JPH1199580A - Material for one-directionally fiber-reinforced composite material and its production - Google Patents

Material for one-directionally fiber-reinforced composite material and its production

Info

Publication number
JPH1199580A
JPH1199580A JP9266759A JP26675997A JPH1199580A JP H1199580 A JPH1199580 A JP H1199580A JP 9266759 A JP9266759 A JP 9266759A JP 26675997 A JP26675997 A JP 26675997A JP H1199580 A JPH1199580 A JP H1199580A
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
sheet
composite material
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9266759A
Other languages
Japanese (ja)
Inventor
Hiroyuki Uchino
洋之 内野
Kanji Miyao
巻治 宮尾
Takaharu Yasui
敬治 安井
Yoshiichi Izumihara
芳一 和泉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP9266759A priority Critical patent/JPH1199580A/en
Publication of JPH1199580A publication Critical patent/JPH1199580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material for a one-directionally fiber-reinforced composite material which has linear fibers without curving and waving, contains no bubbles and voids, gives a fiber reinforced plastic product of a high content of reinforcing fibers, and can be impregnated with a room temperature curable resin by simple work such as brushing and its production method. SOLUTION: At least to one side of a backing 2 sheet comprising one- directionally oriented reinforcing fibers of at least 1 GPa tensile strength and of at least 50 GPa tensile modulus of elasticity, 0.01-15% of its area is adhered with a narrow line-shaped thermoplastic resin 3 at most 0.5 mm thick and at least 0.05 mm wide. Or, the molten resin heated to at least the melting point of softening point of the resin is applied on the backing sheet through a nozzle or a printing roller, or a release paper sheet or a resin film on which the resin is applied in the shape of a narrow line in advance is pressed on the backing sheet for the transfer application by heating to at least the melting point or softening of the resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、繊維強化プラスチ
ックの製造あるいはコンクリート構造物などの補修・補
強に用いられる一方向性繊維強化複合材用素材及びその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a unidirectional fiber reinforced composite material used for producing fiber reinforced plastics or repairing and reinforcing concrete structures and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】繊維強化プラスチックの製造やコンクリ
ート構造物などの補修・補強に用いられるシート状の強
化繊維基材は、成形加工に際して行われる切断、積層あ
るいは加圧などの取り扱いにおいてもシート形状が保持
されるように、織布、UDロービングクロス、UDプリ
プレグ等の複合材用素材に加工されている。ここで、織
布は、強化繊維束を平織、朱子織又は綾織などに製織し
た強化繊維基材であり、UDロービングクロスは、多数
の強化繊維束を一方向に引き揃え、この強化繊維束を細
いよこ糸で固定した複合材用素材である。また、UDプ
リプレグは、多数の強化繊維束を一方向に引き揃え、樹
脂を含浸して紙又は樹脂フィルム上に固定した複合材用
素材である。
2. Description of the Related Art A sheet-like reinforcing fiber base material used for manufacturing fiber-reinforced plastics and repairing / reinforcing concrete structures, etc., has a sheet shape that can be used in cutting, laminating, pressing and the like performed during molding. It is processed into a composite material such as woven fabric, UD roving cloth, and UD prepreg so as to be held. Here, the woven fabric is a reinforcing fiber base obtained by weaving the reinforcing fiber bundle into plain weave, satin weave, twill weave, or the like, and the UD roving cloth draws many reinforcing fiber bundles in one direction, and Composite material fixed with thin weft yarn. The UD prepreg is a composite material in which a large number of reinforcing fiber bundles are aligned in one direction, impregnated with a resin, and fixed on paper or a resin film.

【0003】また、特開平8−142238号公報に
は、一方向に引き揃えられたシート状の強化繊維にメッ
シュ状態の繊維を接着して、取り扱い性と樹脂の含浸性
を向上させた複合材用素材が提案されている。特開平9
−67944号公報には、強化繊維を熱可塑性樹脂バイ
ンダーで局所的に結合し、シート形状を保持させたコン
クリート構造物補修・補強用一方向強化繊維材が提案さ
れている。
[0003] Japanese Patent Application Laid-Open No. 8-142238 discloses a composite material in which mesh-like fibers are bonded to sheet-like reinforcing fibers aligned in one direction to improve handleability and resin impregnation. Materials have been proposed. JP 9
JP-A-67944 proposes a unidirectional reinforcing fiber material for repairing and reinforcing concrete structures in which reinforcing fibers are locally bonded with a thermoplastic resin binder to maintain a sheet shape.

【0004】シート状の強化繊維基材を用いた繊維強化
プラスチックにおいて、十分な機械物性を発現させるた
めには、一般に強化繊維が曲がりやうねりのない直線状
で気泡やボイドが無く、強化繊維の含有率が高いことが
必要である。また、シート状の強化繊維基材を用いてコ
ンクリート構造物などの補修・補強を行う場合には、繊
維強化プラスチックと同様の十分な機械物性が得られる
条件に加えて、常温硬化型の樹脂を刷け塗り等の簡単な
作業で容易に含浸させうることが重要となる。
[0004] In a fiber-reinforced plastic using a sheet-like reinforcing fiber base material, in order to exhibit sufficient mechanical properties, in general, the reinforcing fiber is straight without bending or undulation, has no bubbles or voids, and has a high strength. It is necessary that the content be high. When repairing and reinforcing concrete structures and the like using a sheet-like reinforcing fiber substrate, in addition to the conditions that provide sufficient mechanical properties similar to fiber-reinforced plastics, in addition to room-temperature-curable resin It is important to be able to easily impregnate with a simple operation such as brush painting.

【0005】従来技術による織布は、たて糸とよこ糸の
交差部分にクリンプと呼ばれる強化繊維のうねりがあ
り、刷け塗りによる樹脂含浸では織布の織り目に気泡が
残りやすく、また強化繊維の含有率も高くなりにくいた
め、強化繊維が持つ機械物性を十分に発現することがで
きない。
In the woven fabric according to the prior art, reinforcing fibers called crimps are undulated at the intersections of the warp and weft yarns. When the resin is impregnated by brushing, air bubbles are likely to remain on the woven fabric and the reinforcing fiber content is low. Therefore, the mechanical properties of the reinforcing fiber cannot be sufficiently exhibited.

【0006】UDプリプレグは強化繊維の直線性は良好
で、気泡やボイドも発生しにくいため機械物性は良好で
あるが、予め樹脂が含浸された状態で保管や輸送をする
必要から常温硬化型の樹脂を用いることができず、コン
クリート構造物などの補修・補強を現場で行う目的の用
途には不向きである。一方向ロービングクロスは強化繊
維の曲がりやうねりの問題は少ないが、織布と同様に織
り目に気泡が残りやすく、強化繊維の含有率も高くなり
にくい。
UD prepregs have good mechanical properties because the reinforcing fibers have good linearity and hardly generate air bubbles and voids. However, since the UD prepreg needs to be stored and transported in a state of being impregnated with a resin in advance, it is a room temperature-curable type. Since resin cannot be used, it is unsuitable for the purpose of repairing and reinforcing concrete structures and the like on site. The one-way roving cloth has few problems of bending and undulation of the reinforcing fiber, but bubbles are likely to remain in the weave as in the case of the woven fabric, and the content of the reinforcing fiber is hardly increased.

【0007】シート状の強化繊維にメッシュ状態の繊維
を接着した素材では、メッシュの繊維の厚さのために、
2枚以上を積層したり平面に貼り付けた場合に、メッシ
ュの目に気泡が残りやすく、気泡をぬくために加圧を強
めるとメッシュの繊維に接した強化繊維の直線性が損な
われる。また、積層した層間がメッシュの繊維の厚さに
相当する分だけ広がり、層間の密着が悪くなることがあ
る。また、強化繊維を熱可塑性樹脂バインダーで局所的
に結合した素材は、ドレープ性に優れており複雑形状へ
の追従性は良いものの、シートの剛性が不足して繊維の
直線性が損なわれる可能性がある。
[0007] In the case of a material in which mesh-like fibers are bonded to sheet-like reinforcing fibers, the thickness of the mesh fibers causes
When two or more sheets are laminated or affixed to a flat surface, air bubbles are likely to remain in the eyes of the mesh, and if the pressure is increased to remove the air bubbles, the linearity of the reinforcing fibers in contact with the fibers of the mesh is impaired. Further, the stacked layers may spread by an amount corresponding to the thickness of the mesh fiber, and the adhesion between the layers may be deteriorated. In addition, a material in which reinforcing fibers are locally bonded with a thermoplastic resin binder has excellent drapability and good followability to complicated shapes, but the rigidity of the sheet may be insufficient and the linearity of the fibers may be impaired. There is.

