JP2020082359A - Method for producing laminate - Google Patents

Method for producing laminate Download PDF

Info

Publication number
JP2020082359A
JP2020082359A JP2018214536A JP2018214536A JP2020082359A JP 2020082359 A JP2020082359 A JP 2020082359A JP 2018214536 A JP2018214536 A JP 2018214536A JP 2018214536 A JP2018214536 A JP 2018214536A JP 2020082359 A JP2020082359 A JP 2020082359A
Authority
JP
Japan
Prior art keywords
resin
carbon fiber
fiber sheet
metal plate
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018214536A
Other languages
Japanese (ja)
Inventor
英一郎 萩谷
Eiichiro Haginoya
英一郎 萩谷
歴 堀本
Reki Horimoto
歴 堀本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP2018214536A priority Critical patent/JP2020082359A/en
Publication of JP2020082359A publication Critical patent/JP2020082359A/en
Pending legal-status Critical Current

Links

Abstract

To provide a method for producing a laminate of metal plates, which has good adhesiveness and is inexpensive to produce.SOLUTION: A laminated body 30 has carbon fiber sheets laminated on at least one surface of a metal plate 31. In the carbon fiber sheets, carbon fiber filament groups are opened and are arranged in parallel in one direction. The carbon fiber sheet is a resin-integrated carbon fiber sheet 33a, 33b to which a powder resin is partially fixed, a thermoplastic adhesive film 32a, 32b being interposed between the metal plate 31 and the resin-integrated carbon fiber sheet 33a, 33b, consequently, the resin being laminated and adhered by heating and pressing, and the resin being the matrix resin of the carbon fiber sheet.SELECTED DRAWING: Figure 1

Description

本発明は、金属板の少なくとも一面に、炭素繊維シートが積層された積層体の製造方法に関する。 The present invention relates to a method for producing a laminate in which a carbon fiber sheet is laminated on at least one surface of a metal plate.

軽量化に対する手段の一つとして、金属部材と炭素繊維強化樹脂(CFRPなど、熱硬化塑性樹脂による炭素繊維強化樹脂)を接合して構造体を構成する設計の他に、金属材料そのものをCFRP/CFRTP(熱可塑性樹脂による炭素繊維強化樹脂)で補強する提案もある。CFRPで補強する場合、プリプレグを貼付けてプレス成形などにより接合・硬化させる提案があるが(特許文献1)、硬化時間が長く、プリプレグの保管などが煩わしいなどの課題がある。CFRTPで補強する例として、樹脂が含浸された状態のテープなどをレーザーなどにより溶着する技術があるが(特許文献2)、熱可塑樹脂を予め含浸した状態のテープ又はシートが必要であり、大面積への貼付けに時間が掛かるなどの課題がある。最近では、繊維束への樹脂の含浸性をさらに高めるために、繊維束を開繊して目付け量を低減した、セミプレグとなる開繊シートが提案されている。この開繊シートは目付け量が低いほど熱可塑性樹脂が含浸しやすくなる。特許文献3〜5には、炭素繊維シートに熱可塑性粉体樹脂を静電塗装し、加圧フリー状態で前記樹脂を軟化点以上に加熱し冷却し、樹脂が半含浸又は未含浸のセミプレグを用いて炭素繊維シートを複数枚積層することが提案されている。 As one of the means for reducing the weight, in addition to a design in which a metal member and a carbon fiber reinforced resin (carbon fiber reinforced resin made of thermosetting plastic resin such as CFRP) are joined to form a structure, the metal material itself is made of CFRP/ There is also a proposal to reinforce with CFRTP (carbon fiber reinforced resin by thermoplastic resin). In the case of reinforcing with CFRP, there is a proposal that a prepreg is attached and joined and cured by press molding or the like (Patent Document 1), but there are problems such as long curing time and troublesome storage of the prepreg. As an example of reinforcing with CFRTP, there is a technique of welding a resin-impregnated tape or the like with a laser or the like (Patent Document 2), but a tape or sheet preliminarily impregnated with a thermoplastic resin is required. There is a problem that it takes time to attach to the area. Recently, in order to further improve the impregnation property of the resin into the fiber bundle, there has been proposed a semi-preg opening sheet in which the fiber bundle is opened to reduce the basis weight. The lower the basis weight of this spread sheet is, the more easily it is impregnated with the thermoplastic resin. In Patent Documents 3 to 5, a thermoplastic powder resin is electrostatically coated on a carbon fiber sheet, and the resin is heated to a softening point or higher in a pressure-free state and cooled to obtain a semi-preg impregnated or unimpregnated with the resin. It has been proposed to stack a plurality of carbon fiber sheets using the same.

特開2013−202784号公報JP, 2013-202784, A 特開2016−034734号公報JP, 2016-034734, A 特開2014−172336号公報JP, 2014-172336, A 国際公開WO2016−152856号明細書International publication WO2016-152856 特開2017−190439号公報JP, 2017-190439, A

しかし、前記従来の技術によっても、金属部材と炭素繊維強化樹脂の積層体を、接着性が良好で、安価に製造する方法は見出されていない。 However, even with the above conventional technique, no method has been found for producing a laminate of a metal member and a carbon fiber reinforced resin with good adhesiveness and at low cost.

本発明は、上記問題を解決するため、接着性が良好で、製造コストも安価な金属板の積層体の製造方法を提供する。 In order to solve the above problems, the present invention provides a method for producing a laminate of metal plates, which has good adhesiveness and is inexpensive to produce.

本発明の積層体は、金属板の少なくとも一面に、炭素繊維フィラメント群が開繊され一方向に並列状に配列させた炭素繊維シートが積層された積層体であって、前記炭素繊維シートは、少なくとも表面の一部に部分的に粉体樹脂を固着させた樹脂一体化炭素繊維シートであり、前記金属板と樹脂一体化炭素繊維シートとの間に熱可塑性接着フィルムを介在させ、加熱加圧により積層及び接着されており、前記樹脂は前記炭素繊維シートのマトリックス樹脂となっていることを特徴とする。 The laminate of the present invention is a laminate in which at least one surface of a metal plate is laminated with carbon fiber sheets in which carbon fiber filament groups are opened and arranged in parallel in one direction, wherein the carbon fiber sheet is It is a resin-integrated carbon fiber sheet in which powder resin is partially fixed to at least a part of the surface, and a thermoplastic adhesive film is interposed between the metal plate and the resin-integrated carbon fiber sheet, and heated and pressed. Are laminated and adhered, and the resin is a matrix resin of the carbon fiber sheet.

