。このとき、ニすゾマス
ク1表面も清浄化され、活性表面となる。続いて接合部
にトンネルバリアとなる絶縁体薄膜9を形成する。
Next, after removing the photorenost with a III agent such as acetone, the polyimide resin at the openings of the nitrogen mask is removed using reactive oxygen plasma. At this time, by appropriately selecting the etching time, it is possible to obtain the Oparts 1 ring structure of the Nioshimask 1. This shape ensures reliability in the lift-off process,
This is preferable for suppressing the occurrence of burrs at the ends of the turns. Incidentally, the etching of the polyimide resin can also be carried out chemically using a hydrazine bath solution, an antimony chloride solution, etc., instead of relying on monoglazma. Figure 5 (3
) indicates the end stage of the above process, and Figure 3,
This is the same as in Figure 4. Next, the surface of the underlying electrode of the joint 4 is bombarded with argon plasma through the completed polyimide V-Niozo double layer structure mask to remove the contaminant layer. This creates a clean surface. At this time, the surface of the Niszomask 1 is also cleaned and becomes an active surface. Subsequently, an insulating thin film 9 that will serve as a tunnel barrier is formed at the junction.

この絶縁体薄膜9の形成方法として最も一般的な方法と
して知られているのはグラズマ戚化法である。なお、本
発明の二層マスクの効果の一つとしてグツズ1咳化法に
おける酸化膜形成1機での不純物汚染の低減を挙げるこ
とができる。
The most commonly known method for forming the insulating thin film 9 is the glazma-alloying method. Incidentally, one of the effects of the two-layer mask of the present invention is the reduction of impurity contamination in one oxide film formation method in the one-guts coughing method.

グラズマ酸化法とは酸素あるいは酸素と他の適、轟な不
活性ガスの混合ガスのグラズブ中でマイナスバイアスが
試料表面に印加されるように試料を配置することによっ
て、試料表面をスノ母ツタ鹸化する方法である。この方
法によれば、下池電極表向に数ナノメートルの酸化層を
再現性良く形成することが可能である。しかし、このグ
ツズ!酸化において、励起された酸素あるいは不活性f
X原子は試料表面へ一様に衝突するため、マスク材料が
有機物の如く高ス・譬ツータイールドの材料においては
、マスク材料からスノクツタされ九炭化水素系の不純物
が多量に接合部に到適してトンネルバリアとなる酸化物
中に取込まれ、その電気的%性を著しく不安定なものに
すると■う欠点がありた。
Glazma oxidation method is a method of saponifying the sample surface by placing the sample in a glass bath containing oxygen or a mixture of oxygen and other suitable, inert gases so that a negative bias is applied to the sample surface. This is the way to do it. According to this method, it is possible to form an oxide layer of several nanometers on the surface of the lower electrode with good reproducibility. But this crap! In oxidation, excited oxygen or inert f
Since X atoms uniformly collide with the sample surface, if the mask material is a high-strength, two-tailed material such as an organic material, a large amount of hydrocarbon-based impurities are removed from the mask material and reach the joint, tunneling. It has the disadvantage that it is incorporated into the oxide that serves as a barrier, making its electrical properties extremely unstable.

本発明てはマスク表面は活性化されたニオブでおおわれ
ている丸メ、接合部に対する汚染源とならない。また、
試料保持機構等、試料表向と同電位の物質表面からスノ
臂、夕された不純物原子は、そのほとんどが、接合部近
傍において搗′ 活性二オシ表面に補ばくされ、接合部に到達する頻度が
極めて低く押えられる。
In the present invention, the mask surface does not become a source of contamination for the round holes and joints covered with activated niobium. Also,
Most of the impurity atoms that are ejected from the surface of a material that has the same potential as the surface of the sample, such as the sample holding mechanism, are supplemented by the active surface near the joint, and the frequency with which they reach the joint is increased. is kept extremely low.

