JPS5810132B2 - Oxygen adsorption/desorption agent - Google Patents

Oxygen adsorption/desorption agent

Info

Publication number
JPS5810132B2
JPS5810132B2 JP54125626A JP12562679A JPS5810132B2 JP S5810132 B2 JPS5810132 B2 JP S5810132B2 JP 54125626 A JP54125626 A JP 54125626A JP 12562679 A JP12562679 A JP 12562679A JP S5810132 B2 JPS5810132 B2 JP S5810132B2
Authority
JP
Japan
Prior art keywords
complex
oxygen
group
hydrogen atom
desorbing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54125626A
Other languages
Japanese (ja)
Other versions
JPS5648243A (en
Inventor
重原淳孝
田中久巳
土田英俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP54125626A priority Critical patent/JPS5810132B2/en
Publication of JPS5648243A publication Critical patent/JPS5648243A/en
Publication of JPS5810132B2 publication Critical patent/JPS5810132B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 この発明は酸素吸脱着剤に係り、特に立体障害性近位塩
基型鉄ポリフィリン錯体を有効成分とする酸素吸脱着剤
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen adsorbing/desorbing agent, and more particularly to an oxygen adsorbing/desorbing agent containing a sterically hindered proximal base type iron porphyrin complex as an active ingredient.

一般に、式 (ここで R1は水素原子、ビニル基またはエチル基)
で示される鉄ポルフィリン錯体のカルボキシル基のうち
の一つと1−(3−アミノプロピル)イミダゾールとを
反応させてアミド結合によりイミダゾール基を環側鎖に
導入した錯体を近位塩基型鉄ポルフィリン錯体と称し、
式 (ここで、R1は式(I)の場合と同じ、およびRは−
N+CH2+3N″′mまたは −N+CH2+3N′″1)で示される。
Generally, the formula (where R1 is a hydrogen atom, a vinyl group or an ethyl group)
A complex obtained by reacting one of the carboxyl groups of the iron porphyrin complex with 1-(3-aminopropyl)imidazole to introduce an imidazole group into the ring side chain through an amide bond is called a proximal base type iron porphyrin complex. called,
Formula (where R1 is the same as in formula (I), and R is -
N+CH2+3N'''m or -N+CH2+3N''1).

このうちRがエチル基のときは、C,に、 Chang
およびT、G。
When R is an ethyl group, C, Chang
and T.G.

Traylorによる合成例が知られている(Proc
An example of synthesis using Traylor is known (Proc
.

Nat、Acad 、 Sci 、 USA、 70巻
2647頁、1973)。
Nat, Acad, Sci, USA, Vol. 70, p. 2647, 1973).

式(I)で示される鉄ポリフィリン錯体は中心鉄がFe
(n)のとき活性であり、適当な軸塩基(イミダゾール
、ピリジン等)の存在下に、酸素分子を軸配位座に吸着
する能力を有する。
In the iron porphyrin complex represented by formula (I), the central iron is Fe.
When (n), it is active and has the ability to adsorb oxygen molecules to the axial coordinate site in the presence of a suitable axial base (imidazole, pyridine, etc.).

しかしながら、イミダゾールやピリジン等を軸配位子と
して加えた場合、その軸配位子は二つの軸配位座に配位
し、例えば (ただし、−−はポルフィリン環平面を側方向から見た
状態を示す。
However, when imidazole, pyridine, etc. are added as axial ligands, the axial ligands are coordinated to two axial coordination sites, and for example (-- is the state seen from the side of the porphyrin ring plane). shows.

以下同じ)のような6配位構造を取り、中心Feが空配
位座を持たないため酸素親和性に乏しい。
It has a six-coordinated structure (the same applies hereinafter), and has poor oxygen affinity because the central Fe has no vacant coordination sites.

さらに、C0E−CaS t roら(J 、Am、
Chem、Soc 998032(1977))によれ
ば、このような6配位構造を取ると、のような副反応が
起って中心鉄がFe(III)へ酸化され、活性を失う
Furthermore, C0E-CaS tro et al. (J, Am,
Chem, Soc 998032 (1977)), when such a six-coordinated structure is adopted, the following side reactions occur, the central iron is oxidized to Fe(III), and the activity is lost.

一方、in)で示されるような近位塩基型錯体では例え
ば、 のような安定5配位構造を取りやすく、空配位の第6座
で酸素を効率よく吸着できるとされている。
On the other hand, it is said that a proximal base-type complex as shown by in) easily takes a stable five-coordinate structure such as the following, and can efficiently adsorb oxygen at the vacant sixth position.

しかしながら、実際には溶媒中において、(Solは溶
媒分子)のような混合6配位構造を取りやすく、この傾
向はSolがH2Oやジメチルホルムアミド(DMF)
、テトラヒドロフラン(THF)、ジオキサンおよびジ
メチルスルホキシド(DMSO)のとき特に顕著であり
、これらの溶媒中での酸素化がむずかしく、また空気中
の湿気により活性が著しく減じられる。
However, in reality, in a solvent, it tends to take a mixed 6-coordination structure such as (Sol is a solvent molecule), and this tendency is due to the fact that Sol is a compound such as H2O or dimethylformamide (DMF).
, tetrahydrofuran (THF), dioxane and dimethyl sulfoxide (DMSO), oxygenation in these solvents is difficult and the activity is significantly reduced by moisture in the air.

この発明は安定な5配位構造のみを取る立体障害性近位
塩基型鉄ポリフィリン錯体を有効成分としてなるガス吸
着剤を提供することを目的とする。
The object of the present invention is to provide a gas adsorbent containing as an active ingredient a sterically hindered proximal base type iron porphyrin complex having only a stable five-coordinate structure.

すなわち、この発明のガス吸着剤は、一般式(ここで
R1は水素原子、ビニル基またはエチル基 R2は水素
原子、1ないし20個の炭素原子を有するアルキル基ま
たはベンジル基、およびR3は水素原子またはメチル基
)で示される立体障害性近位塩基型鉄ポルフィリン錯体
を有効成分とするものである。
That is, the gas adsorbent of this invention has the general formula (where
R1 is a hydrogen atom, a vinyl group or an ethyl group, R2 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a benzyl group, and R3 is a hydrogen atom or a methyl group). It contains a porphyrin complex as an active ingredient.

上記式囚かられかるように、この発明の高分子鉄ポルフ
ィリン錯体において、立体障害を示すメチル基がイミダ
ゾール環の4位にメチル基が導入されている。
As can be seen from the above formula, in the polymeric iron porphyrin complex of the present invention, a methyl group exhibiting steric hindrance is introduced at the 4-position of the imidazole ring.

この4位のメチル基とポルフィリン環との立体障害によ
り、模式 で示すようにイミダゾールがポルフィリン環の真下から
ではなく斜めから配位するようになり、その結果第6座
の軸配位子場が弱くなって溶媒分子が配位できないよう
になる。
Due to the steric hindrance between the 4-position methyl group and the porphyrin ring, the imidazole coordinates obliquely to the porphyrin ring instead of directly below it, as shown in the schematic, and as a result, the axial ligand field at the 6th position increases. It becomes weaker and becomes unable to coordinate with solvent molecules.

この斜め配位により、イミダゾール基自体の配位能も減
少する傾向にあるが、メチル基の−I効果が配位性窒素
上の電子密度を増加させるために補償される。
This oblique coordination also tends to reduce the coordinating ability of the imidazole group itself, but this is compensated for by the -I effect of the methyl group increasing the electron density on the coordinating nitrogen.

また、5位にもメチル基がある場合すなわち R3がメ
チル基の場合にはイミダゾール基自体の配位能がさらに
増大し、酸素錯体を形成する能力はより優れたものとな
る。
Further, when there is a methyl group at the 5-position, that is, when R3 is a methyl group, the coordinating ability of the imidazole group itself further increases, and the ability to form an oxygen complex becomes even more excellent.

このして、式(A)で示される立体障害性近位塩基型錯
体では安定5配位構造が形成されるのである。
In this way, a stable five-coordination structure is formed in the sterically hindered proximal base type complex represented by formula (A).

もつとも、前記式(II)におけるRが −N+CH2+3Zコ゛ である場合の錯体も一種の立
体障害性近位塩基型の錯体といえるが、メチル基がイミ
ダゾール環の2位に位置しているため、立体障害が強す
ぎる結果、その錯体は5配位構造と当該イミダゾール基
の配位していない4配位構造との混合体となる。
Of course, the complex in which R in formula (II) is -N+CH2+3Z can also be said to be a type of sterically hindered proximal base type complex, but since the methyl group is located at the 2-position of the imidazole ring, the sterically As a result of too strong a hindrance, the complex becomes a mixture of a 5-coordinate structure and a 4-coordinate structure in which the imidazole group is not coordinated.