【0008】また、熱可塑性樹脂を溶媒で希釈して結合
剤とする場合には、溶媒を除去する際の体積変化によっ
て繊維の直線性が損なわれる可能性があり、無溶媒で熱
溶融状態で結合した場合には、熱可塑性樹脂が溶融状態
から固化する際に体積変化を伴ない繊維の直線性が損な
われる可能性がある。さらに、熱可塑性樹脂は一般に熱
膨張率が高く、使用温度の変化により熱可塑性樹脂の熱
膨張あるいは熱収縮により繊維の直線性が損なわれる可
能性がある。さらに、織布やUDロービングクロスは、
よこ糸を通す製織工程が必要なため、製造速度を速くす
ることができず、UDプリプレグでは紙又は樹脂フィル
ムを必要とし、シート状の強化繊維にメッシュ状態の繊
維を接着した素材では、メッシュ状態の繊維を製造し、
強化繊維と張り合わせる工程を必要とする。このため、
従来技術によるシート状の強化繊維基材は、強化繊維そ
のものの価格に対して割高にならざるをえない。
When the thermoplastic resin is diluted with a solvent to form a binder, the linearity of the fiber may be impaired due to a change in volume when the solvent is removed. In the case of bonding, when the thermoplastic resin solidifies from the molten state, the linearity of the fiber may be impaired with a change in volume. Further, the thermoplastic resin generally has a high coefficient of thermal expansion, and the linearity of the fiber may be impaired due to the thermal expansion or thermal contraction of the thermoplastic resin due to a change in the use temperature. In addition, woven cloth and UD roving cloth,
Since the weaving step of weft thread is required, the production speed cannot be increased, and the UD prepreg requires paper or a resin film, and the material in which the mesh-like fiber is bonded to the sheet-like reinforcing fiber has a mesh-like state. Manufactures fibers,
Requires a step of laminating with reinforcing fibers. For this reason,
The sheet-like reinforcing fiber base material according to the prior art has to be expensive relative to the price of the reinforcing fiber itself.

【0009】[0009]

【発明が解決しようとする課題】したがって、本発明の
目的は、上記した従来技術によるシート状の強化繊維基
材の課題を解決するために、強化繊維が曲がりやうねり
のない直線状で、気泡やボイドが無く、強化繊維の含有
率が高い繊維強化プラスチック製品が得られ、かつ常温
硬化型の樹脂を刷け塗り等の簡単な作業で含浸させるこ
とができる一方向性繊維強化複合材用素材及びその製造
方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems of the sheet-like reinforcing fiber base material according to the prior art, in which the reinforcing fibers are formed in a straight line having no bends or undulations. A material for unidirectional fiber reinforced composites that can obtain a fiber reinforced plastic product with high content of reinforced fiber without voids and voids, and can be impregnated with cold-setting resin by simple work such as brushing And a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】すなわち、本発明は、一
方向に配列した1GPa以上の引張強度と50GPa以
上の引張弾性率を有する強化繊維からなるシート状基材
の少なくとも片面を、その面積の0.01〜15%が、
厚さ0.5mm以下、幅0.05mm以上である細線状
の熱可塑性樹脂で接着されていることを特徴とする一方
向性繊維強化複合材用素材である。
That is, the present invention relates to a sheet-like substrate made of reinforcing fibers having a tensile strength of 1 GPa or more and a tensile modulus of 50 GPa or more arranged in one direction, and at least one surface of the sheet-like base material having an area of at least one 0.01-15%
A material for a unidirectional fiber reinforced composite material, which is bonded with a thin linear thermoplastic resin having a thickness of 0.5 mm or less and a width of 0.05 mm or more.

【0011】また、本発明は、一方向に配列した強化繊
維が、1GPa以上の引張強度と50GPa以上の引張
弾性率を有し、一方向に配列した強化繊維からなるシー
ト状基材の少なくとも片面に、融点又は軟化点以上に加
熱して溶融した熱可塑性樹脂を細線状に塗布するか、あ
るいは予め熱可塑性樹脂を細線状に塗布した離型紙又は
樹脂フィルムを圧着させ融点又は軟化点以上に加熱して
転写して塗布することを特徴とする一方向性繊維強化複
合材用素材の製造方法である。
[0011] The present invention also relates to the present invention, wherein the reinforcing fibers arranged in one direction have a tensile strength of 1 GPa or more and a tensile elastic modulus of 50 GPa or more, and at least one surface of a sheet-like substrate made of the reinforcing fibers arranged in one direction. Then, apply a thermoplastic resin melted by heating above the melting point or softening point in a thin line, or press-bond a release paper or resin film preliminarily coated with a thermoplastic resin in a thin line and heat it above the melting point or softening point. And then transferring and applying the material.

【0012】[0012]

【発明の実施の形態】図1は、本発明に係る一方向性繊
維強化複合材用素材の例を示すものである。図1に示す
ように、本発明の一方向性繊維強化複合材用素材は、一
方向に配列した強化繊維束1からなるシート状基材2が
細線状の熱可塑性樹脂3で接着されている。
FIG. 1 shows an example of a material for a unidirectional fiber reinforced composite material according to the present invention. As shown in FIG. 1, in the material for unidirectional fiber reinforced composite material of the present invention, a sheet-like base material 2 composed of unidirectionally arranged reinforcing fiber bundles 1 is bonded with a thin-line thermoplastic resin 3. .

【0013】本発明に使用される強化繊維としては、例
えばピッチ系炭素繊維、PAN系炭素繊維、ガラス繊
維、アラミド繊維、鋼繊維などの各種の高強度繊維が挙
げられる。この強化繊維は、引張強度が1GPa以上、
繊維引張弾性率が50GPa以上であることを要する。
特に、コンクリート構造物の補修・補強に用い、十分な
補修・補強効果を得るためには、繊維引張弾性率が10
0GPa以上であることが好ましい。繊維引張強度が1
GPa未満、繊維引張弾性率が50GPa未満の繊維を
使用すると十分な補強効果を得ることができない。ま
た、繊維の形態は、直径5〜50μmの単繊維を集束剤
を用いるか又は撚りをかけて50〜48000本束ねた
ストランドがよい。
Examples of the reinforcing fibers used in the present invention include various high-strength fibers such as pitch-based carbon fibers, PAN-based carbon fibers, glass fibers, aramid fibers, and steel fibers. This reinforcing fiber has a tensile strength of 1 GPa or more,
The fiber tensile modulus must be 50 GPa or more.
In particular, in order to obtain a sufficient repair / reinforcement effect for repair / reinforcement of a concrete structure, the fiber tensile elastic modulus is required to be 10 or less.
It is preferably 0 GPa or more. Fiber tensile strength is 1
If fibers having a GPa of less than GPa and a fiber tensile modulus of less than 50 GPa are used, a sufficient reinforcing effect cannot be obtained. The form of the fiber is preferably a strand in which 50 to 48,000 single fibers having a diameter of 5 to 50 μm are bundled by using a sizing agent or twisted.

【0014】また、本発明に使用される熱可塑性樹脂
は、40℃以下では固体状態である高分子化合物であれ
ば特に制限はないが、例えばポリアミド樹脂、ポリオレ
フィン樹脂、ポリエステル樹脂や、ホットメルト接着剤
と呼ばれるエチレン酢ビ共重合体などをベースとし、溶
融温度が低く強化繊維との接着力が強い熱可塑性樹脂を
用いることが好ましい。これに対し、従来この種の強化
繊維に粘着性を付与するために用いられるいわゆる粘着
剤とは区別されるものである。
The thermoplastic resin used in the present invention is not particularly limited as long as it is a high molecular compound which is in a solid state at a temperature of 40 ° C. or lower. Examples thereof include polyamide resin, polyolefin resin, polyester resin, and hot melt adhesive. It is preferable to use a thermoplastic resin having a low melting temperature and a strong adhesive force with a reinforcing fiber, based on an ethylene-vinyl acetate copolymer called an agent. On the other hand, it is distinguished from a so-called pressure-sensitive adhesive conventionally used for imparting tackiness to this type of reinforcing fiber.