これらの理由によシ接合部の汚染が少く、良好な特性の
トンネルバリアが形成される0以上のように、本発明の
二層構造マスクはグラズマ酸化農作製工程において、不
純物汚染の少ない酸化物トンネルバリアの作製を可能に
するという顕著な効果を持つ。
For these reasons, there is less contamination at the junction, and a tunnel barrier with good properties is formed.The two-layer mask of the present invention is made of oxide with less impurity contamination in the glazma oxidation production process. It has the remarkable effect of making it possible to create a tunnel barrier.

第6図はプラズマ酸化膜形成に引続き、同一の真空槽を
用いて試料を大気にさらすことなく、対向電極用、超伝
導体を堆積させた段階を示したものである。ここにsB
対向電極である。対向電極は蒸着法あるいはス・母ツタ
法いずれで堆積させた場合でも、後述するり7トオフ法
で74り−ン形成が可能でるる、堆積時の基板加熱温度
妹、4リイ< r@腫の熱分解a度である約400℃以
下において任意orihtが一重部である。そのため、
対向電極用超伝導体として良好な超伝導性を示すニオf
6るいは窒化ニオft−用いることが可能となる。
FIG. 6 shows a stage in which, following the plasma oxide film formation, a superconductor for the counter electrode was deposited using the same vacuum chamber without exposing the sample to the atmosphere. sB here
This is a counter electrode. Whether the counter electrode is deposited by the vapor deposition method or the sintering method, it is possible to form 74 lines using the strip-off method described later. At temperatures below about 400° C., which is the degree of thermal decomposition of Therefore,
Nio-f exhibits good superconductivity as a superconductor for counter electrodes
It becomes possible to use niobium nitride or niobium nitride.

次にリフトオフ工程を説明する。ポリイミド樹脂のエツ
チング液として知られるヒドラジン本S液によりて、リ
フトオフは容易になされる。
Next, the lift-off process will be explained. Lift-off is easily performed using hydrazine S solution, which is known as an etching solution for polyimide resin.

ニオtおよび窒化二オシともヒドラジン水溶液による劣
化を受けないため、対同電極の超伝導%性に紘何ら変化
を生じない。ポリイtPltllマスクの膜厚が1マイ
クロメートルの場合、線巾2マイクロメートルのニオブ
および窒化ニオブのノ譬ターン化が可能でTo9、この
方法がノ。
Since neither NiO2 nor NiO2 is degraded by the hydrazine aqueous solution, no change occurs in the superconductivity of the counter electrode. When the film thickness of the PolytPltll mask is 1 micrometer, it is possible to pattern niobium and niobium nitride with a line width of 2 micrometers, and this method is No.9.

セフノン素子工欄として十分適扇可能な・り一/精縦と
信頼性を持つことが確認された。リフトオツ完了後のノ
母!、−ノは第1図及び第2図に示した完成図と同じで
ある― 以上の実施例では活性金属層としてニオブの便用例を示
した。本発明の詳細な説明から明らかなように、この金
属層を構成するり質はグラズマ酸化工程における活性表
面として作用する物質でToりて、化学エツチングある
いはCF4グ2ズマエッチングで除去できるものであれ
ば、すべて本発明の目的のために適用できる。
It was confirmed that it has sufficient reliability and precision to be suitable for use as a Cefnon element. Mother after the lift-off is completed! , - are the same as the completed diagrams shown in FIGS. 1 and 2. In the above embodiments, niobium was conveniently used as the active metal layer. As will be clear from the detailed description of the present invention, the material constituting this metal layer is a material that acts as an active surface in the glazma oxidation process and can be removed by chemical etching or CF4 glaze oxidation. For example, all are applicable for the purposes of the present invention.

これらに該尚する金属としてチタン、そりノデン、タン
タル等はとんど全ての高融点金属が本発明の趣旨に含ま
れる。ただし極微量な9ともその存在が、超伝導特性に
非常に敏感にきく強磁性金属は適用されない。
The scope of the present invention includes almost all high melting point metals such as titanium, solenoid, and tantalum. However, this method cannot be applied to ferromagnetic metals whose superconducting properties are extremely sensitive to the presence of a trace amount of 9.

