JPH1182148A - Cylinder internal pressure measuring device - Google Patents

Cylinder internal pressure measuring device

Info

Publication number
JPH1182148A
JPH1182148A JP24558697A JP24558697A JPH1182148A JP H1182148 A JPH1182148 A JP H1182148A JP 24558697 A JP24558697 A JP 24558697A JP 24558697 A JP24558697 A JP 24558697A JP H1182148 A JPH1182148 A JP H1182148A
Authority
JP
Japan
Prior art keywords
pressure
value
cylinder
correction value
crank angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24558697A
Other languages
Japanese (ja)
Other versions
JP3979704B2 (en
Inventor
Yoshihiro Nakase
善博 中瀬
Motomasa Iizuka
基正 飯塚
Kenji Kanehara
賢治 金原
Tokio Kohama
時男 小浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP24558697A priority Critical patent/JP3979704B2/en
Publication of JPH1182148A publication Critical patent/JPH1182148A/en
Application granted granted Critical
Publication of JP3979704B2 publication Critical patent/JP3979704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Testing Of Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To correct cylinder internal pressure with high accuracy eliminating the influence of drift in spite of simple constitution in a cylinder internal pressure measuring device. SOLUTION: The initial value of the pressure correction value in a first crank angle out of three crank angles in a compression stroke is set, and an error (e) is computed according to a polytropic expression from the difference PD2-PD1 of the pressure measured value in the remaining two crank angles to the first crank angle. The correction value A for correcting the above- mentioned pressure correction value is corrected according to the error (e), and corrections are successively made until the error (e) becomes the specified value or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は自動車等において
使用される内燃機関の筒内圧力を検出するための装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting a pressure in a cylinder of an internal combustion engine used in an automobile or the like.

【0002】[0002]

【従来の技術】近年、内燃機関においては、燃費向上、
排気ガス中のエミッションの低減等の要求に適合するた
め、マイクロコンピュータを応用することにより燃焼状
態に応じて緻密な運転制御を行うことが一般的になって
いる。燃焼状態を把握するための方法の1つとしてシリ
ンダ内における燃焼ガスの圧力(以下筒内圧力)を検出
することが行われる。そのため、圧力センサが燃焼室に
設けられ、筒内圧力に応じた電圧信号を取り出すように
している。一般的には、圧力センサは、温度等の因子に
よりセンサ出力のドリフトが回避できず、筒内圧力を高
精度で求めるためにはドリフト量の補正が必須である。
2. Description of the Related Art In recent years, in internal combustion engines, fuel efficiency has been improved,
In order to meet requirements such as reduction of emissions in exhaust gas, it is common practice to apply a microcomputer to perform precise operation control according to the combustion state. As one of the methods for grasping the combustion state, detection of the pressure of the combustion gas in the cylinder (hereinafter, cylinder pressure) is performed. Therefore, a pressure sensor is provided in the combustion chamber to extract a voltage signal corresponding to the in-cylinder pressure. Generally, in a pressure sensor, drift of a sensor output cannot be avoided due to factors such as temperature, and correction of the drift amount is indispensable to obtain the in-cylinder pressure with high accuracy.

【0003】[0003]

【発明が解決しようとする課題】従来のドリフト量の補
正は、燃焼解析装置等で使用されている大気圧補正方法
がある。この大気圧補正方法においては、排気行程後の
上死点のセンサ出力値を大気圧として補正を行ってい
る。しかしながら、この方法では、負荷が小さくスロッ
トル弁が閉じており吸気管内の圧力が負圧(大気圧より
低い)の場合でも、負荷が高くスロットル弁が開いてお
り吸気管内の圧力が大気圧に近い場合でも、排気行程後
の上死点での圧力センサにより検出される筒内圧力を大
気圧として補正を行っている。そのため、内燃機関の負
荷が変化することにより補正値が変わってくるため、正
確な絶対圧値を求めることはできない。
A conventional drift amount correction method is an atmospheric pressure correction method used in a combustion analyzer or the like. In this atmospheric pressure correction method, the sensor output value at the top dead center after the exhaust stroke is corrected as the atmospheric pressure. However, in this method, even if the load is small and the throttle valve is closed and the pressure in the intake pipe is negative pressure (lower than atmospheric pressure), the load is high and the throttle valve is open and the pressure in the intake pipe is close to atmospheric pressure. Even in this case, the cylinder pressure detected by the pressure sensor at the top dead center after the exhaust stroke is corrected as the atmospheric pressure. Therefore, since the correction value changes due to a change in the load of the internal combustion engine, an accurate absolute pressure value cannot be obtained.