この4配位錯体は極めて速やかに酸素によって酸化され
るので酸素吸着性が非常に劣ったものとなる。
This four-coordination complex is oxidized very quickly by oxygen, resulting in very poor oxygen adsorption properties.

また、置換位置がイミダゾール環の4位であっても、メ
チル基よりも嵩高い基であったり、また十I効果を有す
る基であっては不都合である。
Furthermore, even if the substitution position is at the 4-position of the imidazole ring, it is disadvantageous if the group is bulkier than a methyl group or if it is a group having a ten-I effect.

式(A)で示される錯体において R2の種類を変える
ことによって、当該錯体の溶解性を変化させるとさがで
きる。
By changing the type of R2 in the complex represented by formula (A), it is possible to change the solubility of the complex.

すなわち、R2がHの場合は、DMF、ジメチルアセト
アミド、DMSO,アルコール類およびN−メチルピロ
リドンに易溶で、CHCl 、THF、 ジオキサン
、ベンゼンおよびCH3CNに部分的に可溶であるが
R2がc3〜C20アルキル基またはベンジル基の場合
はDMF、ジメチルアセトアミド、’DMSO,アルコ
ール類、CHCl3 、CH2Cl2 。
That is, when R2 is H, it is easily soluble in DMF, dimethylacetamide, DMSO, alcohols, and N-methylpyrrolidone, and partially soluble in CHCl, THF, dioxane, benzene, and CH3CN.
When R2 is a c3-C20 alkyl group or a benzyl group, DMF, dimethylacetamide, 'DMSO, alcohols, CHCl3, CH2Cl2.

C1CH2CH2CA 、C(14、THF、ジオキサ
ン、ベンゼン、トルエン、CH3CN1およびN−メチ
ルピロリドンに易溶となる。
C1CH2CH2CA, C(14, easily soluble in THF, dioxane, benzene, toluene, CH3CN1 and N-methylpyrrolidone.

また、Rがメチル基またはエチル基の場合は、CCl4
、トルエン、エーテルおよびアセトンに対する溶解性が
やや低くなる。
In addition, when R is a methyl group or an ethyl group, CCl4
, slightly less soluble in toluene, ether and acetone.

式(A)で示される錯体の製造方法の一例を示すと、次
のようである。
An example of a method for producing the complex represented by formula (A) is as follows.

(各式において、RはC7〜C20アルキル基またはベ
ンジル基)。
(In each formula, R is a C7-C20 alkyl group or a benzyl group).

上記反応(I)では、鉄ポルフィリン錯体と等量のアル
コールROHとをDMF中で硫酸を触媒として反応させ
る。
In the above reaction (I), an iron porphyrin complex and an equal amount of alcohol ROH are reacted in DMF using sulfuric acid as a catalyst.

この反応混合物を大量の水に注下、沈でんさせ、沈でん
物を1集、乾燥後、CHC,e 3/CH30H(50
/1 )を用いてシリカゲル100メツシユカラムで展
開してまずジエステル体を流出させる。
This reaction mixture was poured into a large amount of water to precipitate, one precipitate was collected, and after drying, CHC,e3/CH30H (50
/1) in a silica gel 100 mesh column to first allow the diester to flow out.

次に、CHCl3/CH30H(30/1)で展開 す
るとモノエステル体が得られる。
Next, the monoester is obtained by developing with CHCl3/CH30H (30/1).

溶媒を留去して粉末とし、これを反応(■)に用いる。The solvent is distilled off to obtain a powder, which is used in the reaction (■).

反応(It)では、反応(I)で得たモノエステル体を
DMFの溶液とし、0〜5℃で等量のエチルクロロホル
メートおよびトリエチルアミンを滴下して1時間攪拌す
る。
In reaction (It), the monoester obtained in reaction (I) is made into a solution in DMF, and equal amounts of ethyl chloroformate and triethylamine are added dropwise at 0 to 5°C, followed by stirring for 1 hour.

ついで、0〜5℃で等量のイミダゾール誘導体を滴下し
、0〜5°Cで1時間攪拌し、室温で終夜放置する。
Then, an equal amount of imidazole derivative is added dropwise at 0-5°C, stirred at 0-5°C for 1 hour, and left overnight at room temperature.

その後、溶媒を留去し、シリカゲル100メツシユカラ
ムを用いてCHCl3/CH30H(4/1)で展開す
ると、第1留分に目的のモノアミドモノエステル体が得
られる。
Thereafter, the solvent is distilled off and developed with CHCl3/CH30H (4/1) using a silica gel 100 mesh column to obtain the desired monoamide monoester in the first fraction.

溶媒を留去して粉末とし、これを必要に応じて反応(■
)に供する。
The solvent is distilled off to form a powder, which is reacted (■
).

反応(■)は式(A)においてR2が水素である場合に
おこなうもので、この反応をおこなう場合、R*はメチ
ル基であることが好都合である。
Reaction (■) is carried out when R2 in formula (A) is hydrogen, and when carrying out this reaction, it is convenient for R* to be a methyl group.

この反応(■)では反応(■)で得たモノアミドモノエ
ステル粉末を最小量のDMFに溶解し、同容量の1N−
KOH水溶液を加えて1時間攪拌し、水で希釈後HC1
を加えてpHを5とし、沈でん物を許集、乾燥して目的
のモノカルボキシモノアミド体を得る。
In this reaction (■), the monoamide monoester powder obtained in reaction (■) was dissolved in the minimum amount of DMF, and the same volume of 1N-
Add KOH aqueous solution, stir for 1 hour, dilute with water, and add HC1
is added to adjust the pH to 5, and the precipitate is collected and dried to obtain the desired monocarboxymonoamide.

なおR*をメチル基として、この反応(■)までおこな
った後、さらにアルコールと反応させて所望のエステル
体を得てもよい。
Note that R* may be a methyl group, and after this reaction (■) has been carried out, the desired ester may be obtained by further reacting with an alcohol.

こうして得られる立体障害性近位塩基型鉄ポルフィリン
錯体(式A)は中心鉄がFe■(適当な還元剤で還元す
る)であるとき、そのまま固体粉末の状態であるいはア
ルコール類およびアセトンを除く前記有機溶媒中の溶液
状態で酸素を可逆的に吸脱着する。
The thus obtained sterically hindered proximal base type iron porphyrin complex (formula A), when the central iron is Fe (reduced with a suitable reducing agent), can be produced in the form of a solid powder as it is or in the form of a solid powder after removing alcohols and acetone. Reversibly adsorbs and desorbs oxygen in a solution state in an organic solvent.

この発明の酸素吸脱着剤が溶液の形態にあるときは、式
(イ)で示される錯体の濃度は10−6モル/1以上限
界濃度までであることが望ましい。
When the oxygen adsorbing/desorbing agent of the present invention is in the form of a solution, the concentration of the complex represented by formula (a) is preferably 10-6 mol/1 or more up to a critical concentration.

この濃度が10−3モル/1以上の高濃度である場合に
は、次式 (ここで、Fe−BおよびFe Bは立体障害近位塩基
Bが中心鉄に配位した状態および解離した状態をそれぞ
れ示す)に従って2量化が進み、酸素吸脱着能が経時的
に減少する場合がある。
When this concentration is as high as 10-3 mol/1 or more, (respectively), dimerization progresses and the oxygen adsorption/desorption ability may decrease over time.

上記のような場合には、用いた溶媒に可溶な高分子増粘
剤を添加した混合溶液とすれば、上記2量化反応が著し
く減少し、酸素吸脱着能が改善できる。
In the above case, if a mixed solution is prepared in which a soluble polymer thickener is added to the solvent used, the dimerization reaction can be significantly reduced and the oxygen adsorption/desorption ability can be improved.

もちろん、錯体が低濃度である場合でも高分子増粘剤の
添加は酸素吸脱着能を向上させる。
Of course, the addition of a polymeric thickener improves the oxygen adsorption/desorption capacity even at low concentrations of the complex.