以上説明したように、本発明の下層Iリインド樹脂、上
層活性金属よりなる二層構造を持つリフトオフ用マスク
は、トンネル型ジ、セフノン素子のトンネルバリアとな
る下地電極表面のグッズマ酸化膜形成の際、ポリイミド
marをグッズマにさらさないため、炭化水素系の汚染
を減少させるとともに活性金属表面のゲッタ作用によシ
接合部への不純物原子の到達S度を低下せしめ、再現性
の高い素子特性を実現するりえで一着な効果をもたらす
。また、ポリイミド樹脂の持つ良好な耐熱性によってこ
れまで一般の7オトレノスト材料によるリフトオフの不
可能であった輩化二オシの如き基板加WI4tIjb費
とする物質を対向電極に用いることを可能としたこと、
および、ニオブのようにレジストの耐熱性の制約上、従
来低温での堆積を余憤なくされてい良材料に関しても、
この方法により基板加熱俵件下で優れた特性の対向電極
形成を可能とするなどの顕著な効果がるる。
As explained above, the lift-off mask of the present invention, which has a two-layer structure consisting of the lower layer I-reind resin and the upper layer active metal, is suitable for forming the goods matrix oxide film on the surface of the base electrode that becomes the tunnel barrier of the tunnel type di-, cefnon element. Since polyimide mar is not exposed to goods, hydrocarbon contamination is reduced, and the getter action of the active metal surface reduces the degree of impurity atoms reaching the junction, achieving highly reproducible device characteristics. Surrie brings a unique effect. In addition, due to the good heat resistance of polyimide resin, it has become possible to use materials for the counter electrode that require substrate addition, such as fluoride, which was previously impossible to lift off using general 7-Otrenost materials. ,
Also, regarding materials such as niobium, which have conventionally been reluctant to be deposited at low temperatures due to the heat resistance limitations of resists,
This method has remarkable effects such as making it possible to form a counter electrode with excellent characteristics under substrate heating conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1@Iは本発明の一実施例によシ得たインツイン溜り
、七7ノン素子の完成図、第2図は第1ffiのA −
A’断向図、Jll!3図は本発明の一実施例でるる、
4リイきド樹脂/ニオプ二層構造マスクによる対向電極
マスクの構成例、第4図は纂3図OB −11’断面図
、第5図(1) 、 (J # (3)は本発明の一実
施例を工程順に示す断面図、第6図は対向電極超伝導薄
膜の堆積時の接合部断面図である。 1・・・、下書−電極、2・・・層間絶縁層、3・・・
対同電極、4・・・接合部、5・・・基板、6・・・ポ
リイミド樹脂、1・・・ニオブ、8・・・フォトレジス
ト、9・・・絶縁体薄膜。 出願人代理人  弁理士 鈴 江 武 鉢第1図 第2図 第3図 第4図 第1頁の続き 0、発 明 者 岩澤晃 茨城県那珂郡東海村大字白方字 白根162番地日本電信電話公社 茨城電気通信研究所内 1、事件の表示 特願昭!$6−201160号 2、発明の名称 トンネル型ジヲセフソン素子の製造方法3、補正をする
者 事件との関係 特許出願人 <422>日本電信電話公社 4、代理人 昭和57年3月30日 6、補+Eの対象 図面 7、補正の内容 第5図(m) I (b) @ (C)を添付図面に朱
書するように第5図(11、(21、131に訂正する
1@I is a completed diagram of an intwin reservoir and 77 non-element obtained according to an embodiment of the present invention, and FIG. 2 is A- of the 1ffi.
A' cross-section view, Jll! Figure 3 shows an embodiment of the present invention.
An example of the configuration of a counter electrode mask using a two-layer structure mask of 4-filled resin/nioprene, FIG. 4 is a cross-sectional view of OB-11' in Fig. FIG. 6 is a cross-sectional view showing an embodiment in the order of steps, and FIG. 6 is a cross-sectional view of a joint portion during deposition of a counter electrode superconducting thin film. 1..., draft-electrode, 2... interlayer insulating layer, 3...・・・
Counter electrode, 4... Joint portion, 5... Substrate, 6... Polyimide resin, 1... Niobium, 8... Photoresist, 9... Insulator thin film. Applicant's representative Patent attorney Takeshi Suzue Hachi Figure 1 Figure 2 Figure 3 Figure 4 Figure 4 Continued from page 1 0 Inventor Akira Iwasawa 162 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki Prefecture Nippon Telegraph and Telephone Public Corporation Ibaraki Telecommunications Research Institute 1, special request for display of incident! $6-201160 No. 2, Title of invention: Method for manufacturing tunnel-type Jiwo-Sefson device 3, Relationship with the amended case Patent applicant <422> Nippon Telegraph and Telephone Public Corporation 4, Agent March 30, 1982 6, Figure 5 (m) I (b) @ (C) is corrected to Figure 5 (11, (21, 131) in red ink on the attached drawing.