【0015】この熱可塑性樹脂として、引張弾性率が1
GPa以上のフィラー強化の熱可塑性樹脂を使用する
と、接着層の剛性が上がって取り扱い性が向上し、さら
に熱可塑性樹脂が溶融状態から固化する際に生じる体積
変化が少なくなり、強化繊維の直線性が向上する。この
ようなフィラー成分としては、例えば炭素繊維、ガラス
繊維、アラミド繊維、ポリエステル繊維等の各種の繊維
が使用でき、繊維の形態は、チョップドストランドある
いはミルドファイバーと呼ばれる短繊維、スライバーヤ
ーンと呼ばれる短繊維を撚り合わせたもの、あるいは連
続繊維等特に制限はない。また、繊維のほか、タルク、
炭酸カルシウム、金属粉、ガラス粉等の種々のフィラー
を用いることができる。
The thermoplastic resin has a tensile modulus of 1
When a filler-reinforced thermoplastic resin having a GPa or more is used, the rigidity of the adhesive layer increases, the handleability is improved, and the volume change that occurs when the thermoplastic resin solidifies from a molten state is reduced, and the linearity of the reinforcing fiber is reduced. Is improved. As such a filler component, various fibers such as carbon fiber, glass fiber, aramid fiber, and polyester fiber can be used, and the form of the fiber is a short fiber called chopped strand or milled fiber, or a short fiber called sliver yarn. There are no particular restrictions on what is twisted or continuous fiber. In addition to fiber, talc,
Various fillers such as calcium carbonate, metal powder, and glass powder can be used.

【0016】フィラーと熱可塑性樹脂を混合してフィラ
ー強化の熱可塑性樹脂とするには、スクリュータイプの
混練押し出し機を用いで混合し、フィラー強化の熱可塑
性樹脂とする方法が一般的であるが、連続繊維を熱可塑
性樹脂フィルムで挟んだ後に加熱加圧してフィラー強化
の熱可塑性樹脂シートとした後に切断する方法や、クロ
スヘッドダイを用いて連続繊維を熱可塑性樹脂に混合す
る方法など公知の方法を用いることができる。このフィ
ラーの混合割合は、フィラー強化の熱可塑性樹脂の引張
弾性率が1GPa以上となるように、フィラーの弾性率
と熱可塑性樹脂の弾性率を勘案して決定する。
In order to mix a filler and a thermoplastic resin into a filler-reinforced thermoplastic resin, a method of mixing with a screw-type kneading extruder to obtain a filler-reinforced thermoplastic resin is generally used. Known methods such as cutting the continuous fiber into a filler-reinforced thermoplastic resin sheet by applying heat and pressure after sandwiching the continuous fiber between the thermoplastic resin films, and mixing the continuous fiber into the thermoplastic resin using a crosshead die A method can be used. The mixing ratio of the filler is determined in consideration of the elastic modulus of the filler and the elastic modulus of the thermoplastic resin so that the tensile elastic modulus of the filler-reinforced thermoplastic resin is 1 GPa or more.

【0017】本発明の細線状の熱可塑性樹脂による接着
は、シート状基材の少なくとも片面に行うが、シート状
基材の面積の0.01〜15%が細線状の熱可塑性樹脂
により接着されていることを要する。接着面積がシート
状基材の面積の0.01%未満であると取り扱い時にバ
ラけ、15%を超えると樹脂の含浸性が損なわれる。
The bonding with the fine-wire-like thermoplastic resin of the present invention is performed on at least one surface of the sheet-like base material, and 0.01 to 15% of the area of the sheet-like base material is bonded by the fine-wire-like thermoplastic resin. Need to be. If the bonding area is less than 0.01% of the area of the sheet-like substrate, the area will vary during handling.

【0018】細線状の熱可塑性樹脂の厚さとは、シート
状基材の面から浮き出した部分の熱可塑性樹脂の平均厚
さをいう。本発明を実施するには、この厚さが0.5m
m以下であることを要する。これが0.5mmを超える
と、2枚以上を積層したり平面に貼り付けた場合に、層
間が熱可塑性樹脂の厚さに相当する分だけ広がり、層間
の密着が悪くなる。また、熱可塑性樹脂の体積変化によ
る波打ちや皺が増加する。
The thickness of the thin linear thermoplastic resin refers to the average thickness of the thermoplastic resin at a portion protruding from the surface of the sheet-like base material. In order to carry out the invention, this thickness is 0.5 m
m or less. If this exceeds 0.5 mm, when two or more sheets are laminated or attached to a flat surface, the interlayer spreads by an amount corresponding to the thickness of the thermoplastic resin, and the adhesion between the layers deteriorates. In addition, undulations and wrinkles due to changes in the volume of the thermoplastic resin increase.

【0019】この細線状の熱可塑性樹脂の幅は、0.0
5mm以上であることを要する。塗布幅が0.05mm
未満であると十分な接着強度を得ることが困難となり、
取り扱い時にバラけることが多くなる。
The width of the thin thermoplastic resin is 0.0
It needs to be 5 mm or more. Application width is 0.05mm
If it is less than it becomes difficult to obtain sufficient adhesive strength,
It often becomes loose during handling.

【0020】熱可塑性樹脂の塗布形状は、一方向性繊維
強化複合材用素材の取り扱い方法、すなわち切り取る大
きさ、取り扱い時にかかる力の大きさや方向などにより
種々の形状を選択することができる。図2は、塗布形状
の例を示す図面であり、(A)は格子状に塗布した例、
(B)はスパイラル状に塗布した例、(C)は平行線状
に塗布した例、(D)は円状に塗布した例を示すが、本
発明はこの塗布形状に限定されるものではない。
The shape of the thermoplastic resin to be applied can be selected from various shapes depending on the method of handling the material for the unidirectional fiber reinforced composite material, that is, the size to be cut, the magnitude and direction of the force applied during handling, and the like. FIG. 2 is a drawing showing an example of a coating shape, and FIG.
(B) shows an example of application in a spiral shape, (C) shows an example of application in a parallel line, and (D) shows an example of application in a circular shape, but the present invention is not limited to this application shape. .

【0021】次に、本発明の一方向性繊維強化複合材用
素材の製造方法について説明する。図3は本発明の製造
方法の一例を示す概念図である。強化繊維束11は、開
繊バー12により一方向に偏平に引き伸ばされ、シート
状基材13となる。このシート状基材13に、融点又は
軟化点以上に加熱して溶融した熱可塑性樹脂をノズル1
5又は細線状のパターンが塗布可能なプリントローラー
16を介して細線状に塗布する。細線状の熱可塑性樹脂
17が塗布されたシート状基材は、熱可塑性樹脂が冷却
固化する前に加圧ローラー18で圧下されることにより
接着され、一方向性繊維強化複合材用素材19となる。
この製造工程は、強化繊維のボビンから最終製品である
一方向性繊維強化複合材用素材まで連続して製造でき
る。
Next, a method for producing the unidirectional fiber-reinforced composite material of the present invention will be described. FIG. 3 is a conceptual diagram showing an example of the manufacturing method of the present invention. The reinforcing fiber bundle 11 is flattened in one direction by the spreader bar 12 and becomes a sheet-like substrate 13. A thermoplastic resin melted by heating to a melting point or a softening point or higher is applied to the sheet-shaped substrate 13 by the nozzle 1.
5 or a fine line pattern is applied via a print roller 16 which can be applied. The sheet-like substrate coated with the thin-line thermoplastic resin 17 is bonded by being pressed down by a pressure roller 18 before the thermoplastic resin is cooled and solidified, and is bonded to the unidirectional fiber reinforced composite material 19. Become.
In this manufacturing process, it is possible to continuously manufacture from a bobbin of a reinforcing fiber to a material for a unidirectional fiber-reinforced composite material as a final product.