上記高分子増粘剤は数平均分子量(Mn)が5000以
上の非イオン性高分子であれば、どのようなものでもよ
く、例えば、ポリスチレン、ポリメチルメタクリレート
、ポリアクリルアミド、ポリN−ビニルピロリドンポリ
エチレンオキシド、デキストラン等であり、用いた溶媒
に可能なものを選択すればよい。
The polymer thickener may be any nonionic polymer with a number average molecular weight (Mn) of 5,000 or more, such as polystyrene, polymethyl methacrylate, polyacrylamide, polyN-vinylpyrrolidone polyamide, etc. Ethylene oxide, dextran, etc. may be selected from those that are compatible with the solvent used.

この高分子増粘剤は錯体溶液100重量部につき0.1
重量部以上加えることが望ましい。
This polymeric thickener is 0.1 parts by weight per 100 parts by weight of the complex solution.
It is desirable to add at least part by weight.

最大濃度は増粘剤の限界濃度である。上述の高分子増粘
剤を加えた錯体溶液を適当に減圧留去あるいは乾固して
粉砕、成形ないし成膜することにより、錯体が上述の非
イオン性高分子に分散した形の、固形、粉末、膜、ない
しゲル状の02吸脱着剤が得られる。
The maximum concentration is the critical concentration of the thickener. The complex solution to which the above-mentioned polymeric thickener has been added is appropriately distilled off under reduced pressure or dried to form a solid, pulverized, molded or film-formed complex in the form of a complex dispersed in the nonionic polymer. A powder, film, or gel-like 02 adsorption/desorption agent is obtained.

こうすると、錯体が分散されているため上述の2量化が
起らず長寿命のO2吸脱着剤が得られる利点がある。
This has the advantage that since the complex is dispersed, the above-mentioned dimerization does not occur and a long-life O2 adsorbent/desorbent can be obtained.

錯体層液と混合するか、あるいはカラムにつめた状態で
錯体溶液を流通させ溶媒留去ないし洗浄、乾燥すれば、
シリカゲル、アルミナ、セファデックスゲル等の担体に
錯体が吸着した形の粉末状O2吸脱着剤が得られる。
If you mix it with the complex layer solution or pass the complex solution in a column and distill off the solvent or wash it and dry it,
A powdery O2 adsorbent/desorbent in which a complex is adsorbed onto a carrier such as silica gel, alumina, or Sephadex gel is obtained.

この場合もやはり錯体が分散されているため上述の2量
化が起りにくく長寿命の02吸脱着剤が得られる。
In this case as well, since the complex is dispersed, the above-mentioned dimerization is unlikely to occur and a long-life 02 adsorption/desorption agent can be obtained.

このとき錯体としてR2がHのものを用いると、特にシ
リカゲル、アルミナへの錯体固定が良好になる。
At this time, if a complex in which R2 is H is used, the complex can be fixed particularly well to silica gel or alumina.

以上のようにして得られた固体、ゲル、膜、粉末、溶液
状のO2吸脱着剤は、 (1)気体中からの微量O2除去 (2)触媒的酸化反応の助触媒 (3)燃料電池の触媒 として有用である。
The solid, gel, membrane, powder, and solution O2 adsorbing and desorbing agents obtained as described above can be used to (1) remove trace amounts of O2 from gas, (2) co-catalyst for catalytic oxidation reactions, and (3) fuel cells. is useful as a catalyst.

以下、実施例に沿ってこの発明の酸素吸脱着剤を詳しく
説明するが、式(5)で示される錯体の合成例をまず記
す。
The oxygen adsorbing/desorbing agent of the present invention will be described in detail below with reference to Examples, but first a synthesis example of the complex represented by formula (5) will be described.

合成例 1 鉄(■DプロトポルフィリンIX −C1(Fe(■D
Hと略す)6.52gを100m1のDMFに溶解し、
メタノール0.32gおよび硫酸3mlを加え、約10
0℃に加温して1時間反応させた。
Synthesis Example 1 Iron (■D protoporphyrin IX-C1(Fe(■D
(abbreviated as H) was dissolved in 100ml of DMF,
Add 0.32 g of methanol and 3 ml of sulfuric acid, and boil for about 10
The mixture was heated to 0°C and reacted for 1 hour.

この反応混合物を適当に減圧濃縮し、純水中に滴下し、
沈澱物を1集後乾燥した(収量約65’)。
This reaction mixture was appropriately concentrated under reduced pressure and dropped into pure water.
The precipitate was collected and dried (yield: about 65').

この生成物をφ20cm×60cmのシリカゲル(10
0メツシユ)カラムを用いて、まずCHCl3/CH3
0H(50/1)で流出させてFe(■)H−ジメチル
エステルを得た。
This product was mixed with silica gel (φ20 cm x 60 cm) (10
First, using a CHCl3/CH3
Elution was performed at 0H (50/1) to obtain Fe(■)H-dimethyl ester.

次にCHCl3/CH30H(30/1 )で流出させ
て、目的のFe(■)H−モノメチルエステルを3.3
g得た。
Next, the desired Fe(■)H-monomethyl ester was extracted with 3.3
I got g.

これをDMF50mlfこ溶解し、0°Cにてエチルク
ロロホルメート0.54gおよびトリエチルアミン0.
5gを滴下して1時間攪拌したのち1−(3−アミノプ
ロピル)−4−メチルイミダゾール0.7.9を0℃で
滴下後、1時間攪拌したのち室温で終夜放置した。
This was dissolved in 50ml of DMF and heated to 0°C with 0.54g of ethyl chloroformate and 0.0ml of triethylamine.
After 5 g was added dropwise and stirred for 1 hour, 0.7.9 g of 1-(3-aminopropyl)-4-methylimidazole was added dropwise at 0°C, stirred for 1 hour, and then left overnight at room temperature.

沖過後、溶媒を減圧留去し、φ15cm×60cmのシ
リカゲル(100メツシユ)カラムを用いてCHCl3
/CH30H(4/1 )で展開し最初の少量不純物を
流出させてから目的の下記構造物1.2gを得た。
After evaporation, the solvent was distilled off under reduced pressure, and CHCl3
After developing with /CH30H (4/1) and removing the initial small amount of impurities, 1.2 g of the desired structure shown below was obtained.

これを最少量のDMFに溶解し、同容量のIN−KOH
水溶液を加え、1時間攪拌、水で適当に希釈し、HCl
をpH5になるまで加えて生成する沈澱を1集、乾燥し
て、上記構造式中エステル部が加水分解されて−COO
H型となった目的物(BFe(IIDHと略す)1.1
gを得た。
Dissolve this in the minimum amount of DMF and add the same volume of IN-KOH.
Add aqueous solution, stir for 1 hour, dilute appropriately with water, and add HCl.
was added until the pH reached 5, the resulting precipitate was dried, and the ester moiety in the above structural formula was hydrolyzed to form -COO.
Target object that became H type (BFe (abbreviated as IIDH) 1.1
I got g.

BFe(期H 元素分析 (計算値)C59,83N12.21 H5,40%(
実測値)C59°88 Nl 2.25 H5,36%
NMRスペクトル(d、−DMSO中、NaCN添加、
内部標準TMS) 環−CH315,38、14,75、11,94。
BFe (Period H Elemental analysis (calculated value) C59,83N12.21 H5,40% (
Actual value) C59°88 Nl 2.25 H5, 36%
NMR spectrum (d, -in DMSO, NaCN added,
Internal standard TMS) Ring-CH315,38,14,75,11,94.

10.64(12H);α−CH25,64、5,24
(4H);β−CH2−0,25、−0,44(4((
) ;ビニル−Hl O,57、−2,11〜−2,7
9(3H);イミダゾール環−H7,53、7,03(
2H);イミダゾール−CH32,14(3H);アミ
ドN−H7,20(I H)ppm 合成例 2 合成例1において、1=(3−アミノプロピル)−4−
メチルイミダゾールの代りに、1−(3−アミノプロピ
ル)−4,5−ジメチルイミダゾールを0.75g用い
た他は全く(A)と同様にして下記構造物(B′Fe(
■)Hと略す)1.3gを得た。
10.64 (12H); α-CH25,64,5,24
(4H);β-CH2-0,25,-0,44(4((
) ; Vinyl-Hl O,57, -2,11 to -2,7
9(3H); Imidazole ring-H7,53,7,03(
2H); Imidazole-CH32,14 (3H); Amide N-H7,20 (I H) ppm Synthesis Example 2 In Synthesis Example 1, 1=(3-aminopropyl)-4-
The following structure (B'Fe(
(2) 1.3 g (abbreviated as H) was obtained.