本発明の積層体の製造方法は、金属板の少なくとも一面に、炭素繊維フィラメント群が開繊され一方向に並列状に配列させた炭素繊維シートが積層された積層体の製造方法であって、炭素繊維フィラメント群を開繊し、一方向に並列状に配列させる工程と、前記一方向に並列状に配列させた炭素繊維シートの表面に熱可塑性粉体樹脂を付与する工程と、前記粉体樹脂を加熱し、前記炭素繊維シートの少なくとも表面の一部に部分的に樹脂を存在させた樹脂一体化炭素繊維シートとする工程と、前記金属板と樹脂一体化炭素繊維シートを、前記金属板と樹脂一体化炭素繊維シートとの間に、加熱加圧の際に軟化又は溶融する熱可塑性接着フィルムを介在させ、加熱加圧により積層及び接着する工程を含み、前記樹脂は前記炭素繊維シートのマトリックス樹脂とすることを特徴とする。 The method for producing a laminated body of the present invention is a method for producing a laminated body in which a carbon fiber sheet in which carbon fiber filament groups are opened and arranged in parallel in one direction is laminated on at least one surface of a metal plate, A step of opening the carbon fiber filament group and arranging them in parallel in one direction; a step of applying a thermoplastic powder resin to the surface of the carbon fiber sheet arranged in parallel in the one direction; A step of heating a resin to form a resin-integrated carbon fiber sheet in which resin is partially present on at least a part of the surface of the carbon fiber sheet; Between the resin-integrated carbon fiber sheet and a resin-integrated carbon fiber sheet, a step of laminating and adhering a thermoplastic adhesive film that softens or melts at the time of heating and pressing, and laminating and bonding by heating and pressing, wherein the resin is It is characterized in that it is a matrix resin.

本発明によれば、金属板と樹脂一体化炭素繊維シートが熱可塑性接着フィルムを介在させて加熱加圧により積層一体化されることにより、接着性の良好な積層体が得られ、低コストの積層体を提供できる。 According to the present invention, a metal plate and a resin-integrated carbon fiber sheet are laminated and integrated by heating and pressing with a thermoplastic adhesive film interposed therebetween, whereby a laminate having good adhesiveness can be obtained, and the cost can be reduced. A laminate can be provided.

図1は本発明の一実施形態の積層体の模式的断面図である。FIG. 1 is a schematic cross-sectional view of a laminate according to an embodiment of the present invention. 図2は本発明で使用する一実施形態の樹脂一体化炭素繊維シートの模式的平面図である。FIG. 2 is a schematic plan view of a resin-integrated carbon fiber sheet of one embodiment used in the present invention. 図3は同、樹脂一体化炭素繊維シートの幅方向の模式的断面図である。FIG. 3 is a schematic cross-sectional view of the resin-integrated carbon fiber sheet in the width direction. 図4は本発明の一実施形態の炭素繊維未開繊トウの開繊装置の模式的断面図である。FIG. 4 is a schematic cross-sectional view of an opening device for a carbon fiber unopened tow according to an embodiment of the present invention. 図5は同、一部の模式的斜視図である。FIG. 5 is a schematic perspective view of part of the same. 図6Aは本発明の実施例1で得られた積層体の炭素繊維表面からの写真(倍率2倍)、図6Bは同積層体の断面写真(倍率20倍)である。FIG. 6A is a photograph from the carbon fiber surface of the laminate obtained in Example 1 of the present invention (magnification: 2 times), and FIG. 6B is a cross-sectional photograph of the laminate (magnification: 20 times). 図7Aは本発明の実施例2で得られた積層体の炭素繊維表面からの写真(倍率2倍)、図7Bは同積層体の断面写真(倍率20倍)である。FIG. 7A is a photograph from the carbon fiber surface of the laminate obtained in Example 2 of the present invention (magnification: 2 times), and FIG. 7B is a cross-sectional photograph of the laminate (magnification: 20 times). 図8は比較例1の積層体の模式的断面図である。FIG. 8 is a schematic cross-sectional view of the laminate of Comparative Example 1. 図9Aは比較例1で得られた積層体の炭素繊維表面からの写真(倍率2倍)、図9Bは同積層体の断面写真(倍率20倍)である。FIG. 9A is a photograph of the carbon fiber surface of the laminate obtained in Comparative Example 1 (magnification: 2 times), and FIG. 9B is a cross-sectional photograph of the laminate (magnification: 20 times).

本発明の積層体は、金属板の少なくとも一面に、炭素繊維フィラメント群が開繊され一方向に並列状に配列させた炭素繊維シートが積層された積層体である。金属板と樹脂一体化炭素繊維シートは、前記金属板と樹脂一体化炭素繊維シートとの間に、加熱加圧の際に軟化又は溶融する熱可塑性接着フィルムを介在させ、加熱加圧により積層されており、表面の樹脂は溶融又は軟化して炭素繊維シート内に充填され、炭素繊維シートのマトリックス樹脂となっている。また、熱可塑性接着フィルムは、金属板との接着剤として機能する。 The laminate of the present invention is a laminate in which a carbon fiber sheet in which carbon fiber filament groups are opened and arranged in parallel in one direction is laminated on at least one surface of a metal plate. The metal plate and the resin-integrated carbon fiber sheet are laminated by heating and pressing with a thermoplastic adhesive film interposed between the metal plate and the resin-integrating carbon fiber sheet, which softens or melts during heating and pressing. The resin on the surface is melted or softened to be filled in the carbon fiber sheet to form a matrix resin for the carbon fiber sheet. Further, the thermoplastic adhesive film functions as an adhesive with the metal plate.

本発明の樹脂一体化炭素繊維シートは、炭素繊維フィラメント群が開繊され一方向に並列状に配列させた樹脂一体化炭素繊維シートである。炭素繊維フィラメント群とは、多数本の炭素繊維フィラメントの束(以下、「炭素繊維未開繊トウ」ともいう)のことをいう。開繊とは、トウを構成する多数本の炭素繊維を幅方向に解き分けて薄いシート状又はテープ状にすることをいう。好ましい厚さは0.02〜0.4mmであり、さらに好ましくは0.02〜0.3mmである。本発明で使用する炭素繊維未開繊トウは3〜60Kが好ましく、さらに好ましくは12〜60Kである。ここでKは1000本のことであり、市販品のラージトウは、例えば50K(50,000本)の場合、 通常の幅12mm程度である。 The resin-integrated carbon fiber sheet of the present invention is a resin-integrated carbon fiber sheet in which carbon fiber filament groups are opened and arranged in parallel in one direction. The carbon fiber filament group refers to a bundle of many carbon fiber filaments (hereinafter, also referred to as "carbon fiber unopened tow"). Opening refers to unraveling a large number of carbon fibers forming the tow in the width direction to form a thin sheet or tape. The preferred thickness is 0.02-0.4 mm, more preferably 0.02-0.3 mm. The carbon fiber unopened tow used in the present invention is preferably 3 to 60K, more preferably 12 to 60K. Here, K means 1000, and in the case of 50K (50,000), the commercially available large tow has a normal width of about 12 mm.