【0022】熱可塑性樹脂の溶融とノズル15への輸送
は、例えばヒーターを備えた溶融熱可塑性樹脂タンク1
4で熱可塑性樹脂を溶融し、エア加圧又はギヤポンプで
輸送する方法、加熱部を備えたプランジャーポンプを用
いる方法などが用いられる。ノズル15の形状は、熱可
塑性樹脂の塗布形状によって選定する。例えば、細い網
目状に塗布する場合は径の小さいノズルを用い、太い幅
で塗布する場合は径の大きいノズル又はスリットノズル
を用いる。ノズルには、熱可塑性樹脂を冷やさず、低粘
度状態のまま塗布するための加熱機構があることが好ま
しい。
The melting of the thermoplastic resin and the transportation to the nozzle 15 are performed, for example, by using a molten thermoplastic resin tank 1 provided with a heater.
In 4, the method of melting the thermoplastic resin and transporting it by air pressurization or a gear pump, a method using a plunger pump equipped with a heating unit, and the like are used. The shape of the nozzle 15 is selected according to the application shape of the thermoplastic resin. For example, a nozzle having a small diameter is used when applying in a thin mesh shape, and a nozzle or slit nozzle having a large diameter is used when applying in a wide width. The nozzle preferably has a heating mechanism for applying the thermoplastic resin in a low-viscosity state without cooling it.

【0023】また、プリントローラー16は、塗布形状
に合わせたパターンをローラーに刻印し、溶融した熱可
塑性樹脂をピックアップしてその上に細線状の熱可塑性
樹脂17を形成し、これをシート状基材に転写する。加
圧ローラー18も加熱機構があることが好ましい。熱可
塑性樹脂の融点又は軟化点よりも高い温度で圧下する
と、熱可塑性樹脂がローラーへ接着し、シート状基材が
変形したり接着力が低下する。
The print roller 16 engraves a pattern conforming to the application shape on the roller, picks up the melted thermoplastic resin, forms a thin-lined thermoplastic resin 17 thereon, and applies this to the sheet-like base. Transfer to material. It is preferable that the pressure roller 18 also has a heating mechanism. If the pressure is lowered at a temperature higher than the melting point or softening point of the thermoplastic resin, the thermoplastic resin adheres to the roller, and the sheet-like base material is deformed or the adhesive strength is reduced.

【0024】図4は本発明の製造方法の別例を示す概念
図である。予め熱可塑性樹脂を細線状に塗布した離型紙
22をシート状基材21と重ね合わせ、加熱可能な加圧
ローラー23でその熱可塑性樹脂の融点又は軟化点以上
に加熱圧着させると、離型紙22の細線状の熱可塑性樹
脂がシート状基材に転写されると同時に接着され、一方
向性繊維強化複合材用素材24となる。なお、予め熱可
塑性樹脂を細線状に塗布した離型紙21に代えて、予め
熱可塑性樹脂を細線状に塗布した樹脂フィルムを用いて
もよい。
FIG. 4 is a conceptual diagram showing another example of the manufacturing method of the present invention. A release paper 22 previously coated with a thermoplastic resin in a thin line shape is superimposed on a sheet-like base material 21 and heated and pressed by a heatable pressure roller 23 to a temperature higher than the melting point or softening point of the thermoplastic resin. The thin line-shaped thermoplastic resin is transferred and adhered to the sheet-like base material at the same time to form the material for unidirectional fiber reinforced composite material 24. Note that, instead of the release paper 21 in which the thermoplastic resin is applied in a fine line shape in advance, a resin film in which the thermoplastic resin is applied in a fine line shape in advance may be used.

【0025】予め熱可塑性樹脂を塗布した離型紙22
は、例えばグラビア印刷やスクリーン印刷等の既存の種
々の塗布方法により製造することができるが、図3に示
す工程において、シート状基材13に代えて離型紙を用
いることでもよい。
Release paper 22 previously coated with a thermoplastic resin
Can be manufactured by various existing coating methods such as gravure printing and screen printing, but in the step shown in FIG. 3, release paper may be used instead of the sheet-like base material 13.

【0026】この離型紙22は、シート状基材21と重
ね合わせて加圧ローラー23で圧下する。この時の加圧
ローラー温度は、熱可塑性樹脂が溶融する温度以上であ
ることを要する。加圧して熱可塑性樹脂を転写した後、
冷却し、必要に応じて離型紙をはがして一方向性繊維強
化複合材用素材24とする。
The release paper 22 is superimposed on the sheet-like base material 21 and pressed down by the pressure roller 23. The pressure roller temperature at this time needs to be higher than the temperature at which the thermoplastic resin melts. After pressing and transferring the thermoplastic resin,
After cooling, the release paper is peeled off as necessary to obtain the unidirectional fiber reinforced composite material 24.

【0027】本発明の一方向性繊維強化複合材用素材を
用いて繊維強化プラスチックを製造するには、既存のシ
ート状強化繊維を用いた種々の成形方法が適用できる。
例えば、型に一方向性繊維強化複合材用素材を常温硬化
の樹脂で貼り付け、ローラーで加圧して樹脂含浸及び脱
気するハンドレイアップ法、金型内に一方向性繊維強化
複合材用素材と熱硬化性樹脂をチャージして加熱・加圧
するプレス成形法、一方向性繊維強化複合材用素材に熱
硬化性樹脂を含浸させプリプレグとした後、マンドレル
に巻き付け、加熱硬化させるシートワインディング法等
である。
In order to produce a fiber-reinforced plastic using the unidirectional fiber-reinforced composite material of the present invention, various molding methods using existing sheet-like reinforcing fibers can be applied.
For example, a material for unidirectional fiber reinforced composite material is stuck to a mold with a resin cured at room temperature, and a hand lay-up method is used in which the resin is impregnated and degassed by pressing with a roller. A press molding method in which the material and the thermosetting resin are charged and heated and pressed, and a sheet winding method in which the material for the unidirectional fiber reinforced composite material is impregnated with the thermosetting resin to form a prepreg, which is then wound around a mandrel and heat-cured And so on.

【0028】また、本発明の一方向性繊維強化複合材用
素材をコンクリート構造物などの補修・補強に用いるに
は、被補強・補修物に必要に応じて表面の研削やプライ
マー処理を行った後、常温硬化型の樹脂を刷毛などで塗
布し、その上に一方向性繊維強化複合材用素材を貼り付
け、さらに常温硬化型の樹脂を刷毛等で塗布する。
In order to use the material for unidirectional fiber reinforced composite material of the present invention for repair / reinforcement of a concrete structure or the like, the material to be reinforced / repaired is subjected to surface grinding or primer treatment as necessary. Thereafter, a cold-setting resin is applied with a brush or the like, a material for a unidirectional fiber reinforced composite material is attached thereon, and a cold-setting resin is applied with a brush or the like.

【0029】本発明の一方向性繊維強化複合材用素材を
用いることにより、繊維強化プラスチックにおいても、
コンクリート構造物などの補修・補強においても、強化
繊維が曲がりやうねりのない直線状で、気泡やボイドが
無く、強化繊維の含有率が高い成形品あるいは補修・補
強が行われ、結果的に十分な機械強度を発現させること
ができる。
By using the material for unidirectional fiber reinforced composite material of the present invention, fiber reinforced plastic
When repairing or reinforcing concrete structures, etc., the reinforcing fibers are straight without bending or undulation, have no bubbles or voids, and molded products with high reinforcing fiber content or repair / reinforcement are performed. High mechanical strength.