B′Fe(■)H 元素分析 (計算値)C60,28Nl 2.00 N5.55%
(実測値)C60,21N12.06 N5.49%N
MRスペクトル(da DMSO中、NaCN添加、
内部標準TMS) 環−CH315,22,14,61,11,83゜10
.59(12H) :d−CH25,64、5,24(
4H) ;β−CH2−0,07、−0,47(4H)
;ビニル−Hl O,36、−2,08〜−2,77
(3H);イミダゾール環−N7.10(IH);イミ
ダゾール−CH22,08、1,97(6H) ;アミ
ドN−H7,39(LH)ppm 合成例 3 合成例1において、Fe(I[I)Hの代わりにデュテ
ロヘン(佐原薬学■製)6.4.9を用いた他は(5)
と同様にして下記構造物(BFe(■)Dと略す)を1
.1g得た。
B'Fe(■)H Elemental analysis (calculated value) C60,28Nl 2.00 N5.55%
(Actual value) C60, 21N12.06 N5.49%N
MR spectrum (da in DMSO, NaCN added,
Internal standard TMS) Ring-CH315,22,14,61,11,83°10
.. 59(12H): d-CH25,64,5,24(
4H); β-CH2-0,07, -0,47(4H)
; Vinyl-Hl O, 36, -2,08 to -2,77
(3H); Imidazole ring-N7.10 (IH); Imidazole-CH22,08,1,97 (6H); Amide N-H7,39 (LH) ppm Synthesis Example 3 In Synthesis Example 1, Fe(I[I ) Deuterogen (manufactured by Sawara Yakugaku ■) 6.4.9 was used instead of H (5)
In the same manner as above, the following structure (abbreviated as BFe(■)D) was prepared as 1
.. I got 1g.

BFe (■)D 元素分析 (計算値)C57,58Nl 3.06 N5.23%
BFe (■)D Elemental analysis (calculated value) C57,58Nl 3.06 N5.23%
.

(実測値)C57,52N13.08 N5.25%N
MRスペクトル(d、−DMSO中、NaCN添加、内
部標準TMS) 環−CH315,10,14,46,11,57゜10
.32(12H);α−CH25,61。
(Actual value) C57,52N13.08N5.25%N
MR spectrum (d, in -DMSO, NaCN addition, internal standard TMS) Ring -CH315,10,14,46,11,57°10
.. 32(12H); α-CH25,61.

5.13 (4H) ;β−CH2−0,12、−0,
51(4H);イミダゾール−N7.51、7.00(
2H);イミダゾール−CH32,15(3H);アミ
ドN−H7,22(I H)ppm 合成例 4 合成例2において、Fe@)Hの代わりにデュテロヘミ
ン6.4gを用いた他は(B)と同様にして下記構造物
(B’Fe(I[DDと略す)を1,1g得た。
5.13 (4H);β-CH2-0,12,-0,
51 (4H); Imidazole-N7.51, 7.00 (
2H); Imidazole-CH32,15 (3H); Amide N-H7,22 (I H) ppm Synthesis Example 4 Synthesis Example 2 except that 6.4 g of deuterohemin was used instead of Fe@)H (B) In the same manner as above, 1.1 g of the following structure (B'Fe (I [abbreviated as DD)) was obtained.

B’Fe(III)D 元素分析 (計算値)C58,09Nl 2.82 H5,40%
B'Fe(III)D Elemental analysis (calculated value) C58,09Nl 2.82 H5,40%
.

(実測値’) C58,09Nl 2.80 H5,3
6%NMRスペクトル(d、−DMSO中、NaCN添
加、内部標準TMS) 環−CH315,11,14,48,11,59゜10
.34(12H);α−CH25,64、5,15(4
H);β−CH2−0,12、−0,53(4H) ;
イミダゾール−H7,12(IH);イミダゾール−C
H32,10、1,99(6H) ;アミドN H7
,41(IH)ppm 合成例 5 合成例1において、Fe(IIOHの代わりにメゾヘミ
ン(佐原薬学■製)6.6gを用いた他はへ)と同様に
して下記構造物(BFe(III)Mと略す)1.21
.9を得た。
(Actual value') C58,09Nl 2.80 H5,3
6% NMR spectrum (d, in -DMSO, NaCN addition, internal standard TMS) Ring -CH315,11,14,48,11,59°10
.. 34 (12H); α-CH25,64,5,15(4
H);β-CH2-0,12,-0,53(4H);
Imidazole-H7,12 (IH); Imidazole-C
H32,10,1,99(6H); Amide N H7
, 41 (IH) ppm Synthesis Example 5 The following structure (BFe(III) M )1.21
.. I got a 9.

BFe(III)M 元素分析 (計算値)C59,53N12.15 H5,87%(
実測値)C59,50Nl 2.18 H5,90%N
MRスペクトル(d6−DMSO中、NaCN添加、内
部標準TMS) 環−CH315,92,15,02,1,1,97゜1
0.86(12H);α−CH25,88,、5,47
(4H);β−CH2−0,06、−0,46(4H)
;イミダゾール−H7,58、7,24(2H) ;
イミダゾール−CH32,21(3H) ;アミドN
H731(II−()ppm 合成例 6 合成例2において、Fe(IIDHの代わりにメゾヘミ
ン6.6gを用いた他は(H3)と同様にして下記構造
物(B’Fe(IIDMと略す)1.26gを得た。
BFe(III)M Elemental analysis (calculated value) C59,53N12.15 H5,87% (
Actual value) C59,50Nl 2.18 H5,90%N
MR spectrum (in d6-DMSO, NaCN addition, internal standard TMS) Ring -CH315,92,15,02,1,1,97゜1
0.86 (12H); α-CH25,88,,5,47
(4H); β-CH2-0,06, -0,46 (4H)
;Imidazole-H7,58,7,24(2H);
Imidazole-CH32,21(3H); Amide N
H731(II-()ppm Synthesis Example 6 In Synthesis Example 2, the following structure (B'Fe (abbreviated as IIDM) 1 .26g was obtained.

B’Fe(■)M 元素分析 (計算値)C59,98Nl 1.94 H6,02%
(測定値)C60,02Nl 1.90 H6,08%
NMRスペクトル(d6−DMSO中、NaCN添加、
内部標準TMS) ’ 環−CH315,86、14,97、11,91。
B'Fe(■)M Elemental analysis (calculated value) C59,98Nl 1.94 H6,02%
(Measurement value) C60.02Nl 1.90 H6.08%
NMR spectrum (in d6-DMSO, NaCN added,
Internal standard TMS)'Ring-CH315,86,14,97,11,91.

10.80 (12H) ;α−CH25,82、5,
41(4H);β−CH,−0,02、−0,44(4
H) ;イミダゾール−H7,04(LH) イミダ
ゾール−CH32,10、1,96(2H) ;アミド
10.80 (12H); α-CH25,82,5,
41 (4H); β-CH, -0,02, -0,44 (4
H) ; Imidazole-H7,04 (LH) Imidazole-CH32,10,1,96 (2H) ; Amide.

N−H7,38(IH)ppm 合成例 7 合成例1〜6で得たB ’F e (II)H,B’F
e (■)H。
N-H7,38(IH)ppm Synthesis Example 7 B'F e (II)H,B'F obtained in Synthesis Examples 1 to 6
e (■)H.

BFe(■)D、 B’ Fe(■)D、 BFe(I
IDMおよびB’ Fe(■)M各々1.0gを100
dのn−ブチル・アルコールに溶解し、5時間沸点還流
後減圧留去し、該当するn−ブチルエステル(各々 BFe(■)HC4、B’ Fe(IIDHC4、BF
e(IIDD−C4、B’ Fe(IIDD−C4、B
Fe(IIDM C4およびB’ Fe(IIDM
C4と略す)を定量的に得た。
BFe(■)D, B' Fe(■)D, BFe(I
1.0 g each of IDM and B' Fe(■)M at 100
d in n-butyl alcohol, refluxed at the boiling point for 5 hours, and then distilled under reduced pressure to obtain the corresponding n-butyl esters (BFe(■)HC4, B'Fe(IIDHC4, BF), respectively).
e(IIDD-C4, B' Fe(IIDD-C4, B
Fe(IIDM C4 and B' Fe(IIDM
C4) was quantitatively obtained.