表面樹脂は、熱可塑性樹脂であり、熱可塑性樹脂としては、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、ナイロン(ポリアミド)樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、フェノキシ樹脂などが使用可能であるが、これらに限定されない。 The surface resin is a thermoplastic resin, and as the thermoplastic resin, a polyolefin resin such as polyethylene or polypropylene, a nylon (polyamide) resin, a polyester resin, a polycarbonate resin, a polyether ether ketone resin, or a phenoxy resin can be used. However, it is not limited to these.

本発明の樹脂一体化炭素繊維シートの樹脂の付着状態は、開繊された炭素繊維シートの表面付近に樹脂が溶融固化して付着しており、樹脂は炭素繊維シート内部には含浸していないか又は一部含浸しているのが好ましい。この状態の中間材料をいわゆるセミプレグといい、前記状態であると、樹脂一体化炭素繊維シートと金属板との積層体、及びこれを用いて成形品を成形するのに好ましい。 The resin adhesion state of the resin-integrated carbon fiber sheet of the present invention is such that the resin is melted and solidified and adhered to the vicinity of the surface of the opened carbon fiber sheet, and the resin is not impregnated inside the carbon fiber sheet. Or it is preferably partially impregnated. The intermediate material in this state is called a so-called semi-preg, and in the above state, it is preferable to form a laminated body of a resin-integrated carbon fiber sheet and a metal plate and a molded product using the laminated body.

前記樹脂一体化炭素繊維シートを100体積%としたとき、前記樹脂は40〜60体積%であるのが好ましく、さらに好ましくは45〜55体積%である。前記の割合であれば、樹脂一体化炭素繊維シートと金属板を積層するのに好ましい。樹脂一体化炭素繊維シートの質量は10〜1000g/m2が好ましく、より好ましくは20〜800g/m2であり、さらに好ましくは30〜500g/m2である。 When the resin-integrated carbon fiber sheet is 100% by volume, the resin content is preferably 40 to 60% by volume, more preferably 45 to 55% by volume. The above ratio is preferable for laminating the resin-integrated carbon fiber sheet and the metal plate. The mass of the resin-integrated carbon fiber sheet is preferably 10 to 1000 g/m 2 , more preferably 20 to 800 g/m 2 , and further preferably 30 to 500 g/m 2 .

樹脂一体化炭素繊維シート表面の樹脂は、炭素繊維シートを成形加工する際のマトリックス樹脂であるのが好ましい。これにより、金属板と樹脂一体化炭素繊維シートとを加熱・加圧すると、全体が一体化した積層体となる。 The resin on the surface of the resin-integrated carbon fiber sheet is preferably a matrix resin used when molding the carbon fiber sheet. As a result, when the metal plate and the resin-integrated carbon fiber sheet are heated and pressed, the entire laminated body is formed.

樹脂一体化炭素繊維シートの幅は、構成繊維本数1000本当たり0.2〜3.0mmが好ましい。具体的には、樹脂一体化炭素繊維シートの幅は、50Kまたは60Kなどのラージトウの場合は構成繊維本数1000本当たり0.2〜1.5mm程度であり、12Kまたは15Kなどのレギュラートウの場合は構成繊維本数1000本当たり0.2〜3.0mm程度である。1本当たりのトウの構成繊維本数が増加するほど、繊維の捩れが大きくなり開繊しにくくなるので、樹脂一体化炭素繊維シートの幅も狭くなる。これにより、炭素繊維メーカーの販売する未開繊トウを拡開し、使用し易い開繊シートとし、様々な成形物に供給できる。供給糸の炭素繊維束(トウ)は3K〜60Kが好ましく、この炭素繊維束(トウ)を2〜250本供給するのが好ましい。 The width of the resin-integrated carbon fiber sheet is preferably 0.2 to 3.0 mm per 1000 constituent fibers. Specifically, the width of the resin-integrated carbon fiber sheet is about 0.2 to 1.5 mm per 1000 constituent fibers in the case of large tow such as 50K or 60K, and in the case of regular tow such as 12K or 15K. Is about 0.2 to 3.0 mm per 1000 constituent fibers. As the number of constituent fibers of one tow increases, the twisting of the fibers increases and it becomes difficult to open the fibers, so that the width of the resin-integrated carbon fiber sheet also decreases. As a result, it is possible to expand the unopened tow sold by the carbon fiber manufacturer into an easy-to-use opened sheet that can be supplied to various molded products. The carbon fiber bundle (tow) of the supply yarn is preferably 3K to 60K, and it is preferable to supply 2 to 250 of this carbon fiber bundle (tow).

金属板と樹脂一体化炭素繊維シートとの間には、加熱加圧の際に軟化又は溶融する熱可塑性接着フィルムを介在させる。これにより、マトリックス樹脂の主要樹脂である熱可塑性粉体樹脂と金属板との接着性を考慮する必要が無くなるため、粉体樹脂の選択に自由度が増し、最終製品の所望する物理特性を考慮したマトリックス樹脂の選択が可能となる。熱可塑性接着フィルムは、金属板と熱可塑性粉体樹脂との接着性で選択されるが、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、ナイロン(ポリアミド)樹脂、ポリエステル樹脂などの熱可塑性樹脂フィルムが使用可能である。前記熱可塑性接着フィルムは、融点が50〜250℃が好ましく、さらに好ましくは60〜180℃である。また、熱可塑性接着フィルムの厚さは10〜800μmが好ましく、さらに好ましくは20〜500μmである。 A thermoplastic adhesive film that softens or melts during heating and pressing is interposed between the metal plate and the resin-integrated carbon fiber sheet. This eliminates the need to consider the adhesiveness between the thermoplastic powder resin, which is the main resin of the matrix resin, and the metal plate, increasing the degree of freedom in selecting the powder resin and considering the desired physical properties of the final product. The selected matrix resin can be selected. The thermoplastic adhesive film is selected depending on the adhesiveness between the metal plate and the thermoplastic powder resin. For example, a polyolefin resin such as polyethylene or polypropylene, a nylon (polyamide) resin, a polyester resin or other thermoplastic resin film is used. It is possible. The melting point of the thermoplastic adhesive film is preferably 50 to 250°C, more preferably 60 to 180°C. The thickness of the thermoplastic adhesive film is preferably 10 to 800 μm, more preferably 20 to 500 μm.