Claims (1)

【特許請求の範囲】[Claims] 上部活性金属ノーと下Sポリイミドl1w1I層とから
なる二層積層構造をマスクとして用いて、リフトオフに
よp超伝導薄Mt惺の・母ターニングを行なうことを特
徴とするトンネル型ジ、セフツノ票子の製造方法。
A tunnel-type di-seftsuno-socket is characterized in that a two-layer laminated structure consisting of an upper active metal layer and a lower S-polyimide l1w1I layer is used as a mask to perform mother turning of a p-superconducting thin Mt layer by lift-off. Production method.
JP56201160A 1981-12-14 1981-12-14 Manufacture of tunnel type josephson element Pending JPS58102580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56201160A JPS58102580A (en) 1981-12-14 1981-12-14 Manufacture of tunnel type josephson element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56201160A JPS58102580A (en) 1981-12-14 1981-12-14 Manufacture of tunnel type josephson element

Publications (1)

Publication Number Publication Date
JPS58102580A true JPS58102580A (en) 1983-06-18

Family

ID=16436365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56201160A Pending JPS58102580A (en) 1981-12-14 1981-12-14 Manufacture of tunnel type josephson element

Country Status (1)

Country Link
JP (1) JPS58102580A (en)

Similar Documents

Publication Publication Date Title
US4145699A (en) Superconducting junctions utilizing a binary semiconductor barrier
JPS58200586A (en) Josephson tunnel junction device of niob-insultor-niob and method of producing same
US4381595A (en) Process for preparing multilayer interconnection
JPS58102580A (en) Manufacture of tunnel type josephson element
JPS60208873A (en) Manufacture of josephson junction element
JPH02298085A (en) Manufacture of josephson device
JP2899308B2 (en) Superconducting element manufacturing method
KR100334404B1 (en) Method for fabricating high temperature superconductor device
JPS60734A (en) Semiconductor device and manufacture thereof
JPS5810855B2 (en) Tasou High Senkou Zou no Seihou
JPH08227743A (en) Metal electrode for oxide superconductor
JPH03190289A (en) Josephson junction element and manufacture thereof
JP2727648B2 (en) Superconducting element manufacturing method
JPS60210887A (en) Manufacture of josephson junction element
JPS61263179A (en) Manufacture of josephson junction element
JPS6380580A (en) Manufacture of josephson junction device
JPS6029234B2 (en) Microbridge type Josephson device, its manufacturing method, and its manufacturing device
JPS60208874A (en) Manufacture of josephson junction element
JPH02248082A (en) Manufacture of josephson junction
JPH0523073B2 (en)
JPS60167326A (en) Manufacture of semiconductor device
JPH03106080A (en) Manufacture of superconducting device
JPS5994480A (en) Superconductive device
JPH04287382A (en) Mask material for forming oxide thin film, forming method for pattern of oxide thin film using same, and manufacture of superconducting element
JPS6167975A (en) Manufacture of josephson junction element