エステル形成は各々のIRスペクトル測定より、シC0
OH1710cm二1の完全消滅、シcOO−C4H,
1730cmの出現より確認した。
From each IR spectrum measurement, ester formation was determined by C0
Complete disappearance of OH1710cm21, cOO-C4H,
Confirmed from appearance at 1730cm.

合成例 8 合成例1で得たB’ Fe(■)H1gをエタノール1
00m1に溶解し、合成例7と同様の処理および確認を
行なって該当するエチルエステル (B’ Fe(■)H−C2と略す)を定量的に得た。
Synthesis Example 8 1g of B'Fe(■)H obtained in Synthesis Example 1 was added to 1g of ethanol.
00ml, and the same treatment and confirmation as in Synthesis Example 7 were performed to quantitatively obtain the corresponding ethyl ester (abbreviated as B'Fe(■)H-C2).

合成例 9 合成例1で得たB’ Fe(■)H1gをC2oH41
−OH5gととにDMF 100ml中で122時間時
間光した。
Synthesis Example 9 1g of B'Fe(■)H obtained in Synthesis Example 1 was converted into C2oH41
-OH in 100 ml of DMF for 122 hours.

溶媒を減圧留去して約10m1に溶精を減じ、エーテル
/石油エーテル(1/1 )混合溶媒中に投じて沈澱を
1集した。
The solvent was distilled off under reduced pressure to reduce the volume of the eluate to about 10 ml, and the precipitate was collected in a mixed solvent of ether/petroleum ether (1/1).

これをジオキサンに溶解して不溶部を濾去し、再結晶し
て該当するエステル(B′Fe(■)H−C2oと略す
)0.4gを得た。
This was dissolved in dioxane, the insoluble portion was filtered off, and recrystallized to obtain 0.4 g of the corresponding ester (abbreviated as B'Fe(■)H-C2o).

エステル形成は合成例7と同様に確認した。Ester formation was confirmed in the same manner as in Synthesis Example 7.

実施例 1〜18 合成例7で得たBF e (■)HC4。Examples 1 to 18 BF e (■)HC4 obtained in Synthesis Example 7.

B’Fe(■)HC4,BFe(IlI)D c、。B'Fe(■)HC4, BFe(IlI)D c,.

B ’ F e (■) D C4t B F e
(■)M C4。
B' F e (■) D C4t B F e
(■)MC4.

B’Fe(IDM C4を、 I X 10−5mo
l/lとなるようDMFないし表1に記載の溶媒に溶解
し、微量のCr(■)(アセチルアセトン)2を脱気下
に加えて該当のFe(■)錯体溶液を調製した。
B'Fe (IDM C4, I x 10-5mo
The corresponding Fe(■) complex solution was prepared by dissolving it in DMF or the solvent listed in Table 1 so that the ratio was 1/l, and adding a trace amount of Cr(■) (acetylacetone) 2 under degassing.

各々の溶液を嫌気状態のまま紫外可視吸収スペクトル測
定用セルに入れ、0〜20°Cにて空気導入前後のスペ
クトルを測定して表1に示す結果を得た。
Each solution was put into an ultraviolet-visible absorption spectrum measuring cell in an anaerobic state, and the spectra before and after introducing air were measured at 0 to 20°C, and the results shown in Table 1 were obtained.

表1より嫌気下では550〜560nmに単ピークを有
する典型的な5配位錯体であることがわかり、空気導入
により540〜545,570〜575nmの2つに分
裂した酸素錯体形成に基づくピークを示した。
Table 1 shows that it is a typical five-coordination complex with a single peak at 550-560 nm under anaerobic conditions, and when air is introduced, a peak due to the formation of an oxygen complex split into two at 540-545 and 570-575 nm. Indicated.

また一例として添付の図にB’ F e (I)H−C
4のDMF中における酸素化に基づくスペクトル変化を
示したように、安定に酸素を吸脱着した。
As an example, in the attached diagram B' Fe (I) H-C
As shown in the spectrum change due to oxygenation in DMF of No. 4, oxygen was stably adsorbed and desorbed.

図中、曲線aはB’F e(I)Hのスペクトル、曲線
すはB’F e(1)Hを5分間空気下に置き、脱気し
たときのスペクトル、曲線CはB’ F e(■)Hを
5分間空気下に置いた後のスペクトルおよび曲線dはB
’F e(n)Hを2日間空気下に置いた後のスペクト
ル(恐らく、B’F e (■)Hと思われる)である
In the figure, curve a is the spectrum of B'Fe(I)H, curve C is the spectrum when B'Fe(1)H is left in air for 5 minutes and degassed, and curve C is the spectrum of B'Fe(1)H. (■) The spectrum and curve d after leaving H under air for 5 minutes are B
This is a spectrum of 'F e (n)H (probably B'F e (■)H) after it was left under air for two days.

実施例 19〜31 市販の数平均分子量、(Mnと略)5000゜4000
0.100000のポリスチレン、Mn−=20000
のポリメチルメタクリレート、Mn=40000のポリ
アクリアミド、M n =sooooのポリN−ビニル
ピロリドン、Mn=40000のポリエチレンオキシド
、あるいはMn==40000のデキストランを、実施
例1〜18のように操作して得たB’ F e (■)
H−C4あるいはB’ F e(■)H、B’F e(
■)H−C2゜B’F e (■)H−C2,)のI×
’lO’moll/lの溶液に表2のごとく加え、実施
例1〜18に記載の方法でP2吸脱着能を測定して表2
の結果を得た。
Examples 19-31 Commercially available number average molecular weight (abbreviated as Mn) 5000°4000
0.100000 polystyrene, Mn-=20000
polymethyl methacrylate, polyacryamide with Mn = 40,000, polyN-vinylpyrrolidone with Mn = soooo, polyethylene oxide with Mn = 40,000, or dextran with Mn = = 40,000 were operated as in Examples 1 to 18. B' Fe obtained (■)
H-C4 or B' Fe (■) H, B' Fe (
■) H-C2゜B'F e (■) H-C2,) I×
P2 adsorption/desorption ability was measured by the method described in Examples 1 to 18 by adding it to a solution of 'lO'mol/l as shown in Table 2.
I got the result.

表2より高分子増粘剤のMn及び添加量が大きいほどt
1/2が大きく、またエステル鎖が長いほど増粘剤との
分子的なからみ合いが増して錯体同士の衝突による2量
化が起こりにくくなるため、t1/2が大きいことがわ
かる。
From Table 2, the larger the Mn and the amount added of the polymer thickener, the t
It can be seen that t1/2 is large because the larger the 1/2 is and the longer the ester chain is, the more molecular entanglement with the thickener increases, making it difficult for dimerization to occur due to collisions between complexes.

表 1 各錯体の02吸脱着能 実施例 錯 体 溶 媒 温度 嫌気
下(Fe(II)) 空気下(o2化状態) 11%
)のスペクトル のスペクトル 17 BFeM−C4DMF O’
435,560nrn 417,545,575nm
40分18 B’FeMC4DMF
O” 435,560 417.545.5751
20分1)空気下でのスペクトルの経時変化測定から、
酸素錯体の含有料が半分になる時間を求めt /2とし
た。
Table 1 Example of 02 adsorption/desorption ability of each complex Complex Solvent Temperature Anaerobic (Fe(II)) Air (O2 state) 11%
) Spectrum 17 BFeM-C4DMF O'
435,560nrn 417,545,575nm
40 minutes 18 B'FeMC4DMF
O” 435,560 417.545.5751
20 minutes 1) From measurement of spectrum changes over time under air,
The time required for the content of the oxygen complex to be halved was determined as t/2.