【0030】[0030]

【実施例】以下の実施例及び比較例で得られた一方向性
繊維強化複合材用素材について、取り扱い性、繊維の直
線性及び含浸性を次のようにして判定した。 (1)取り扱い性 一方向性繊維強化複合材用素材を対角2点でつかみ上
げ、ドレープ性と剛性から取り扱い性を判定した。 (2)繊維の直線性 一方向性繊維強化複合材用素材を透明なポリエステル板
に貼り付け、常温硬化型エポキシ樹脂を直径60mm、
長さ400mmのゴムロールで4Kgfの力で圧下する
ことにより含浸させた。そして、25℃で60時間放置
し、樹脂を完全硬化させた。硬化物の表面を観察し、繊
維の皺・波打ちを観察して直線性を判定した。 (3)含浸性 上記(2)で得られた硬化物の裏面をポリエステル板を
通してボイドの大きさと量を観察し、硬化物を繊維の配
向方向と直角に切断して硬化物内のボイドを観察して含
浸性を判定した。それぞれの判定は次の4段階評価によ
った。 ◎ : 非常に良い ○ : 良い △ : 悪いが、使用に耐える × : 悪く、実用できない
The handling properties, the linearity of the fibers and the impregnation properties of the unidirectional fiber reinforced composite materials obtained in the following Examples and Comparative Examples were determined as follows. (1) Handleability The material for the unidirectional fiber reinforced composite material was grasped at two diagonal points, and the handleability was determined from the drapability and rigidity. (2) Fiber linearity A material for unidirectional fiber reinforced composite material is stuck on a transparent polyester plate, and a cold-setting epoxy resin is 60 mm in diameter,
It was impregnated by rolling down with a force of 4 kgf with a rubber roll having a length of 400 mm. Then, the resin was left at 25 ° C. for 60 hours to completely cure the resin. The surface of the cured product was observed, and wrinkles and undulations of the fiber were observed to determine linearity. (3) Impregnating property Observe the size and amount of voids through the polyester plate on the back side of the cured product obtained in (2) above, cut the cured product at right angles to the fiber orientation direction, and observe the voids in the cured product To determine the impregnation. Each judgment was based on the following four-level evaluation. ◎: very good ○: good △: bad, but endurable ×: bad, not practical

【0031】実施例1 図3に示す装置を用い、繊維引張強度3500MPa、
繊維引張弾性率200GPa、繊維径10μmの集束剤
処理が施されたピッチ系炭素繊維の6000本の束を4
0本引き揃え、幅200mmのシート状基材とし、この
上に170℃に加熱溶融した酢酸ビニル系熱可塑性樹脂
(商品名ドフィックスホットメルトスティック、ヘンケ
ル白水社)を直径2mmのノズルを介して、炭素繊維の
配向方向と直角に30mm間隔の細直線状に塗布した。
熱可塑性樹脂が溶融状態を保持している間に、80℃に
加熱した加圧ロールを通して冷却固化し、一方向性繊維
強化複合材用素材を得た。この一方向性繊維強化複合材
用素材は、幅210mm、長さ400mm、厚さ0.4
mmであった。接着した細線状の熱可塑性樹脂は、厚さ
0.1mm、幅1.5mmであり、シート状基材面積の
0.5%を占めた。得られた一方向性繊維強化複合材用
素材の判定結果を表1に示す。
Example 1 Using the apparatus shown in FIG. 3, the fiber tensile strength was 3500 MPa,
A bundle of 6000 pitch-based carbon fibers treated with a sizing agent having a fiber tensile elasticity of 200 GPa and a fiber diameter of 10 μm
A sheet-shaped base material having a width of 200 mm was aligned and a vinyl acetate-based thermoplastic resin (trade name Dofix Hot Melt Stick, Henkel Hakusui Co., Ltd.) heated and melted at 170 ° C. was passed through a nozzle having a diameter of 2 mm. Then, it was applied in a thin linear shape at an interval of 30 mm perpendicular to the orientation direction of the carbon fiber.
While the thermoplastic resin was kept in a molten state, it was cooled and solidified through a pressure roll heated to 80 ° C. to obtain a material for a unidirectional fiber reinforced composite material. This material for unidirectional fiber reinforced composite material has a width of 210 mm, a length of 400 mm, and a thickness of 0.4.
mm. The bonded thin-line thermoplastic resin had a thickness of 0.1 mm and a width of 1.5 mm, and occupied 0.5% of the sheet-like substrate area. Table 1 shows the determination results of the obtained unidirectional fiber reinforced composite material.

【0032】実施例2 図3に示す装置を用い、繊維引張強度3500MPa、
繊維引張弾性率200GPa、繊維径10μmの集束剤
処理が施されたピッチ系炭素繊維の6000本の束を6
0本引き揃え、幅200mmのシート状基材とした。次
いで、酢酸ビニル系熱可塑性樹脂(商品名ドフィックス
ホットメルトスティック、ヘンケル白水社)を180℃
で加熱溶融し、この溶融樹脂と直径11μmで長さ3mm
のガラス繊維とを重量比が8:2となるように攪拌混合
してフィラー強化の熱可塑性樹脂とし、シート状基材の
上に、180℃を保ったまま直径2mmのノズルを介し
て炭素繊維の配向方向と直角に30mm間隔の直線状に
塗布した。フィラー強化の熱可塑性樹脂が溶融状態を保
持している間に、80℃に加熱した加圧ロールを通して
冷却固化し、一方向性繊維強化複合材用素材を得た。こ
の一方向性繊維強化複合材用素材は、幅210mm、長
さ400mm、厚さ0.4mmであった。接着したフィ
ラー強化の熱可塑性樹脂は、厚さ0.1mm、幅0.6
mmであり、シート状基材面積の0.13%を占めた。
また、このフィラー強化の熱可塑性樹脂の引張り弾性率
は、8GPaであった。得られた一方向性繊維強化複合
材用素材の判定結果を表1に示す。
Example 2 Using the apparatus shown in FIG. 3, the fiber tensile strength was 3500 MPa,
6 bundles of 6000 pitch-based carbon fibers treated with a sizing agent having a fiber tensile elasticity of 200 GPa and a fiber diameter of 10 μm
Zero sheets were aligned and used as a sheet-like substrate having a width of 200 mm. Next, a vinyl acetate-based thermoplastic resin (trade name: Dofix Hot Melt Stick, Henkel Hakusui) was heated to 180 ° C.
3m in length with a 11μm diameter
The glass fiber is stirred and mixed so as to have a weight ratio of 8: 2 to form a filler-reinforced thermoplastic resin, and the carbon fiber is placed on a sheet-like substrate through a nozzle having a diameter of 2 mm while maintaining 180 ° C. Was applied linearly at an interval of 30 mm at right angles to the orientation direction. While the filler-reinforced thermoplastic resin was kept in a molten state, it was cooled and solidified through a pressure roll heated to 80 ° C. to obtain a material for a unidirectional fiber reinforced composite material. This material for unidirectional fiber reinforced composite material had a width of 210 mm, a length of 400 mm, and a thickness of 0.4 mm. The bonded filler-reinforced thermoplastic resin has a thickness of 0.1 mm and a width of 0.6
mm and occupied 0.13% of the sheet-like substrate area.
Further, the tensile elastic modulus of the filler-reinforced thermoplastic resin was 8 GPa. Table 1 shows the determination results of the obtained unidirectional fiber reinforced composite material.

【0033】実施例3 図4に示す装置を用い、繊維引張強度1500MPa、
繊維引張弾性率70GPa、繊維径11μmの集束剤処
理が施されたガラス繊維の8000本の束を40本引き
揃えつつ、予め10mm間隔のスパイラル状に実施例1
と同じ熱可塑性樹脂を塗布した離型紙と貼り合わせて幅
200mmのシート状基材とし、180℃に加熱した加
圧ロールを通して熱可塑性樹脂をシート状基材に転写し
て、一方向性繊維強化複合材用素材を得た。この一方向
性繊維強化複合材用素材は、幅215mm、長さ400
mm、厚さ0.6mmであった。接着した細線状の熱可
塑性樹脂は、厚さ0.2mm、幅4mmであり、シート
状基材面積の7.8%を占めた。得られた一方向性繊維
強化複合材用素材の判定結果を表1に示す。
Example 3 Using the apparatus shown in FIG. 4, the fiber tensile strength was 1500 MPa,
Example 1 A forty bundles of 8000 glass fibers having a fiber tensile elasticity of 70 GPa and a fiber diameter of 11 μm and having been subjected to a sizing agent treatment were arranged in a spiral form at 10 mm intervals in advance while being aligned.
A 200 mm wide sheet-like substrate is attached by bonding to a release paper coated with the same thermoplastic resin as above, and the thermoplastic resin is transferred to the sheet-like substrate through a pressure roll heated to 180 ° C. to provide unidirectional fiber reinforcement. A composite material was obtained. This unidirectional fiber reinforced composite material has a width of 215 mm and a length of 400 mm.
mm and a thickness of 0.6 mm. The bonded thin-line thermoplastic resin had a thickness of 0.2 mm and a width of 4 mm, and occupied 7.8% of the sheet base material area. Table 1 shows the determination results of the obtained unidirectional fiber reinforced composite material.