【0004】他のドリフト量の補正方法として特開昭6
1−193045号公報のように、圧力センサを設けた
部位における温度により補正係数を求め、圧力センサの
計測値を補正を行うものも提案されている。しかしなが
ら、この方法では温度に応じた補正係数の値を予めもと
めておく必要がある。また、温度変化の影響を受けない
ように圧力センサの周囲を冷却水等によって強制冷却し
て一定温度にすることも考えられるが、冷却水通路等の
構成が複雑化され実用に適さない。
As another method of correcting the amount of drift, Japanese Unexamined Patent Publication No.
As disclosed in Japanese Patent Application Laid-Open No. 1-193045, there has been proposed a method in which a correction coefficient is obtained based on a temperature at a portion where a pressure sensor is provided, and a measurement value of the pressure sensor is corrected. However, in this method, it is necessary to previously determine the value of the correction coefficient according to the temperature. It is also conceivable to forcibly cool the periphery of the pressure sensor with cooling water or the like to a constant temperature so as not to be affected by the temperature change. However, the configuration of the cooling water passage and the like is complicated and is not suitable for practical use.

【0005】従って、この発明の目的は簡単な構成に係
わらず精度の高い筒内圧力の補正を実現することを目的
とする。
Accordingly, it is an object of the present invention to realize highly accurate in-cylinder pressure correction regardless of a simple configuration.

【0006】[0006]

【課題を解決するための手段】この発明は上記課題を解
決するため請求項1に記載の技術手段を採用する。この
技術手段によれば、圧力センサの計測値をポリトロープ
断熱変化特性に応じて補正することでドリフト因子の影
響を受けることなく絶対圧力値を把握することができる
効果がある。
The present invention employs the technical means described in claim 1 to solve the above-mentioned problems. According to this technical means, there is an effect that the absolute pressure value can be grasped without being affected by the drift factor by correcting the measurement value of the pressure sensor according to the polytropic adiabatic change characteristic.

【0007】請求項2〜5の発明では圧力補正を圧縮行
程における3つのクランク角度における圧力センサ出力
及びこの3つのクランク角度におけるシリンダ体積より
逐次代入法により的確かつ迅速に行うことができる効果
がある。
According to the second to fifth aspects of the present invention, there is an effect that the pressure can be accurately and quickly corrected by successively substituting the pressure sensor output at three crank angles and the cylinder volume at these three crank angles in the compression stroke. .

【0008】[0008]

【発明の実施の形態】図1の内燃機関において、10は
シリンダブロック、12はピストン、14はコネクティ
ングロッド、16はクランク軸、18はシリンダヘッ
ド、20は吸気弁、22は吸気ポート、24はインジェ
クタ、26は排気弁、28は排気ポート、30は燃焼
室、32は点火栓である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the internal combustion engine shown in FIG. 1, 10 is a cylinder block, 12 is a piston, 14 is a connecting rod, 16 is a crankshaft, 18 is a cylinder head, 20 is an intake valve, 22 is an intake port, and 24 is an intake port. An injector, 26 is an exhaust valve, 28 is an exhaust port, 30 is a combustion chamber, and 32 is a spark plug.

【0009】点火栓32に圧力センサ34が設けられ、
圧力センサ34からはシリンダボア内の圧力(筒内圧
力)に応じた信号が信号が得られる。クランク角度セン
サ36はクランク軸16に近接して設けられ、クランク
角度センサ36からはクランク軸上に等間隔に固設され
る検出片37と対向するたびに立ち上がる信号(即ち、
一定のクランク角度毎のパルス信号)が得られる。
A pressure sensor 34 is provided on the ignition plug 32,
A signal corresponding to the pressure in the cylinder bore (in-cylinder pressure) is obtained from the pressure sensor 34. The crank angle sensor 36 is provided close to the crankshaft 16, and a signal that rises every time the crank angle sensor 36 faces a detection piece 37 fixed at equal intervals on the crankshaft (ie,
A pulse signal for each constant crank angle) is obtained.

【0010】制御回路38はマイクロコンピュータとし
て構成され、内燃機関の動作制御を行うための各種のハ
ードウエア構成及びソフトウエア構成を備えている。ま
た、圧力センサ34及びクランク角度センサ36からの
信号を受け、検出筒内圧力値をポリトロープ断熱変化特
性に応じて補正することによりドリフトを排除するとい
うこの発明を実現するための機能を達成する構成も備え
ている。
The control circuit 38 is configured as a microcomputer, and has various hardware configurations and software configurations for controlling the operation of the internal combustion engine. Also, a configuration for receiving the signals from the pressure sensor 34 and the crank angle sensor 36 and correcting the detected in-cylinder pressure value according to the polytropic adiabatic change characteristic to eliminate the drift and realize a function for realizing the present invention. It also has.