表 2 高分子増粘剤を加えたB’Fe(n)H型錯体の0□吸
脱着能実施例 高分子増粘剤 Mn 添加量 溶
媒 温度嫌気下(F e(II)状態) 空気下の
t1/2のスペクトル スペクトル 19 ポリ:1.fし7 50001 g/l
DMF O” 433,559 415,5
43.575100分20 //
4000019/l // //
433,559 415,544,575’11021
” l/ 1000001.F/A’
// / 433,559 415,544
,575’1.3022” // //
1g/11 // // 433,5
59415.5’44,57514023
// 19/11 //
// 433,559 415,544.575
15024”” 〃// 1j!/l /
/ 、/ 433,559 415,544,
57518025 ポ1ノメチ″メタ 2ooo
oo、1g/i // // 433,
559 415,543.57490クリレート 26 // 19/l
〃 〃 433,559 415,544
,57511027 //
5 g71 // // 433,
558 415,544,575140〃 28 ポ1ノアクIノ″ア 400001 Vl
/! // 434,558 415
,544.57590ミ ド 29 ポ1ノ”−” 800001 !
!/l // // 433
,559 414,544.574 90ピロリド
ン 30 ポ1ノ1チL/7オ 400001 g/l
// 〃 434,559 414,54
4,57490キシド 31 デキストラフ 400001 g/
II DMSO20’ 433,558 413,
543,57390* ) B’Fe(II)H、**
) B’Fe(II)H−C2,*** ) B’F
e(II)H−C2゜他はB’Fe(II)HC4を用
いた。
Table 2 Example of 0□ adsorption/desorption capacity of B'Fe(n)H type complex with polymer thickener added Polymer thickener Mn Addition amount Solvent Temperature anaerobic (Fe(II) state) Under air
Spectrum at t1/2 Spectrum 19 Poly:1. fshi7 50001 g/l
DMF O” 433,559 415,5
43.575100 minutes 20 //
4000019/l // //
433,559 415,544,575'11021
"l/1000001.F/A'
// / 433,559 415,544
,575'1.3022" // //
1g/11 // // 433,5
59415.5'44,57514023
// 19/11 //
// 433,559 415,544.575
15024”” 〃// 1j! /l /
/ , / 433,559 415,544,
57518025 Po1 no Mechi'' Meta 2ooo
oo, 1g/i // // 433,
559 415,543.57490 Acrylate 26 // 19/l
〃 〃 433,559 415,544
,57511027 //
5 g71 // // 433,
558 415,544,575140〃 28 PO1NOACINO''A 400001 Vl
/! // 434,558 415
,544.57590 Mid 29 Po1no"-" 800001!
! /l // // 433
,559 414,544.574 90 Pyrrolidone 30 Po 1 no 1 Chi L/7 O 400001 g/l
// 〃 434,559 414,54
4,57490 Oxide 31 Dextrough 400001 g/
II DMSO20' 433,558 413,
543,57390*) B'Fe(II)H, **
) B'Fe(II)H-C2, **** ) B'F
e(II)H-C2° and others used B'Fe(II)HC4.

実施例 32〜35 実施例21〜24に示したB’ Fe(II)H型錯体
とポリスチレンの混合溶液100m1を減圧留去、嫌気
下にゆつくり減圧留去し、次に40℃で2時間乾燥し、
厚さ0.2 mmの膜を各々作成した。
Examples 32 to 35 100 ml of the mixed solution of B' Fe (II) H type complex and polystyrene shown in Examples 21 to 24 was distilled off under reduced pressure, slowly distilled under reduced pressure under anaerobic conditions, and then heated at 40°C for 2 hours. dry,
Each film had a thickness of 0.2 mm.

これを嫌気下でスペクトル測定したところ、全て433
.559nmに極大吸収を示し、次に空気導入して実施
例21のものから成膜したものについては4分後、実施
例22からのものは2分後、実施例23からのものは1
分後、実施例24からのものは30秒以内に415,5
43,575nmに0□錯体形成に基づく極大吸収を示
した。
When I measured the spectrum of this under anaerobic conditions, all 433
.. The maximum absorption was shown at 559 nm, and then air was introduced to form a film from Example 21 after 4 minutes, from Example 22 after 2 minutes, and from Example 23 after 1 minute.
minutes later, the one from Example 24 was 415,5 within 30 seconds.
It showed maximum absorption at 43,575 nm based on 0□ complex formation.

しかし、表3にまとめたように、実施例32および33
の膜は酸素化速度が遅いだけでなく、酸素化された錯体
量係が低く一部Fe(II)状態で残り、さらにt1/
2も小さい。
However, as summarized in Table 3, Examples 32 and 33
The film not only has a slow oxygenation rate, but also has a low oxygenated complex content ratio, remaining partially in the Fe(II) state, and furthermore, the t1/
2 is also small.

光学顕微鏡による観察から実施例32および33の膜は
Fe(II)錯体が均一分散しておらず、塊状に不均一
分散した部分が見られた。
Observation using an optical microscope revealed that in the films of Examples 32 and 33, the Fe(II) complex was not uniformly dispersed, and there were parts where the Fe(II) complex was unevenly dispersed in the form of lumps.

実施例34および35のものは均一分散しており、エス
テル鎖が長いほどポリスチレンとの相溶性が良好なため
と推定される。
Examples 34 and 35 were uniformly dispersed, presumably because the longer the ester chain, the better the compatibility with polystyrene.

表 3 ポリスチレン膜に分散したB’F e(n)H型錯体の
02吸脱着能実施例 成膜的の混合溶液 酸素化し
た錯体量%*t”/z*32 実施例21に記載
5時間2 33 //22// 83
8//34 // 23 〃
98 19//35 〃 2
4// 100 2日取上*)
可視吸収スペクトルの変化より求めた。
Table 3 Example of 02 adsorption/desorption ability of B'Fe(n)H type complex dispersed in polystyrene film Mixed solution for film formation Amount of oxygenated complex %*t''/z*32 Described in Example 21
5 hours 2 33 //22// 83
8//34 // 23 〃
98 19//35 〃 2
4// 100 2-day pickup *)
It was determined from changes in the visible absorption spectrum.

実施例 36〜39 実施例21〜24に記載のB’Fe(n)H型錯体とポ
リスチレンの混合溶液100m1を嫌気下に減圧留去し
、減圧乾燥して粉砕、メツシュを80〜130にそろえ
、各々の粉末50〜について25°Cにて酸素吸収量を
ワールブルグ検圧計にて測定、さらに5時間放置後15
0℃に加熱して脱着する酸素量を測定して25℃表示に
換算、表4にまとめた。
Examples 36 to 39 100 ml of the mixed solution of the B'Fe(n)H type complex and polystyrene described in Examples 21 to 24 was distilled under reduced pressure under anaerobic conditions, dried under reduced pressure and ground, and the mesh size was adjusted to 80 to 130. The oxygen absorption amount of each powder was measured at 25°C using a Warburg manometer, and after being left for 5 hours, the oxygen absorption amount was measured at 25°C.
The amount of oxygen desorbed by heating to 0°C was measured, converted to 25°C, and summarized in Table 4.

表4より、実施例36および37については酸素化能力
が低いことがわかり、これは実施例32および33につ
いて記載したのと同じ理由によると思われる。
From Table 4, it can be seen that Examples 36 and 37 have low oxygenation capacity, which is believed to be due to the same reason as described for Examples 32 and 33.

表 4 ポリスチレン粉体中に分散したB’ Fe (II)H
型錯体の02吸脱着能実施例 成粉前の混合溶液
酸素吸収量 酸素化した錯体量“ 酸素脱着量36
実施例21に記載 1.65ml 7
4% 1.40m137 1122
2.01 89
1.8638 /123 2
.21 98 2.2039
// 24 2.23
99 2.22*)酸素吸収量
/理論酸素吸収量により求めた。
Table 4 B'Fe(II)H dispersed in polystyrene powder
Example of 02 adsorption/desorption ability of type complex Mixed solution before powdering
Oxygen absorption amount Oxygenated complex amount “ Oxygen desorption amount 36
Described in Example 21 1.65ml 7
4% 1.40m137 1122
2.01 89
1.8638 /123 2
.. 21 98 2.2039
// 24 2.23
99 2.22*) Obtained from oxygen absorption amount/theoretical oxygen absorption amount.

実施例 40 実施例24に記載したB’F e (n)HC20とポ
リスチレンの混合溶液10100Oを減圧留去して約5
mlとなるまで体積を減じると殆んど流動しないゲル状
物となった。
Example 40 10,100 O of the mixed solution of B'F e (n) HC20 and polystyrene described in Example 24 was distilled off under reduced pressure to give about 5
When the volume was reduced to ml, a gel-like substance with almost no fluidity was obtained.

このゲル状物全部について実施例36〜39と同様の方
法で酸素吸収量、脱着量を求めたところ、25°C換算
でそれぞれ22.6ml、 21.8mlであった。
The amount of oxygen absorbed and the amount of desorption for all of this gel-like material were determined in the same manner as in Examples 36 to 39, and were found to be 22.6 ml and 21.8 ml, respectively, at 25°C.

実施例 41 80〜130メツンユのシリカゲル1gに実施例1〜1
8と同様にして得たBFe (■)H、E’ F e
(■)H。
Example 41 Examples 1 to 1 to 1 g of silica gel of 80 to 130 meters
BFe obtained in the same manner as in 8 (■)H, E' Fe
(■) H.