本発明において金属板は、鉄、ステンレス、アルミ、銅、亜鉛、鉛、ジュラルミンなどの合金、積層金属板など、炭素繊維シートと補強が可能な金属板ならどのようなものであってもよい。金属板の厚さは一例として0.1〜100mmを挙げるが、これに限定されない。 In the present invention, the metal plate may be any metal plate that can be reinforced with the carbon fiber sheet, such as an alloy of iron, stainless steel, aluminum, copper, zinc, lead, duralumin, and a laminated metal plate. The thickness of the metal plate is, for example, 0.1 to 100 mm, but is not limited thereto.

本発明の積層体の製造方法は次の工程を含む。
(1)炭素繊維フィラメント群を開繊し、一方向に並列状に配列させる工程
(2)前記一方向に並列状に配列させた炭素繊維シートの表面に熱可塑性粉体樹脂を付与する工程
(3)前記粉体樹脂を加圧フリー状態で加熱溶融して、前記炭素繊維シートの少なくとも表面の一部に部分的に樹脂を存在させた樹脂一体化炭素繊維シートとする工程
(4)前記金属板と樹脂一体化炭素繊維シートを、前記金属板と樹脂一体化炭素繊維シートとの間に、加熱加圧の際に軟化又は溶融する熱可塑性接着フィルムを介在させ、加熱加圧により積層及び接着する工程
The method for producing a laminated body of the present invention includes the following steps.
(1) A step of opening a group of carbon fiber filaments and arranging them in parallel in one direction (2) A step of applying a thermoplastic powder resin to the surface of the carbon fiber sheet arranged in parallel in one direction ( 3) A step of heating and melting the powder resin in a pressure-free state to obtain a resin-integrated carbon fiber sheet in which resin is partially present on at least a part of the surface of the carbon fiber sheet (4) The metal The plate and the resin-integrated carbon fiber sheet are laminated and adhered by interposing a thermoplastic adhesive film between the metal plate and the resin-incorporated carbon fiber sheet, which softens or melts during heating and pressing. Process

粉体樹脂は、静電塗装なども採用できるが、炭素繊維シート表面に落下させるのが好ましい。例えばドライパウダー状の粉体樹脂を炭素繊維シートに振りかける。この方法は、静電塗装に比べてコストが安い利点がある。 The powder resin can be applied by electrostatic coating or the like, but it is preferable to drop it on the surface of the carbon fiber sheet. For example, a powder resin in the form of dry powder is sprinkled on the carbon fiber sheet. This method has an advantage that the cost is lower than that of electrostatic coating.

炭素繊維フィラメント群はボビンに巻かれた状態で複数本供給され、押さえシャフトと開繊バーにより幅方向に振動されて幅方向に拡開されるとともに開繊され、1枚の開繊シートにされるのが好ましい。 A plurality of carbon fiber filament groups are supplied in a state of being wound around a bobbin, and are vibrated in the width direction by the pressing shaft and the opening bar to be expanded in the width direction and opened to be a single opened sheet. Is preferred.

前記開繊する工程において、炭素繊維未開繊トウを屈曲して通過させるための押さえシャフトと、トウの幅方向に振動する開繊バーで構成される少なくとも一対の開繊手段により開繊するのが好ましい。未開繊トウは押さえシャフトで押さえられた状態で開繊バーにより幅方向に振動されるため、未開繊トウは幅方向に拡開され開繊される。開繊バーと押さえシャフトは断面が円形、楕円形、長円形等が好ましく、この中でも長円形が好ましい。とくに開繊バーは上面と下面に未開繊トウを接触させることができることから、断面は長円形が好ましい。開繊バーと押さえシャフトからなる開繊手段は2〜4対設けるのが好ましい。このようにすると効率よく開繊できる。 In the step of opening, the pressing shaft for bending and passing the carbon fiber unopened tow, and the opening by at least a pair of opening means composed of an opening bar that vibrates in the width direction of the tow preferable. Since the unopened tow is vibrated in the width direction by the opening bar while being pressed by the pressing shaft, the unopened tow is spread and opened in the width direction. The opening bar and the pressing shaft preferably have a circular cross section, an elliptical shape, an oval shape, and the like, and the oval shape is preferable. In particular, the open bar is preferably oval in cross section because it allows the unopened tow to contact the upper and lower surfaces. It is preferable to provide 2 to 4 pairs of opening means including an opening bar and a pressing shaft. In this way, the fiber can be efficiently opened.

前記開繊する工程において、炭素繊維未開繊トウを屈曲して通過させるための押さえシャフトの端部と開繊バーの端部の高さの差△Hは5〜30mmとするのが好ましく、より好ましくは10〜20mmである。前記差の分、炭素繊維未開繊トウは屈曲して通過され、振動する開繊バーの表面に接触して開繊されやすくなる。前記高さの差△Hは、最初は高く、だんだん低くしても良い。開繊バーは、振幅1〜20mmが好ましく、より好ましくは2〜10mmであり、振動数10〜100Hzが好ましく、より好ましくは20〜50Hzである。これにより、未開繊トウを効率よく開繊できる。 In the step of opening, the difference ΔH in height between the end of the pressing shaft and the end of the opening bar for bending and passing the carbon fiber unopened tow is preferably 5 to 30 mm, and more preferably It is preferably 10 to 20 mm. Due to the difference, the unopened carbon fiber tow is bent and passed, and the surface of the vibrating opening bar comes into contact with the tow to facilitate opening. The height difference ΔH may be high initially and may be gradually decreased. The opening bar preferably has an amplitude of 1 to 20 mm, more preferably 2 to 10 mm, a frequency of 10 to 100 Hz, and more preferably 20 to 50 Hz. Thereby, the unopened tow can be efficiently opened.

次に図面を用いて説明する。以下の図において、同一符号は同一物を示す。図1は本発明の一実施形態の積層体30の模式的断面図である。この積層体30は、金属板31の両表面に接着フィルム32a,32bを介在させ、その表面の樹脂一体化炭素繊維シート33a,33bを加熱加圧により一体化したものである。加熱加圧により、炭素繊維シート表面の樹脂は炭素繊維シート内に含浸し、マトリックス樹脂となっている。接着フィルム32a,32bは加熱加圧の際に溶融し、金属板との炭素繊維シート表面の樹脂との接着剤となって金属と炭素繊維とを一体化している。 Next, description will be made with reference to the drawings. In the following figures, the same reference numerals indicate the same items. FIG. 1 is a schematic sectional view of a laminated body 30 according to an embodiment of the present invention. This laminated body 30 is one in which adhesive films 32a and 32b are interposed on both surfaces of a metal plate 31, and resin integrated carbon fiber sheets 33a and 33b on the surfaces are integrated by heating and pressing. The resin on the surface of the carbon fiber sheet is impregnated into the carbon fiber sheet by heating and pressurization to form a matrix resin. The adhesive films 32a and 32b are melted at the time of heating and pressurizing, and become an adhesive with the metal plate and the resin on the surface of the carbon fiber sheet to integrate the metal and the carbon fiber.