【0034】実施例4 図4に示す装置を用い、繊維引張強度1500MPa、
繊維引張弾性率70GPa、繊維径11μmの集束剤処
理が施されたガラス繊維の8000本の束を40本引き
揃えつつ、予め10mm間隔のスパイラル状に実施例2
と同じフィラー強化の熱可塑性樹脂を塗布した離型紙と
貼り合わせて幅200mmのシート状基材とし、180
℃に加熱した加圧ロールを通してフィラー強化の熱可塑
性樹脂を溶融しシート状基材に転写して、一方向性繊維
強化複合材用素材を得た。この一方向性繊維強化複合材
用素材は、幅215mm、長さ400mm、厚さ0.6
mmであった。接着したフィラー強化の熱可塑性樹脂
は、厚さ0.2mm、幅0.4mmであり、シート状基
材面積の0.8%を占めた。得られた一方向性繊維強化
複合材用素材の判定結果を表1に示す。
Example 4 Using the apparatus shown in FIG. 4, the fiber tensile strength was 1500 MPa,
Example 2 A forty bundles of 8000 glass fibers having a fiber tensile elasticity of 70 GPa and a fiber diameter of 11 μm and having been subjected to a sizing agent treatment were aligned in a spiral form at 10 mm intervals in advance while the 40 bundles were aligned.
It is bonded to a release paper coated with the same filler-reinforced thermoplastic resin as described above to form a 200 mm wide sheet-like base material,
The filler-reinforced thermoplastic resin was melted through a pressure roll heated to ° C. and transferred to a sheet-like substrate to obtain a material for a unidirectional fiber-reinforced composite material. This material for unidirectional fiber reinforced composite material has a width of 215 mm, a length of 400 mm, and a thickness of 0.6.
mm. The adhered filler-reinforced thermoplastic resin had a thickness of 0.2 mm and a width of 0.4 mm, and occupied 0.8% of the sheet-like substrate area. Table 1 shows the determination results of the obtained unidirectional fiber reinforced composite material.

【0035】実施例5 図3に示す装置を用い、繊維引張強度4900MPa、
繊維引張弾性率230GPa、繊維径7μmの集束剤処
理が施されたPAN系炭素繊維の12000本の束を4
0本引き揃え、幅200mmのシート状基材とし、この
上に実施例1と同じ熱可塑性樹脂を直径2mmのノズル
を介して炭素繊維の配向方向と45°の角度に15mm
間隔の細直線の格子状に塗布した。熱可塑性樹脂が溶融
状態を保持している間に、80℃に加熱した加圧ロール
を通して冷却固化し、一方向性繊維強化複合材用素材を
得た。この一方向性繊維強化複合材用素材は、幅205
mm、長さ400mm、厚さ0.5mmであった。接着
した細線状の熱可塑性樹脂は、厚さ0.2mm、幅0.
8mmであり、シート状基材面積の1.1%を占めた。
得られた一方向性繊維強化複合材用素材の判定結果を表
1に示す。
Example 5 Using the apparatus shown in FIG. 3, the fiber tensile strength was 4900 MPa,
A bundle of 12,000 PAN-based carbon fibers treated with a sizing agent having a fiber tensile modulus of 230 GPa and a fiber diameter of 7 μm
0 sheets were aligned and a sheet-shaped substrate having a width of 200 mm, and the same thermoplastic resin as in Example 1 was further placed on the sheet-shaped substrate through a nozzle having a diameter of 2 mm at an angle of 45 ° with the orientation direction of the carbon fibers.
It was applied in the form of a grid with fine lines at intervals. While the thermoplastic resin was kept in a molten state, it was cooled and solidified through a pressure roll heated to 80 ° C. to obtain a material for a unidirectional fiber reinforced composite material. The material for unidirectional fiber reinforced composite material has a width of 205
mm, length 400 mm, thickness 0.5 mm. The bonded thin-line thermoplastic resin has a thickness of 0.2 mm and a width of 0.2 mm.
8 mm, which accounted for 1.1% of the sheet-like substrate area.
Table 1 shows the determination results of the obtained unidirectional fiber reinforced composite material.

【0036】実施例6 図3に示す装置を用い、繊維引張強度4900MPa、
繊維引張弾性率230GPa、繊維径7μmの集束剤処
理が施されたPAN系炭素繊維の12000本の束を4
0本引き揃え、幅200mmのシート状基材とし、この
上に実施例2と同じフィラー強化の熱可塑性樹脂を直径
2mmのノズルを介して、炭素繊維の配向方向と45°
の角度に15mm間隔の細直線の格子状に塗布した。フ
ィラー強化の熱可塑性樹脂が溶融状態を保持している間
に、80℃に加熱した加圧ロールを通して冷却固化し、
一方向性繊維強化複合材用素材を得た。この一方向性繊
維強化複合材用素材は、幅205mm、長さ400m
m、厚さ0.5mmであった。接着したフィラー強化の
熱可塑性樹脂は、厚さ0.2mm、幅0.8mmであ
り、シート状基材面積の1.1%を占めた。得られた一
方向性繊維強化複合材用素材の判定結果を表1に示す。
Example 6 Using the apparatus shown in FIG. 3, the fiber tensile strength was 4900 MPa,
A bundle of 12,000 PAN-based carbon fibers treated with a sizing agent having a fiber tensile modulus of 230 GPa and a fiber diameter of 7 μm
A sheet-like substrate having a width of 200 mm was aligned with a zero-length sheet, and the same filler-reinforced thermoplastic resin as in Example 2 was placed thereon through a nozzle having a diameter of 2 mm, at 45 ° with respect to the orientation direction of the carbon fibers.
At an angle of 15 mm in the form of a thin linear grid. While the filler-reinforced thermoplastic resin is kept in a molten state, it is cooled and solidified through a pressure roll heated to 80 ° C,
A material for unidirectional fiber reinforced composite material was obtained. This material for unidirectional fiber reinforced composite material has a width of 205 mm and a length of 400 m.
m and thickness 0.5 mm. The adhered filler-reinforced thermoplastic resin had a thickness of 0.2 mm and a width of 0.8 mm, and occupied 1.1% of the sheet-like substrate area. Table 1 shows the determination results of the obtained unidirectional fiber reinforced composite material.

【0037】比較例1 実施例1のシート状基材に、厚さ0.08mmで目開き
10mmの3軸の粗目ガラスメッシュをエポキシ系接着
剤で接着し、一方向性繊維強化複合材用素材を得た。こ
の一方向性繊維強化複合材用素材は、幅205mm、長
さ400mm、厚さ0.5mmであった。得られた一方
向性繊維強化複合材用素材の判定結果を表1に示す。
Comparative Example 1 A triaxial coarse glass mesh having a thickness of 0.08 mm and an aperture of 10 mm was adhered to the sheet-like substrate of Example 1 with an epoxy-based adhesive, and was used as a material for a unidirectional fiber-reinforced composite material. I got This material for unidirectional fiber reinforced composite material had a width of 205 mm, a length of 400 mm, and a thickness of 0.5 mm. Table 1 shows the determination results of the obtained unidirectional fiber reinforced composite material.

【0038】比較例2 繊維引張強度3530MPa、繊維引張弾性率230G
Pa、繊維径7μmのPAN系炭素繊維の12000本
の束を平織にした厚さ0.5mmの炭素繊維織物につい
て、同様に判定を行った結果を表1に示す。
Comparative Example 2 Fiber tensile strength 3530 MPa, fiber tensile modulus 230 G
Table 1 shows the results of a similar determination made on a 0.5 mm thick carbon fiber woven fabric obtained by plain weaving 12000 bundles of PAN-based carbon fibers having a Pa and a fiber diameter of 7 μm.