【0011】次に、この発明による筒内圧力のドリフト
の補正原理について説明すると、図2は圧縮行程中にお
ける下死点後のクランク角度=220 °から上死点手前の
330°の範囲における筒内圧力の変化を示す。圧縮行程
中の圧力変化はポリトロープ断熱変化に従って行われ、
圧縮行程中の任意のクランク角度位置での筒内圧力値P
とシリンダ体積Vとの間には: PVn = 一定 (1) の関係が成立する。ここに、nはポリトロープ指数であ
る。そして、シリンダ体積Vはそのクランク角度でのピ
ストン位置が判るため、幾何学的に計算することができ
る。図2において同一クランク角度においても温度差等
の影響で筒内圧力の値は上下(ドリフト)する。しかし
ながら、圧力の変化曲線の形態自体はこれらの影響を受
けことがなく、換言すれば、クランク角度間での筒内圧
力変化量はドリフトの影響を受けることがなく一定であ
る。従って、圧力変化量より圧力検出値をドリフトの影
響を排除するように較正することが可能である。即ち、
図2において圧縮行程中における3つのクランク角度位
置θ123 での筒内圧力を夫々P1,P2,P3 とし、
シリンダ体積を夫々V1,V2,V3 とすると、 P1 ×(V1 n =P2 ×(V2 n =P3 ×(V3 n (2) となる。(2) 式より P2 /P1 =(V1 /V2 n , P3 /P1 =(V1 /V3 n (3) となり、(3) 式より n=log (P2 /P1 )/log (V1 /V2 ) =log (P3 /P1 )/log (V1 /V3 ) (4) が得られる。一方、 P2 =P1 +ΔP2 3 =P1 +ΔP3 (5) ここにΔP2 =P2 − P1 , ΔP3 =P3 − P1 と表すことができる。従って、3点でのクランク角度θ
123 での筒内センサ34による筒内圧の計測値P
1,P2,P3 と、クランク角度より幾何学的に計算される
シリンダ体積V1,V2,V3 より(4) 及び(5) 式を満たす
ように補正を行うことによりドリフトの補正が可能であ
る。
Next, the principle of correcting the drift of the in-cylinder pressure according to the present invention will be described. FIG. 2 shows that the crank angle after the bottom dead center in the compression stroke = 220 ° to the position just before the top dead center.
The change of the in-cylinder pressure in the range of 330 ° is shown. The pressure change during the compression stroke is made according to the polytropic adiabatic change,
In-cylinder pressure value P at any crank angle position during compression stroke
And the cylinder volume V: PV n = constant (1). Here, n is a polytropic index. The cylinder volume V can be calculated geometrically because the piston position at the crank angle is known. In FIG. 2, even at the same crank angle, the value of the in-cylinder pressure fluctuates (drifts) under the influence of a temperature difference or the like. However, the shape of the pressure change curve itself is not affected by these factors, in other words, the in-cylinder pressure change between crank angles is constant without being affected by drift. Therefore, it is possible to calibrate the detected pressure value from the amount of pressure change so as to eliminate the influence of the drift. That is,
In FIG. 2, in-cylinder pressures at three crank angle positions θ 1 , θ 2 , θ 3 during the compression stroke are denoted by P 1 , P 2 , P 3 , respectively.
Assuming that the cylinder volumes are V 1 , V 2 , and V 3 , respectively, P 1 × (V 1 ) n = P 2 × (V 2 ) n = P 3 × (V 3 ) n (2). From equation (2), P 2 / P 1 = (V 1 / V 2 ) n and P 3 / P 1 = (V 1 / V 3 ) n (3), and from equation (3), n = log (P 2 / P 1 ) / log (V 1 / V 2 ) = log (P 3 / P 1 ) / log (V 1 / V 3 ) (4) is obtained. On the other hand, P 2 = P 1 + ΔP 2 P 3 = P 1 + ΔP 3 (5) Here, ΔP 2 = P 2 −P 1 and ΔP 3 = P 3 −P 1 can be expressed. Therefore, the crank angle θ at three points
The measured value P of the in-cylinder pressure by the in-cylinder sensor 34 at 1 , θ 2 and θ 3
Drift correction by performing corrections to satisfy equations (4) and (5) from cylinder volumes V 1 , V 2 , V 3 geometrically calculated from 1 , P 2 , P 3 and crank angles Is possible.