図2は本発明の一実施形態の樹脂一体化炭素繊維シート20の模式的平面図、図3は同、樹脂一体化炭素繊維シート20の幅方向の模式的断面図である。炭素繊維シート21の表面付近に樹脂22が溶融固化して付着しており、樹脂22は炭素繊維シート21内部には含浸していないか又は一部含浸している程度である。図3に示すように、樹脂22が付着している部分と、樹脂が付着していない部分23がある。樹脂が付着していない部分23は、樹脂一体化炭素繊維シート20を金属板と重ねて加熱・加圧して繊維強化樹脂成形品に成形する際に、繊維シート内部の空気がこの部分から抜ける通路となり、加圧により表面の樹脂が繊維シート内全体に含浸しやすくなる。 FIG. 2 is a schematic plan view of the resin-integrated carbon fiber sheet 20 according to the embodiment of the present invention, and FIG. 3 is a schematic cross-sectional view in the width direction of the resin-integrated carbon fiber sheet 20. The resin 22 is melted and solidified and attached to the vicinity of the surface of the carbon fiber sheet 21, and the resin 22 is not impregnated or partially impregnated into the carbon fiber sheet 21. As shown in FIG. 3, there are a portion where the resin 22 is attached and a portion 23 where the resin is not attached. The portion 23 where the resin is not attached is a passage through which air inside the fiber sheet escapes from this portion when the resin-integrated carbon fiber sheet 20 is overlaid with a metal plate and heated and pressed to form a fiber-reinforced resin molded product. As a result, the resin on the surface is easily impregnated into the entire fiber sheet by applying pressure.

図4は本発明の一実施形態のトウの開繊装置の模式的断面図であり、図5は同、一部の模式的斜視図である。この開繊装置1の主要部は、トウの幅方向に振動する開繊バー6a,6b,6cと、トウを押さえる押さえシャフト4a−4d,5a−5dで構成されている。炭素繊維未開繊トウ3aは供給ボビン2aから供給され、押さえシャフト4a−4dと開繊バー6a,6b,6cの間を屈曲して通過し、未開繊トウ3aは押さえシャフト4a−4dで押さえられた状態で開繊バー6a,6b,6cにより幅方向に振動されるため、幅方向に拡開され開繊され、開繊シートとなる。未開繊トウ3bも同様に、供給ボビン2bから供給され、押さえシャフト5a−5dと開繊バー6a,6b,6cの間を屈曲して通過し、未開繊トウ3bは押さえシャフト5a−5dで押さえられた状態で開繊バー6a,6b,6cにより幅方向に振動されるため、幅方向に拡開され開繊され、ガイドロール7a上で一列に配列されシート状となり、ガイドロール7bを通過した後、炭素繊維開繊シート8となる。その後、粉体供給ホッパー9からドライパウダー樹脂10を炭素繊維開繊シート8の表面に振りかけ、圧力フリー状態で加熱装置11内に供給し加熱し、ドライパウダー樹脂10を溶融し、ガイドロール12a−12c間で冷却する。その後、炭素繊維開繊シート8の裏面にも粉体供給ホッパー13からドライパウダー樹脂14を振りかけ、圧力フリー状態で加熱装置15内に供給し加熱し、ドライパウダー樹脂14を溶融し、冷却し、巻き上げロール16に巻き上げられる。図5の矢印17a−17cは開繊バー6a,6b,6cの振動方向を示す。押さえシャフトと開繊バーの炭素繊維と接触する面は梨地面とした。 FIG. 4 is a schematic cross-sectional view of the tow opening device of one embodiment of the present invention, and FIG. 5 is a schematic perspective view of a part thereof. The main part of the fiber opening device 1 is composed of fiber opening bars 6a, 6b and 6c that vibrate in the width direction of the tow and pressing shafts 4a-4d and 5a-5d that press the toe. The carbon fiber unopened tow 3a is supplied from the supply bobbin 2a, bends and passes between the pressing shafts 4a-4d and the opening bars 6a, 6b, 6c, and the unopened tow 3a is pressed by the pressing shafts 4a-4d. In the opened state, the fiber is vibrated in the width direction by the fiber opening bars 6a, 6b, 6c, so that the fiber is spread and opened in the width direction to form a fiber opening sheet. Similarly, the unopened tow 3b is supplied from the supply bobbin 2b, bends and passes between the pressing shafts 5a-5d and the opening bars 6a, 6b, 6c, and the unopened tow 3b is pressed by the pressing shafts 5a-5d. Since the fiber is vibrated in the width direction by the opening bars 6a, 6b, 6c in the opened state, the fibers are spread and opened in the width direction, arranged in a line on the guide roll 7a to form a sheet, and passed through the guide roll 7b. After that, the carbon fiber spread sheet 8 is formed. After that, the dry powder resin 10 is sprinkled on the surface of the carbon fiber spread sheet 8 from the powder supply hopper 9 and supplied into the heating device 11 in a pressure-free state and heated to melt the dry powder resin 10 and the guide roll 12a- Cool between 12c. Thereafter, the dry powder resin 14 is sprinkled on the back surface of the carbon fiber spread sheet 8 from the powder supply hopper 13, and the dry powder resin 14 is supplied and heated in a pressure-free state into the heating device 15 to melt and cool the dry powder resin 14. It is wound up by the winding roll 16. Arrows 17a-17c in FIG. 5 indicate the vibration directions of the spreader bars 6a, 6b, 6c. The surface of the pressing shaft and the carbon fiber of the fiber opening bar that contacted the carbon fiber was a satin surface.

前記において、ドライパウダー樹脂14を例えばナイロン6樹脂(融点220℃)とした場合、加熱装置11,15内の温度は各260〜300℃、滞留時間は各3〜10秒とする。これにより炭素繊維開繊シートは幅方向の強度が高くなり、構成炭素繊維がバラバラになることはなく、シートとしてとして扱えるようになる。 In the above description, when the dry powder resin 14 is, for example, nylon 6 resin (melting point 220° C.), the temperature inside the heating devices 11 and 15 is 260 to 300° C. and the residence time is 3 to 10 seconds. As a result, the carbon fiber spread sheet has a high strength in the width direction, and the constituent carbon fibers do not fall apart and can be handled as a sheet.