【0039】比較例3 実施例1のシート状基材に、目開き10mmの粗目ポリ
アミド繊維メッシュを重ね、ホットプレスで250℃に
加熱・加圧して接着した後冷却固化し、一方向性繊維強
化複合材用素材を得た。この一方向性繊維強化複合材用
素材は、幅210mm、長さ400mm、厚さ0.6m
mであった。ポリアミド繊維メッシュの融着部は、厚さ
0.6mm、幅1.5mmであり、シート状基材面積の
0.5%を占めた。得られた一方向性繊維強化複合材用
素材の判定結果を表1に示す。
Comparative Example 3 A coarse polyamide fiber mesh having a mesh size of 10 mm was overlaid on the sheet-like base material of Example 1, heated and pressurized to 250 ° C. by hot pressing, adhered, cooled and solidified, and reinforced with unidirectional fiber. A composite material was obtained. This material for unidirectional fiber reinforced composite material has a width of 210 mm, a length of 400 mm, and a thickness of 0.6 m.
m. The fused portion of the polyamide fiber mesh had a thickness of 0.6 mm and a width of 1.5 mm, and occupied 0.5% of the sheet-like substrate area. Table 1 shows the determination results of the obtained unidirectional fiber reinforced composite material.

【0040】[0040]

【表1】 [Table 1]

【0041】取り扱い性の判定では、実施例1〜6及び
比較例3は、ドレープ性と剛性のバランスがよく、取り
扱い性に優れていた。比較例1及び2は、剛性は高いが
硬すぎるためドレープ性が劣り、曲面形状に成形する場
合に、皺や折れが発生する恐れがある。
In judging the handleability, Examples 1 to 6 and Comparative Example 3 had a good balance between drapability and rigidity, and were excellent in handleability. Comparative Examples 1 and 2 have high stiffness but are too hard, resulting in inferior drapability, and may have wrinkles and breaks when formed into a curved surface.

【0042】繊維の直線性の判定では、実施例1〜6
は、硬化物の繊維の皺や波打ちが全く無いかあるいはご
くわずかであり直線性に優れていた。比較例1の硬化物
表面は、繊維と裏面のガラスメッシュとが重なる部分が
浮き上がってできた網目模様の凹凸があり、繊維の直線
性が損なわれていた。比較例2は、織物特有のクリンプ
があり、繊維は直線状にはならなかった。比較例3は、
一方向性繊維強化複合材用素材そのものに大きな波打ち
があり、硬化物の表面も波打っていた。
In the determination of the linearity of the fiber, Examples 1 to 6 were used.
Had no or very little wrinkles or undulations in the fibers of the cured product and was excellent in linearity. The surface of the cured product of Comparative Example 1 had irregularities in a network pattern formed by floating a portion where the fiber and the glass mesh on the back surface were raised, and the linearity of the fiber was impaired. In Comparative Example 2, there was a crimp peculiar to the fabric, and the fibers did not become straight. Comparative Example 3
The material for the unidirectional fiber reinforced composite material itself had large undulations, and the surface of the cured product was also undulating.

【0043】ボイド観察による含浸性の判定は、実施例
3で硬化物の裏面にわずかなボイドが観察されたが、物
性に影響するほどではなく、実施例3を除く実施例1か
ら6では硬化物の裏面及び内面ともにボイドは観察され
なかった。比較例1は、硬化物内部のボイドはほぼ無か
ったものの、裏面の裏打ちした3軸の粗目ガラスメッシ
ュの網目部分に3mm以上のボイドが多数観察された。
この原因は、樹脂を含浸させる際に追い出された空気が
網目で遮られて成形品の外へ抜けられなかったものと推
測される。コンクリート構造物の補修・補強に用いる場
合には、コンクリート構造物との接着力を損なう可能性
がある。比較例2は、大きなボイドは無いものの、たて
糸とよこ糸が交差する部分に1mm程度のボイドが多数
観察された。このボイドは、硬化物裏面及び内部ともに
観察され、硬化物物性に悪影響をおよぼす可能性があ
る。比較例3は、硬化物内部及び裏面に10mm以上の
大きなボイドが観察された。
The impregnating property was determined by observing voids. In Example 3, slight voids were observed on the back surface of the cured product. However, this was not so large as to affect the physical properties. No voids were observed on both the back and inner surfaces of the object. In Comparative Example 1, although there were almost no voids inside the cured product, a large number of voids of 3 mm or more were observed in the mesh portion of the backed triaxial coarse glass mesh.
This is presumably because the air expelled during the impregnation of the resin was blocked by the mesh and could not escape out of the molded product. When used for repair / reinforcement of a concrete structure, there is a possibility that the adhesive strength with the concrete structure is impaired. In Comparative Example 2, although there were no large voids, many voids of about 1 mm were observed at the intersections of the warp and the weft. These voids are observed both on the back surface and inside of the cured product, and may adversely affect the physical properties of the cured product. In Comparative Example 3, large voids of 10 mm or more were observed inside and on the back surface of the cured product.

【0044】[0044]

【発明の効果】以上説明したように、細線状の熱可塑性
樹脂で接着されてなる本発明の一方向性繊維強化複合材
用素材は、強化繊維が曲がりやうねりのない直線状で、
気泡やボイドが無く、強化繊維の含有率が高い繊維強化
プラスチック製品が得られ、かつ常温硬化型の樹脂を刷
け塗り等の簡単な作業で含浸させることができる。した
がって、本発明の一方向性繊維強化複合材用素材は、繊
維強化プラスチックの製造あるいはコンクリート構造物
などの補修・補強に用いられるシート状の強化繊維基材
として好適に用いることができる。また、本発明の一方
向性繊維強化複合材用素材の製造方法は、特殊な設備装
置を必要とせず、製造工程も簡便であり、低廉なコスト
で優れた性能を有する一方向性繊維強化複合材用素材を
製造することができる。
As described above, the unidirectional fiber-reinforced composite material of the present invention, which is bonded with a thin thermoplastic resin, has a linear shape in which the reinforcing fibers are not bent or undulated.
A fiber-reinforced plastic product having no bubbles and voids and a high content of reinforcing fibers can be obtained, and a room-temperature-curable resin can be impregnated by a simple operation such as brushing. Therefore, the material for unidirectional fiber-reinforced composite material of the present invention can be suitably used as a sheet-like reinforcing fiber base material used for manufacturing fiber-reinforced plastics or repairing and reinforcing concrete structures and the like. Further, the method for producing a material for a unidirectional fiber reinforced composite material of the present invention does not require special equipment, the production process is simple, and the unidirectional fiber reinforced composite material has excellent performance at a low cost. Material for lumber can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一方向性繊維強化複合材用素材の概念
を示す斜視図
FIG. 1 is a perspective view showing the concept of a material for a unidirectional fiber reinforced composite material of the present invention.

【図2】細線状の熱可塑性樹脂による接着の形状の例を
示す図
FIG. 2 is a diagram showing an example of the shape of bonding using a thin thermoplastic resin.

【図3】本発明の一方向性繊維強化複合材用素材の製造
方法の一例を示す概念図
FIG. 3 is a conceptual diagram showing an example of a method for producing a material for a unidirectional fiber reinforced composite material of the present invention.

【図4】本発明の一方向性繊維強化複合材用素材の製造
方法の別例を示す概念図
FIG. 4 is a conceptual diagram showing another example of the method for producing a material for a unidirectional fiber reinforced composite material of the present invention.

【符号の説明】[Explanation of symbols]

1 一方向に配列した強化繊維束 2 シート状基材 3 細線状の熱可塑性樹脂 11 強化繊維束 12 開繊バー 13、21 シート状基材 14 溶融熱可塑性樹脂タンク 15 ノズル 16 プリントローラー 17 細線状の熱可塑性樹脂 18、23 加圧ローラー 19、24 一方向性繊維強化複合材用素材 22 予め熱可塑性樹脂を塗布した離型紙 REFERENCE SIGNS LIST 1 Reinforced fiber bundle arranged in one direction 2 Sheet-shaped base material 3 Thin-line thermoplastic resin 11 Reinforced fiber bundle 12 Opening bar 13, 21 Sheet-shaped base material 14 Melted thermoplastic resin tank 15 Nozzle 16 Print roller 17 Fine line shape Thermoplastic resin 18, 23 Pressure roller 19, 24 Material for unidirectional fiber reinforced composite material 22 Release paper coated with thermoplastic resin in advance