B′Fe(■)H−C2slrFe(■)H−C451
1rFe(■) H−C20,B F e(U)D 、
’ftF e(II)D 、 B F e(IF)M
およびB′Fe(II)Mの各々10 ”mol/
lDMF溶液10m1を加え、嫌気下に1時間攪拌、戸
集して減圧乾燥した。
B'Fe (■) H-C2slrFe (■) H-C451
1rFe(■) H-C20, B Fe(U)D ,
'ftFe(II)D, BFe(IF)M
and B′Fe(II)M each 10”mol/
10 ml of lDMF solution was added, stirred for 1 hour under anaerobic conditions, collected and dried under reduced pressure.

濾液の吸光度かき各錯体のシリカゲルへの吸着量を求め
表5にまとめた。
The absorbance of the filtrate was calculated to determine the adsorption amount of each complex onto the silica gel, which is summarized in Table 5.

このシリカゲル0.1について実施例36〜39と同様
の方法で酸素吸収量、脱着量を求め、25°Cに換算し
て表5にまとめた。
For this silica gel 0.1, the amount of oxygen absorption and amount of desorption were determined in the same manner as in Examples 36 to 39, and the results are summarized in Table 5 in terms of 25°C.

酸素化した錯体量%はいずれも100%近いが、シリカ
ゲルへの各錯体の吸着量が異なるため、シリカゲル1g
当りの酸素吸収能力は異なる。
Although the amount of oxygenated complexes (%) is close to 100%, the adsorption amount of each complex to silica gel is different, so 1g of silica gel
The oxygen absorption capacity per unit is different.

−COOH型の錯体を出発物質としたときにはシリカゲ
ルへの吸着はほぼ一定であるが、エステル錯体ではアル
キル鎖が大きいほどシリカゲルに吸着される錯体量が減
少した。
When a -COOH type complex was used as a starting material, adsorption onto silica gel was almost constant, but in the case of an ester complex, the larger the alkyl chain, the smaller the amount of complex adsorbed onto silica gel.

これはシリカゲル中の一8i−OH基と錯体の相互作用
が−C00H型で一番強く、エステル型ではアルキル鎖
が大きいほど小さくなるからと推察される。
This is presumably because the interaction between the 18i-OH group in the silica gel and the complex is strongest in the -C00H type, and in the ester type, the interaction becomes smaller as the alkyl chain becomes larger.

表 5 各錯体のシリカゲルへの吸着量及び生成したシリカゲル
吸着錯体の02吸脱着能実施倒 錯 体 シ
リカゲルへの錯体吸着量 酸素吸収量 酸素化した錯体
量% 酸素脱着量41 BFe(II)H8,2X
10−5mol/g 0.91ml 99%
0.90m142 B’Fe(II)H8
,8X10−” 0.98 9
9 0.9843 B’Fe(II)H−C
24,2X10’ 0.45 9
6 0.4344 B’Fe(II)H−C
3,4X10−” 0.35 9
2 0.3045 B’ Fe(II)H−
C2o9.6X10−61.08 ’100
1.0546 BFe(II)D
8.7X10−50.97 99
0.9647 B’Fe(II)D 8
.1X10−’ 0.89 98
0.8748 ’ BFe(II)M
9.3X10 ’ 1.01
97 1.0049 B’Fe(
n)M 7.8X10 ’
0.87 99 0.87実施例 50 約150メツシユの塩基性アルミナ1gについてB’F
e(II)Hの10−3mo l/l−、DMF溶液1
0m1を嫌気下に加え実施例41〜49と同様に処理し
、同様の方法でこのアルミナに吸着した錯体(吸着量9
.7× 10−5mol/、9)の酸素吸収低酸素脱着
量を同様に求めたところ、それぞれ1.08及び1.0
5m1であり、酸素化した錯体量%は99%であった。
Table 5 Amount of each complex adsorbed on silica gel and 02 adsorption/desorption ability of the generated silica gel adsorption complex Complex Amount of complex adsorbed on silica gel Oxygen absorption amount Amount of oxygenated complex % Amount of oxygen desorption 41 BFe(II)H8, 2X
10-5mol/g 0.91ml 99%
0.90m142 B'Fe(II)H8
,8X10-” 0.98 9
9 0.9843 B'Fe(II)H-C
24,2X10' 0.45 9
6 0.4344 B'Fe(II)H-C
3,4X10-” 0.35 9
2 0.3045 B'Fe(II)H-
C2o9.6X10-61.08'100
1.0546 BFe(II)D
8.7X10-50.97 99
0.9647 B'Fe(II)D 8
.. 1X10-' 0.89 98
0.8748' BFe(II)M
9.3X10' 1.01
97 1.0049 B'Fe(
n) M 7.8X10'
0.87 99 0.87 Example 50 B'F for 1 g of basic alumina of about 150 meshes
10-3 mol/l of e(II)H, DMF solution 1
0 ml was added under anaerobic conditions and treated in the same manner as in Examples 41 to 49, and the complex adsorbed on this alumina (adsorbed amount 9
.. When the oxygen absorption and hypoxic desorption amounts of 7× 10-5 mol/, 9) were determined in the same way, they were 1.08 and 1.0, respectively.
5 ml, and the amount of oxygenated complex was 99%.

実施例 51 セファデックスLH−20ゲルを%Icm×5cmのカ
ラムとし、B’Fe(I[)Hの10 ” mal/
lDMF溶液10m1を嫌気下に通じ、更に10m1の
DMFで洗浄後、最上部の濃く着色した部分のみを取出
して減圧乾燥してゲルに吸着した錯体0.8gを得た。
Example 51 Sephadex LH-20 gel was used as a column of %Icm x 5cm, and 10” mal/
After passing 10 ml of lDMF solution under anaerobic conditions and washing with 10 ml of DMF, only the uppermost darkly colored portion was taken out and dried under reduced pressure to obtain 0.8 g of the complex adsorbed on the gel.

この部分に含まれなかった錯体は微量であったので、錯
体のゲルへの吸着量は約1.2×10−’ mol/g
と考えられる。
Since the amount of complex not included in this part was very small, the amount of complex adsorbed to the gel was approximately 1.2 x 10-' mol/g.
it is conceivable that.

このゲルに吸着した錯体の酸素吸収量を25℃にてワー
ルブルグ検圧計で測定したところ、はぼ理論量の0.1
3m1であった。
When the amount of oxygen absorbed by the complex adsorbed on this gel was measured using a Warburg manometer at 25°C, it was found to be approximately 0.1 of the theoretical amount.
It was 3m1.

これを減圧下で脱酸素化し、再び酸素吸収量を測定した
ところ0.128m1であった。
This was deoxygenated under reduced pressure, and the amount of oxygen absorbed was measured again and found to be 0.128 ml.

【図面の簡単な説明】[Brief explanation of the drawing]

添付の図面はこの発明に従う一例の酸素吸脱着剤の酸素
吸脱着状態を示すスペクトル線図である。
The accompanying drawing is a spectral diagram showing the oxygen adsorption/desorption state of an example of the oxygen adsorption/desorption agent according to the present invention.

Claims (1)