以下比較例及び実施例を用いて本発明を具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。
(比較例1)
(1)炭素繊維未開繊トウ
炭素繊維未開繊トウは三菱レーヨン社製、品番:PYROFILE TR50S 15L、形状: フィラメント15K×13本、単繊維直径7μmを使用した。
(2)未開繊トウの開繊手段
図4−5に示す開繊装置を使用して開繊した。開繊バーの端部と、押さえシャフトの端部の高さの差△Hは10mmとし、開繊バーは、振幅6mm、振動数30Hzで振動させた。このようにして開繊シート幅260mm、厚み約0.1mm、単位面積当たりの質量(目付)50g/m2の開繊シートとした。
(3)樹脂及び熱処理
ドライパウダー樹脂としてフェノキシ樹脂(新日鉄住金化学社製、商品名"YP50")を使用した。この樹脂は、樹脂一体化炭素繊維シートを100体積%としたとき、前記樹脂は50体積%となるように付与した。すなわち、炭素繊維シート目付50g/m2当たり、片面16.2g/m2、両面で計32.4g/m2付与した。加熱装置11,15内の温度は各180℃、滞留時間は各2秒とした。
(4)樹脂一体化炭素繊維シートの評価
得られた樹脂一体化炭素繊維シートの質量(目付)は82.4g/m2であった。
(5)金属板との積層
アルミニウム板(タテ、ヨコ各200mm、厚さ0.5mm,規格A1050)を紙やすり(C120)にて縦、横、円方向の順に全面を荒らした。削った紛体を水あらいにて取り除き、その後アセトンで拭き脱脂をおこなった。脱脂後3時間以内に使用した。このアルミニウム板の両面に、図8に示すように樹脂一体化炭素繊維シートを配置した。すなわち、金属板31の両面に樹脂一体化炭素繊維シート33a,33bを配置した。予め離型剤をふったステンレスSUS板を事前にプレス機にて加熱しておき、そのSUS板にサンプルを挟み、180℃、5分、3MPaのプレス条件にて加熱および加圧をした。加熱後3MPaにて3分間冷却した。このようにして積層体34とした。
<接着性>
作製サンプルに「はがれ」「浮き」等が発生していないか目視にて確認し評価した。評価基準は次のとおりである。
A:「はがれ」「浮き」等の発生はない。
B:「はがれ」「浮き」等の発生がある。
<含浸性>
サンプルの中央部をカットし樹脂の含浸性を表面及び断面を写真撮影して観察し確認した。評価基準は次のとおりである。
A:炭素繊維シート内に樹脂が全面に含浸しており、空気層や泡は見られない。
B:炭素繊維シート内に部分的に樹脂が含浸していない部分があり、一部空気層や泡が見られる。
図9Aに比較例1で得られた積層体の炭素繊維表面からの写真(倍率2倍)、図9Bは同積層体の断面写真(倍率20倍)を示す。結果は後に表1にまとめて示す。
<曲げ試験>
JIS K7074(炭素繊維強化プラスチックの曲げ試験方法 3点曲げ試験)に準拠して測定した。スパン40mm、試験速度5mm/minとした。
The present invention will be specifically described below with reference to comparative examples and examples. The present invention is not limited to the examples below.
(Comparative Example 1)
(1) Carbon fiber unopened fiber tow The carbon fiber unopened fiber tow was manufactured by Mitsubishi Rayon Co., Ltd., product number: PYROFILE TR50S 15L, shape: filament 15K×13, single fiber diameter 7 μm.
(2) Fiber opening means of unopened tow Fiber opening was performed using the fiber opening device shown in FIG. 4-5. The difference ΔH in height between the end of the fiber opening bar and the end of the pressing shaft was 10 mm, and the fiber opening bar was vibrated at an amplitude of 6 mm and a frequency of 30 Hz. In this way, a spread sheet having a width of 260 mm, a thickness of about 0.1 mm, and a mass per unit area (area weight) of 50 g/m 2 was obtained.
(3) Resin and heat treatment A phenoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name "YP50") was used as a dry powder resin. This resin was applied so that the resin content was 50% by volume when the resin-integrated carbon fiber sheet was 100% by volume. That is, a carbon fiber sheet weight of 50 g/m 2 was 16.2 g/m 2 on one side and a total of 32.4 g/m 2 on both sides. The temperature inside each of the heating devices 11 and 15 was 180° C., and the residence time was each 2 seconds.
(4) Evaluation of resin-integrated carbon fiber sheet The mass (area weight) of the obtained resin-integrated carbon fiber sheet was 82.4 g/m 2 .
(5) Lamination with metal plate An aluminum plate (vertical, horizontal 200 mm, thickness 0.5 mm, standard A1050) was roughened with sandpaper (C120) in the order of vertical, horizontal and circular directions. The scraped powder was removed with water and then degreased by wiping with acetone. Used within 3 hours after degreasing. As shown in FIG. 8, resin-integrated carbon fiber sheets were arranged on both sides of this aluminum plate. That is, the resin-integrated carbon fiber sheets 33a and 33b were arranged on both surfaces of the metal plate 31. A stainless steel SUS plate coated with a release agent was heated in advance with a press machine, the sample was sandwiched between the SUS plates, and heated and pressed under the press conditions of 180° C. for 5 minutes and 3 MPa. After heating, it was cooled at 3 MPa for 3 minutes. Thus, the laminated body 34 was obtained.
<Adhesiveness>
The produced sample was visually confirmed and evaluated for "peeling", "floating", and the like. The evaluation criteria are as follows.
A: No "peeling" or "floating" occurred.
B: "peeling", "floating", etc. occurred.
<Impregnability>
The central portion of the sample was cut, and the impregnating property of the resin was confirmed by observing the surface and the cross section by photographing. The evaluation criteria are as follows.
A: The entire surface of the carbon fiber sheet was impregnated with resin, and no air layer or bubbles were observed.
B: A part of the carbon fiber sheet was not impregnated with resin, and an air layer and bubbles were partially observed.
FIG. 9A is a photograph of the carbon fiber surface of the laminate obtained in Comparative Example 1 (magnification: 2 times), and FIG. 9B is a cross-sectional photograph of the laminate (magnification: 20 times). The results are shown later in Table 1.
<Bending test>
The measurement was performed according to JIS K7074 (bending test method of carbon fiber reinforced plastic: 3-point bending test). The span was 40 mm and the test speed was 5 mm/min.