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29K 105:06 (72)発明者 和泉原 芳一 千葉県君津市君津1番地 新日鐵化学株式 会社君津製造所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI B29K 105: 06 (72) Inventor Yoshikazu Izumihara 1 Kimitsu, Kimitsu City, Chiba Prefecture Inside the Kimitsu Works, Nippon Steel Chemical Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一方向に配列した1GPa以上の引張強
度と50GPa以上の引張弾性率を有する強化繊維から
なるシート状基材の少なくとも片面に、その面積の0.
01〜15%が、厚さ0.5mm以下、幅0.05mm
以上である細線状の熱可塑性樹脂で接着されていること
を特徴とする一方向性繊維強化複合材用素材。
1. A sheet-like base material made of a reinforcing fiber having a tensile strength of 1 GPa or more and a tensile modulus of 50 GPa or more arranged in one direction and having at least one surface having a surface area of at least one side.
01 to 15%, thickness 0.5mm or less, width 0.05mm
A material for a unidirectional fiber-reinforced composite material, wherein the material is bonded with the above-described thin-line thermoplastic resin.
【請求項2】 細線状の熱可塑性樹脂が、フィラーで強
化された引張弾性率が1GPa以上である請求項1記載
の一方向性繊維強化複合材用素材。
2. The material for a unidirectional fiber-reinforced composite material according to claim 1, wherein the fine-wire-shaped thermoplastic resin has a tensile modulus of elasticity enhanced by a filler of 1 GPa or more.
【請求項3】 一方向に配列した強化繊維からなるシー
ト状基材に、融点又は軟化点以上に加熱して溶融した熱
可塑性樹をノズル又はプリントローラーを介して細線状
に塗布することを特徴とする一方向性繊維強化複合材用
素材の製造方法。
3. A method of applying a thermoplastic resin melted by heating to a melting point or a softening point or higher to a sheet-like substrate made of reinforcing fibers arranged in one direction in a fine line shape through a nozzle or a print roller. A method for producing a material for a unidirectional fiber reinforced composite material.
【請求項4】 一方向に配列した強化繊維からなるシー
ト状基材に、予め熱可塑性樹脂を細線状に塗布した離型
紙又は樹脂フィルムを圧着させ、融点又は軟化点以上に
加熱して転写塗布することを特徴とする一方向性繊維強
化複合材用素材の製造方法。
4. A release paper or a resin film in which a thermoplastic resin is previously applied in a thin line shape is pressure-bonded to a sheet-like substrate made of reinforcing fibers arranged in one direction, and is heated to a temperature higher than a melting point or a softening point to transfer and apply. A method for producing a material for a unidirectional fiber reinforced composite material, comprising:
JP9266759A 1997-09-30 1997-09-30 Material for one-directionally fiber-reinforced composite material and its production Pending JPH1199580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9266759A JPH1199580A (en) 1997-09-30 1997-09-30 Material for one-directionally fiber-reinforced composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9266759A JPH1199580A (en) 1997-09-30 1997-09-30 Material for one-directionally fiber-reinforced composite material and its production

Publications (1)

Publication Number Publication Date
JPH1199580A true JPH1199580A (en) 1999-04-13

Family

ID=17435324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9266759A Pending JPH1199580A (en) 1997-09-30 1997-09-30 Material for one-directionally fiber-reinforced composite material and its production

Country Status (1)

Country Link
JP (1) JPH1199580A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146526A (en) * 2005-11-29 2007-06-14 Toray Ind Inc Sheet for fittings, and fittings using the same
JP2011056816A (en) * 2009-09-10 2011-03-24 Nippon Steel Materials Co Ltd Molding method of structure made of fiber-reinforced plastic, and structure made of fiber-reinforced plastic
WO2014171481A1 (en) * 2013-04-19 2014-10-23 東レ株式会社 Method for producing reinforcing fiber sheet
WO2017163605A1 (en) * 2016-03-25 2017-09-28 倉敷紡績株式会社 Carbon fiber sheet for reinforcement
JP2017190361A (en) * 2016-04-11 2017-10-19 新日鐵住金株式会社 Tabular steel wire reinforced resin
JP2020063342A (en) * 2018-10-16 2020-04-23 国立大学法人岐阜大学 Material and molded article production method
JP2020090608A (en) * 2018-12-05 2020-06-11 三菱ケミカル株式会社 Manufacturing method of sheet molding compound
CN112662070A (en) * 2020-12-31 2021-04-16 广州金发碳纤维新材料发展有限公司 Continuous metal wire reinforced thermoplastic composite material strip
JP2022510191A (en) * 2018-11-27 2022-01-26 エルエス ケーブル アンド システム リミテッド. Carbon fiber braided member and carbon fiber heat shrink tube

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146526A (en) * 2005-11-29 2007-06-14 Toray Ind Inc Sheet for fittings, and fittings using the same
JP2011056816A (en) * 2009-09-10 2011-03-24 Nippon Steel Materials Co Ltd Molding method of structure made of fiber-reinforced plastic, and structure made of fiber-reinforced plastic
WO2014171481A1 (en) * 2013-04-19 2014-10-23 東レ株式会社 Method for producing reinforcing fiber sheet
JPWO2014171481A1 (en) * 2013-04-19 2017-02-23 東レ株式会社 Method for producing reinforcing fiber sheet
WO2017163605A1 (en) * 2016-03-25 2017-09-28 倉敷紡績株式会社 Carbon fiber sheet for reinforcement
CN108779270A (en) * 2016-03-25 2018-11-09 仓敷纺绩株式会社 Reinforcement carbon fiber plate
JPWO2017163605A1 (en) * 2016-03-25 2019-01-31 倉敷紡績株式会社 Carbon fiber sheet for reinforcement
JP2017190361A (en) * 2016-04-11 2017-10-19 新日鐵住金株式会社 Tabular steel wire reinforced resin
JP2020063342A (en) * 2018-10-16 2020-04-23 国立大学法人岐阜大学 Material and molded article production method
JP2022510191A (en) * 2018-11-27 2022-01-26 エルエス ケーブル アンド システム リミテッド. Carbon fiber braided member and carbon fiber heat shrink tube
JP2020090608A (en) * 2018-12-05 2020-06-11 三菱ケミカル株式会社 Manufacturing method of sheet molding compound
CN112662070A (en) * 2020-12-31 2021-04-16 广州金发碳纤维新材料发展有限公司 Continuous metal wire reinforced thermoplastic composite material strip

Similar Documents

Publication Publication Date Title
JP3821467B2 (en) Reinforcing fiber base material for composite materials
JP5572947B2 (en) Molding material, fiber reinforced plastic, and production method thereof
AU2005229547B2 (en) Epoxy resin impregnated yarn and the use thereof for producing a preform
JP4899692B2 (en) Reinforcing fiber fabric and method for producing the same
WO2018181983A1 (en) Prepreg sheet, method for manufacturing same, skin material-provided unitary layer, method for manufacturing article molded from fiber-reinforced composite material, and article molded from fiber-reinforced composite material
JP4254158B2 (en) Carbon fiber substrate manufacturing method, preform manufacturing method, and composite material manufacturing method
US10099432B2 (en) Manufacturing method for fiber-reinforced resin sheet and manufacturing device therefor
JP5114736B2 (en) Manufacturing method of SMC sheet material
CN101228310A (en) Reinforcing woven fabric and method for producing the same
WO2019244994A1 (en) Prepreg sheet and manufacturing method therefor, fiber-reinforced composite material molded article and manufacturing method therefor, and method for manufacturing preform
JP2001064406A (en) Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof
JPH1199580A (en) Material for one-directionally fiber-reinforced composite material and its production
WO2016067711A1 (en) Fiber-reinforced composite material and method for manufacturing same
JP5125867B2 (en) Reinforced fiber substrate, laminate and composite material
JP4341419B2 (en) Preform manufacturing method and composite material manufacturing method
JP4716550B2 (en) Paper-free prepreg and method for producing the same
JP2008208343A (en) Cut prepreg substrate, laminated substrate, fiber reinforced plastics and preparation method of cut prepreg substrate
JP3405497B2 (en) Reinforced fiber sheet for structural reinforcement
JP2005336407A (en) Composite material excellent in surface smoothness
JP2005262818A (en) Reinforcing fiber substrate, preform and reinforcing fiber substrate manufacturing method
JPH1120059A (en) Reinforced fiber base material for composite material and manufacture thereof
JPH10272699A (en) Manufacture of fiber reinforced resin tubular body
JP7196006B2 (en) Metal foil-CFRP laminated sheet
JPH1143839A (en) Woven fabric reinforced in one direction and repairing or reinforcing
JP2020082359A (en) Method for producing laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060523