【特許請求の範囲】 1 一般式 (ここで R1は水素原子、ビニル基またはエチル基
R2は水素原子、1ないし20個の炭素原子を有するア
ルキル基またはベンジル基、およびR3は水素原子また
はメチル基)で示される立体障害性近位塩基型鉄(II
)ポルフィリン錯体を有効成分としてなる酸素吸脱着剤
。 2 固体粉末の形態にある特許請求の範囲第1項記載の
酸素吸脱着剤。 3 有機溶媒中の溶液の形態にある特許請求の範囲第1
項記載の酸素吸脱着剤。 4 有機溶媒が、ジメチルホルムアミド、ジメチルアセ
トアミド、ジメチルスルホキシド、テトラヒドロフラン
、クロロホルム、メチレンクロリド、エチレンジクロリ
ド、四塩化炭素、ベンゼン、トルエン、ジオキサン、シ
アン化メチルまたはN−メチルピロリドンである特許請
求の範囲第3項記載の酸素吸脱着剤。 5 立体障害性近位塩基型鉄(II)ポルフィリン錯体
の濃度が10−6モル/lないし限界濃度までである特
許請求の範囲第4項記載の酸素吸脱着剤。 6 担体に担持された形態にある特許請求の範囲第1項
記載の塩素吸脱着剤。 7 一般式 (ここで R1は水素原子、ビニル基またはエチル基
R2は水素原子、1ないし20個の炭素原子を有するア
ルキル基またはベンジル基、およびR3は水素原子また
はメチル基)で示される立体障害性近位塩基型鉄(II
)ポリフィリン錯体と数平均分子量5000以上の非イ
オン性高分子よりなる増粘剤とを含んでなる酸素吸脱着
剤。 8 有機溶媒中の溶液の形態にある特許請求の範囲第7
項記載の酸素吸脱着剤。 9 有機溶媒が、ジメチルホルムアミド、ジメチルアセ
トアミド、ジメチルスルホキシド、テトラヒドロフラン
、クロロホルム、メチレンクロリド、エチレンジクロリ
ド、四塩化炭素、ベンゼン、トルエン、ジオキサン、シ
アン化メチルまたはN−メチルピロリドンである特許請
求の範囲第8項記載の酸素吸脱着剤。 10 立体障害性近位塩基型鉄(n)ポルフィリン錯
体の濃度が10−6モル/lないし限界濃度までであり
、増粘剤の濃度が0.1重量%ないし限界濃度までであ
る特許請求の範囲第9項記載の酸素吸脱着剤。 11 立体障害性近位塩基型鉄(n)ポルフィリン錯
体が増粘剤に分散した固体またはゲルの形態にある特許
請求の範囲第7項記載の酸素吸脱着剤。
[Claims] 1 General formula (where R1 is a hydrogen atom, a vinyl group or an ethyl group)
R2 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a benzyl group, and R3 is a hydrogen atom or a methyl group).
) Oxygen adsorption/desorption agent containing a porphyrin complex as an active ingredient. 2. The oxygen adsorbing and desorbing agent according to claim 1, which is in the form of a solid powder. 3 Claim 1 in the form of a solution in an organic solvent
Oxygen adsorbing/desorbing agent described in Section 1. 4. Claim 3, wherein the organic solvent is dimethylformamide, dimethylacetamide, dimethylsulfoxide, tetrahydrofuran, chloroform, methylene chloride, ethylene dichloride, carbon tetrachloride, benzene, toluene, dioxane, methyl cyanide, or N-methylpyrrolidone. Oxygen adsorbing/desorbing agent described in Section 1. 5. The oxygen adsorbing/desorbing agent according to claim 4, wherein the concentration of the sterically hindered proximal base type iron(II) porphyrin complex is from 10 −6 mol/l to a critical concentration. 6. The chlorine adsorbent/desorbent according to claim 1, which is supported on a carrier. 7 General formula (where R1 is a hydrogen atom, a vinyl group or an ethyl group)
R2 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a benzyl group, and R3 is a hydrogen atom or a methyl group).
) An oxygen adsorption/desorption agent comprising a porphyrin complex and a thickener made of a nonionic polymer having a number average molecular weight of 5,000 or more. 8 Claim 7 in the form of a solution in an organic solvent
Oxygen adsorbing/desorbing agent described in section. 9. Claim 8, wherein the organic solvent is dimethylformamide, dimethylacetamide, dimethylsulfoxide, tetrahydrofuran, chloroform, methylene chloride, ethylene dichloride, carbon tetrachloride, benzene, toluene, dioxane, methyl cyanide, or N-methylpyrrolidone. Oxygen adsorbing/desorbing agent described in section. 10 The concentration of the sterically hindered proximal base type iron(n) porphyrin complex is from 10-6 mol/l to the limit concentration, and the concentration of the thickener is from 0.1% by weight to the limit concentration. The oxygen adsorbing/desorbing agent according to item 9. 11. The oxygen adsorbing/desorbing agent according to claim 7, wherein the sterically hindered proximal base type iron(n) porphyrin complex is in the form of a solid or gel dispersed in a thickener.
JP54125626A 1979-09-29 1979-09-29 Oxygen adsorption/desorption agent Expired JPS5810132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54125626A JPS5810132B2 (en) 1979-09-29 1979-09-29 Oxygen adsorption/desorption agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54125626A JPS5810132B2 (en) 1979-09-29 1979-09-29 Oxygen adsorption/desorption agent

Publications (2)

Publication Number Publication Date
JPS5648243A JPS5648243A (en) 1981-05-01
JPS5810132B2 true JPS5810132B2 (en) 1983-02-24

Family

ID=14914708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54125626A Expired JPS5810132B2 (en) 1979-09-29 1979-09-29 Oxygen adsorption/desorption agent

Country Status (1)

Country Link
JP (1) JPS5810132B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542010A (en) * 1982-06-30 1985-09-17 Bend Research, Inc. Method and apparatus for producing oxygen and nitrogen and membrane therefor
US4451270A (en) * 1982-06-30 1984-05-29 Bend Research, Inc. Absorption process for producing oxygen and nitrogen and solution therefor
IT1215248B (en) * 1985-03-13 1990-01-31 Ates Componenti Elettron ELECTRONIC VOLTAGE REGULATION DEVICE WITH THERMAL DISSIPATION COMPENSATION, IN PARTICULAR FOR ALTERNATORS.
US5871565A (en) * 1997-01-15 1999-02-16 Praxair Technology, Inc. Vacuum/pressure swing adsorption (VPSA) for production of an oxygen enriched gas

Also Published As

Publication number Publication date
JPS5648243A (en) 1981-05-01

Similar Documents

Publication Publication Date Title
Dijkstra et al. Conformational study of cinchona alkaloids. A combined NMR and molecular orbital approach
Chow et al. Derivatives of tetraphenylporphineruthenium (II)
JP2005526708A (en) Hydroxycucurbituril derivative, its production method and use
Xiao et al. A novel macrocyclic organotin carboxylate containing a nona-nuclear long ladder
van Staveren et al. Organometallic β-turn mimetics. A structural and spectroscopic study of inter-strand hydrogen bonding in ferrocene and cobaltocenium conjugates of amino acids and dipeptides
Bertani et al. Supramolecular rods via halogen bonding-based self-assembly of fluorinated phosphazene nanopillars
Kwak et al. Hexanuclear manganese metallamacrocycles with tripled hydrophobic tails
Adzima et al. Sulfuranes. 35. Synthesis, reactions, and crystal and molecular structure of a sulfurane with two apical nitrogen-centered ligands: a spirodiazasulfurane
Mercs et al. Probing the potential of N-heterocyclic carbenes in molecular electronics: redox-active metal centers interlinked by a rigid ditopic carbene ligand
Bennett et al. Crystal and molecular structure of bis (chloro (dioxygen) bis (triphenylphosphine) rhodium (I))
Gao et al. The employment of a hydrophilic tris (morpholino) phosphine ligand in diiron propane-1, 3-dithiolate complexes for potentially water-soluble iron-only hydrogenase active-site mimics
JPS5810132B2 (en) Oxygen adsorption/desorption agent
CN114621453A (en) Preparation and application of zirconium metal organic framework material of bifunctional pyridine carboxylic acid porphyrin ligand
JP3312953B2 (en) Tetraphenylporphyrin metal complex having 2-position side chain and method for producing the same
JPS5856521B2 (en) Sterically hindered proximal base type polymeric iron porphyrin complex
Tsuchida et al. The preparation of protoheme mono-N-(5-(2-methyl-1-imidazolyl) pentyl) amide and its oxygenation.
Ghosh et al. Rhenium (I) tricarbonyl complex of 5, 20-bis (p-tolyl)-10, 15-bis (p-methoxyphenyl)-21-selenaporphyrin: first X-ray structural characterization of metal complex of 21-selenaporphyrin
Yang et al. Synthesis, crystal structure, Hirshfeld surface analysis and electrochemiluminescence property of A 2D Ag (I) coordination polymer
JPH0673045A (en) Ion selective coordination molecule and ion sensor
JP3455174B2 (en) Substituted tetraphenylporphyrin compounds having a basic axial ligand
CN114854033B (en) Preparation and application of Eu metal-organic framework material based on non-planar porphyrin ligand
JP3493429B2 (en) Novel porphyrin complex, method for producing the same, and photoelectric conversion device comprising the same
Barakat et al. Adaptable Overhanging Carboxylic Acid Porphyrins: Towards Molecular Assemblies through Unusual Coordination Modes
CN107903272A (en) The preparation method of Pyridylalkanols ligand, Pyridylalkanols ligand, metal-organic framework material and preparation method thereof
JPS6379887A (en) Porphyrin compound having polymerizable double bond