(実施例1)
ドライパウダー樹脂としてフェノキシ樹脂(新日鉄住金化学社製、商品名"YP50")を使用した。この樹脂は、樹脂一体化炭素繊維シートを100体積%としたとき、前記樹脂は50体積%となるように両面に付与した。すなわち、炭素繊維シート目付50g/m2当たり、片面16.2g/m2、両面で計32.4g/m2付与した。加熱装置11,15内の温度は各180℃、滞留時間は各2秒とした。
比較例1と同様に洗浄化処理したアルミニウム板の両面に、図1に示すようにオレフィン系接着フィルム(倉敷紡績社製、商品名"クランベター"タイプP−6700、融点150℃、厚さ60μm)を配置し、その両外側に樹脂一体化炭素繊維シートを配置した。予め離型剤をふったステンレスSUS板を事前にプレス機にて加熱しておき、そのSUS板にサンプルを挟み、180℃、5分、3MPaのプレス条件にて全体を加熱および加圧をした。加熱後3MPaにて3分間冷却した。他の条件は比較例1と同様とした。図6Aに本実施例1で得られた積層体の炭素繊維表面からの写真(倍率2倍)、図6Bに同積層体の断面写真(倍率20倍)を示す。
(Example 1)
Phenoxy resin (Nippon Steel & Sumikin Chemical Co., Ltd., trade name "YP50") was used as a dry powder resin. This resin was applied to both surfaces so that the resin content was 50% by volume when the resin-integrated carbon fiber sheet was 100% by volume. That is, a carbon fiber sheet weight of 50 g/m 2 was 16.2 g/m 2 on one side and a total of 32.4 g/m 2 on both sides. The temperature inside each of the heating devices 11 and 15 was 180° C., and the residence time was each 2 seconds.
As shown in FIG. 1, an olefin-based adhesive film (manufactured by Kurashiki Spinning Co., Ltd., trade name “Cranbetter” type P-6700, melting point 150° C., thickness 60 μm) was formed on both surfaces of the aluminum plate that had been subjected to the washing treatment in the same manner as in Comparative Example 1. ) Was arranged, and the resin-integrated carbon fiber sheet was arranged on both outer sides thereof. A stainless steel SUS plate preliminarily coated with a release agent was heated in advance with a press machine, the sample was sandwiched between the SUS plates, and the whole was heated and pressed under a press condition of 180° C. for 5 minutes and 3 MPa. .. After heating, it was cooled at 3 MPa for 3 minutes. The other conditions were the same as in Comparative Example 1. FIG. 6A shows a photograph from the carbon fiber surface of the laminate obtained in Example 1 (magnification: 2 times), and FIG. 6B shows a cross-sectional photograph of the laminate (magnification: 20 times).

(実施例2)
プレス条件を200℃、5分、3MPaとした以外は実施例1と同様とした。図7Aに本実施例2で得られた積層体の炭素繊維表面からの写真(倍率2倍)、図7Bに同積層体の断面写真(倍率20倍)を示す。
以上の結果を表1にまとめて示す。
(Example 2)
Example 1 was the same as Example 1 except that the pressing conditions were 200° C., 5 minutes, and 3 MPa. FIG. 7A shows a photograph from the carbon fiber surface of the laminate obtained in Example 2 (magnification: 2 times), and FIG. 7B shows a cross-sectional photograph of the laminate (magnification: 20 times).
The above results are summarized in Table 1.

表1から明らかなとおり、実施例1−2はアルミ板と樹脂一体化炭素繊維シートとの間に接着フィルムを介在させたので、はがれ、浮き等の発生はなく、接着性は良好であった。これに対して比較例1はアルミ板と樹脂一体化炭素繊維シートとを直接積層し加熱加圧したため、はがれ、浮き等の発生が認められた。 As is clear from Table 1, in Example 1-2, since the adhesive film was interposed between the aluminum plate and the resin-integrated carbon fiber sheet, peeling and floating did not occur, and the adhesiveness was good. .. On the other hand, in Comparative Example 1, since the aluminum plate and the resin-integrated carbon fiber sheet were directly laminated and heated and pressed, the occurrence of peeling, floating, etc. was observed.

本発明の積層体は、風力発電に使用するブレード、航空機、ロケット、自動車、圧力容器などの補強材に広く応用できる。 INDUSTRIAL APPLICABILITY The laminate of the present invention can be widely applied to reinforcing materials for blades used for wind power generation, aircraft, rockets, automobiles, pressure vessels and the like.

1 開繊装置
2a,2b 供給ボビン
3a,3b 炭素繊維未開繊トウ
4a−4d,5a−5d 押さえシャフト
6a,6b,6c 開繊バー
7a,7b ガイドロール
8 炭素繊維開繊シート
9,13 粉体供給ホッパー
10,14 ドライパウダー樹脂
11,15 加熱装置
12a−12c ガイドロール
16 巻き上げロール
17a−17c 開繊バーの振動方向
20 樹脂一体化炭素繊維シート
21 炭素繊維シート
22 樹脂
23 樹脂が付着していない部分
30,34 積層体
31 金属板
32a,32b 接着フィルム
33a,33b 樹脂一体化炭素繊維シート
1 opening device 2a, 2b supply bobbin 3a, 3b carbon fiber unopened tow 4a-4d, 5a-5d pressing shaft 6a, 6b, 6c opening bar 7a, 7b guide roll 8 carbon fiber opening sheet 9, 13 powder Supply hopper 10,14 Dry powder resin 11,15 Heating device 12a-12c Guide roll 16 Winding roll 17a-17c Vibration direction of opening bar 20 Resin integrated carbon fiber sheet 21 Carbon fiber sheet 22 Resin 23 No resin is attached Part 30, 34 Laminate 31 Metal plate 32a, 32b Adhesive film 33a, 33b Resin integrated carbon fiber sheet

Claims (6)

金属板の少なくとも一面に、炭素繊維フィラメント群が開繊され一方向に並列状に配列させた炭素繊維シートが積層された積層体であって、
前記炭素繊維シートは、少なくとも表面の一部に部分的に粉体樹脂を固着させた樹脂一体化炭素繊維シートであり、
前記金属板と樹脂一体化炭素繊維シートとの間に熱可塑性接着フィルムを介在させ、加熱加圧により積層及び接着されており、
前記樹脂は前記炭素繊維シートのマトリックス樹脂となっていることを特徴とする積層体。
At least one surface of the metal plate, a laminated body in which carbon fiber filament groups are spread and carbon fiber sheets arranged in parallel in one direction are laminated,
The carbon fiber sheet is a resin-integrated carbon fiber sheet in which powder resin is partially fixed to at least a part of the surface,
A thermoplastic adhesive film is interposed between the metal plate and the resin-integrated carbon fiber sheet, which are laminated and adhered by heating and pressing,
A laminate, wherein the resin is a matrix resin of the carbon fiber sheet.
前記熱可塑性接着フィルムは、融点が50〜250℃のポリオレフィン樹脂、ナイロン(ポリアミド)樹脂及びポリエステル樹脂から選ばれる少なくとも一つの樹脂フィルムである請求項1に記載の積層体。 The laminate according to claim 1, wherein the thermoplastic adhesive film is at least one resin film selected from a polyolefin resin, a nylon (polyamide) resin, and a polyester resin having a melting point of 50 to 250°C. 金属板の少なくとも一面に、炭素繊維フィラメント群が開繊され一方向に並列状に配列させた炭素繊維シートが積層された積層体の製造方法であって、
炭素繊維フィラメント群を開繊し、一方向に並列状に配列させる工程と、
前記一方向に並列状に配列させた炭素繊維シートの表面に熱可塑性粉体樹脂を付与する工程と、
前記粉体樹脂を加熱し、前記炭素繊維シートの少なくとも表面の一部に部分的に樹脂を存在させた樹脂一体化炭素繊維シートとする工程と、
前記金属板と樹脂一体化炭素繊維シートを、前記金属板と樹脂一体化炭素繊維シートとの間に、加熱加圧の際に軟化又は溶融する熱可塑性接着フィルムを介在させ、加熱加圧により積層及び接着する工程を含み、
前記樹脂は前記炭素繊維シートのマトリックス樹脂とすることを特徴とする積層体の製造方法。
At least one surface of the metal plate, a method of manufacturing a laminate in which carbon fiber filaments are spread and carbon fiber sheets arranged in parallel in one direction are laminated,
A step of opening the carbon fiber filament group and arranging them in parallel in one direction,
A step of applying a thermoplastic powder resin to the surface of the carbon fiber sheet arranged in parallel in the one direction,
A step of heating the powder resin to form a resin-integrated carbon fiber sheet in which resin is partially present on at least a part of the surface of the carbon fiber sheet;
The metal plate and the resin-integrated carbon fiber sheet are laminated by heat and pressure with a thermoplastic adhesive film interposed between the metal plate and the resin-incorporated carbon fiber sheet that softens or melts during heat and pressure. And including a step of adhering,
The said resin is a matrix resin of the said carbon fiber sheet, The manufacturing method of the laminated body characterized by the above-mentioned.
前記樹脂は炭素繊維シートの表面付近に溶融固化して付着しており、前記樹脂は炭素繊維シート内部には含浸していないか又は一部含浸している請求項3に記載の積層体の製造方法。 The production of the laminate according to claim 3, wherein the resin is melted and solidified and attached near the surface of the carbon fiber sheet, and the resin is not impregnated or partially impregnated inside the carbon fiber sheet. Method. 前記樹脂一体化炭素繊維シートを100体積%としたとき、前記樹脂は40〜60体積%である請求項3又は4に記載の積層体の製造方法。 The said resin is 40-60 volume% when the said resin integrated carbon fiber sheet is 100 volume %, The manufacturing method of the laminated body of Claim 3 or 4. 前記樹脂一体化炭素繊維シートの幅は、構成繊維本数1000本当たり0.2〜3.0mmである請求項3〜5のいずれかに記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 3 to 5, wherein the resin-integrated carbon fiber sheet has a width of 0.2 to 3.0 mm per 1000 constituent fibers.
JP2018214536A 2018-11-15 2018-11-15 Method for producing laminate Pending JP2020082359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018214536A JP2020082359A (en) 2018-11-15 2018-11-15 Method for producing laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018214536A JP2020082359A (en) 2018-11-15 2018-11-15 Method for producing laminate

Publications (1)

Publication Number Publication Date
JP2020082359A true JP2020082359A (en) 2020-06-04

Family

ID=70905522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018214536A Pending JP2020082359A (en) 2018-11-15 2018-11-15 Method for producing laminate

Country Status (1)

Country Link
JP (1) JP2020082359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113183492A (en) * 2021-04-02 2021-07-30 太原理工大学 Rolling process of stainless steel/carbon fiber/stainless steel laminated plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113183492A (en) * 2021-04-02 2021-07-30 太原理工大学 Rolling process of stainless steel/carbon fiber/stainless steel laminated plate
CN113183492B (en) * 2021-04-02 2023-01-13 太原理工大学 Rolling process of stainless steel/carbon fiber/stainless steel laminated plate

Similar Documents

Publication Publication Date Title
JP2807891B2 (en) Prepreg and method for producing the same
JP3894035B2 (en) Carbon fiber reinforced substrate, preform and composite material comprising the same
JP5250898B2 (en) Thermoplastic resin reinforced sheet material, production method thereof, and thermoplastic resin multilayer reinforced sheet material
WO2018181983A1 (en) Prepreg sheet, method for manufacturing same, skin material-provided unitary layer, method for manufacturing article molded from fiber-reinforced composite material, and article molded from fiber-reinforced composite material
US11787086B2 (en) Molding method and molding device for composite sheet
JP6521895B2 (en) Fiber-reinforced resin intermediate material and method for producing the same
JP4341419B2 (en) Preform manufacturing method and composite material manufacturing method
JP4716550B2 (en) Paper-free prepreg and method for producing the same
JP2020082359A (en) Method for producing laminate
WO2021124977A1 (en) Fiber-reinforced resin hollow molded body and method for producing same
JP7284192B2 (en) Resin-integrated reinforcing fiber sheet and manufacturing method thereof
WO2020166558A1 (en) Fiber-reinforced resin molded body and method for producing carbon fiber sheet used therefor
JPWO2020031771A1 (en) Reinforcing fiber tape material and its manufacturing method, reinforcing fiber laminate using reinforcing fiber tape material and fiber reinforced resin molded body
WO2020246440A1 (en) Fiber reinforced resin molded body
JPH1199580A (en) Material for one-directionally fiber-reinforced composite material and its production
JP7337509B2 (en) fiber reinforced resin sheet
WO2022075265A1 (en) Fiber-reinforced resin pultruded article and method for producing same
JP7196006B2 (en) Metal foil-CFRP laminated sheet
JPH10272699A (en) Manufacture of fiber reinforced resin tubular body
JP6488584B2 (en) Carbon fiber reinforced thermoplastic resin molded product and metal welded joint
JP2881117B2 (en) Method for producing hollow fiber reinforced thermoplastic resin product
WO2021095626A1 (en) Resin integrated fiber sheet for vacuum forming, and formed body and formed body production method using same
CN114728439B (en) Resin-integrated fiber sheet for vacuum forming, molded article using same, and method for producing molded article
WO2023182258A1 (en) Rib-reinforced molding and method for producing same
JP2021126776A (en) Fiber-reinforced metal molded body and method for producing the same