【0012】この実施例では逐次代入法により筒内圧力
の検出値の補正値を算出するようにしている。以下逐次
代入法を用いて筒内圧力の補正値を求めるプログラムに
ついて図3のフローチャートによって説明する。第1ス
テップS1では圧縮行程におけるクランク角度の3点θ
123 の設定、これら3点での筒内圧力計測値PD1,
PD2,PD3 の入力及びシリンダ体積V1,V 2,V3 の算出が
行われる。図2に示すようにθ1 は圧縮行程始めにおけ
るクランク角度、θ2 は圧縮行程中頃のクランク角度、
θ3 は圧縮終わりにおけるクランク角度である。各クラ
ンク角度θ123 において筒内圧力の補正値が夫々
1,P2,P3 とされ、筒内圧力センサ34の検出値が夫
々PD1,PD2,PD3 とされる。即ち、センサにより計測され
る計測値PD1,PD2,PD3 が逐次代入法により夫々最終的に
1,P2,P3 に補正されることになる。また、各クラン
ク角度θ123においてピストン12の位置から幾
何学的に算出されるシリンダ体積が夫々V1,V2,V3
される。
In this embodiment, the in-cylinder pressure is determined by the successive substitution method.
The correction value of the detected value is calculated. Sequential below
In a program that calculates the correction value of in-cylinder pressure using the substitution method
This will be described with reference to the flowchart of FIG. 1st
In step S1, three points θ of the crank angle in the compression stroke
1, θTwo, θThreeSetting, cylinder pressure measurement value PD at these three points1,
PDTwo, PDThreeInput and cylinder volume V1, V Two, VThreeIs calculated
Done. As shown in FIG.1 At the beginning of the compression process
Crank angle, θTwo Is the crank angle in the middle of the compression stroke,
θThreeIs the crank angle at the end of compression. Each class
Link angle θ1, θTwo, θThreeAt the cylinder pressure correction values
P 1, PTwo, PThreeAnd the detection value of the in-cylinder pressure sensor 34 is
Each PD1, PDTwo, PDThreeIt is said. That is, measured by the sensor
Measured value PD1, PDTwo, PDThreeAre finally obtained by the successive substitution method
P1, PTwo, PThreeTo be corrected. Also, each clan
Angle θ1, θTwo, θThreeAt the position of the piston 12
Each cylinder volume calculated is V1, VTwo, VThreeWhen
Is done.

【0013】第2ステップS2は補正すべき筒内圧力P
の初期値(クランク角度θ1 での圧力P1 の初期値)、
筒内圧力の修正値Aの初期値及び誤差eの初期値の設定
が行われる。ここに筒内圧力Pの初期値=0.5 気圧(50
kPa)、補正値の初期値A=30kPa、誤差eの初期値=0.0
とする。補正すべき筒内圧力Pの初期値及び筒内圧力
の修正値Aの初期値は経験的にこの値がよいとして指定
したものである。即ち、筒内圧力Pは筒内の圧縮始めの
時期の圧力であるから、大気圧(100 kPa) より小さい値
であり、また、低負荷時の吸気管圧力(負圧)に合わせ
て設定したものである。また、修正値Aはプログラム中
で計算が進につれて小さな値となるが、最初の設定とし
て30 kPaとした。また、誤差eは0.0 として設定ててお
く。
The second step S2 is to determine the in-cylinder pressure P to be corrected.
(The initial value of the pressure P 1 at the crank angle θ 1 ),
The initial value of the correction value A of the in-cylinder pressure and the initial value of the error e are set. Here, the initial value of the in-cylinder pressure P = 0.5 atm (50
kPa), initial value of correction value A = 30 kPa, initial value of error e = 0.0
And The initial value of the in-cylinder pressure P to be corrected and the initial value of the correction value A of the in-cylinder pressure are empirically specified as being good. That is, since the in-cylinder pressure P is a pressure at the time of the start of compression in the cylinder, it is a value smaller than the atmospheric pressure (100 kPa), and is set in accordance with the intake pipe pressure (negative pressure) at a low load. Things. The correction value A becomes smaller as the calculation progresses in the program, but is initially set to 30 kPa. The error e is set to 0.0.

【0014】以降は、逐次代入法のループに入る。即
ち、第3ステップS3ではクランク角度θ1 での筒内圧
力補正値P1 =初期値Pとし、(5) 式に準じてクランク
角度θ 2 での筒内圧力補正値P2 =P+(PD2 −PD1)と
し、クランク角度θ3 での筒内圧力補正値P3 =P+
(PD3 −PD1 )する。次に、第4ステップS4では誤差
eの計算が(4) 式に準じて e=log (P2 /P1)/log (V1/V2)−log (P3 /P1)/
log (V1/V3) によって行われる。即ち、誤差eはクランクθ1 とθ2
における検出圧力から求めたポリトロープ指数nとクラ
ンクθ1 とθ3 における検出圧力から求めたポリトロー
プ指数nとの差である。ポリトロープ指数nは一定であ
ることから、誤差eは演算が進むにつれて誤差eは0.0
に接近し、筒内圧力Pの精度は高まってゆく。
Thereafter, a loop of the sequential assignment method is entered. Immediately
In the third step S3, the crank angle θ1Cylinder pressure at
Force correction value P1 = Initial value P and crank according to equation (5)
Angle θ Two In-cylinder pressure correction value P atTwo= P + (PDTwo−PD1)When
And the crank angle θThreeIn-cylinder pressure correction value P atThree= P +
(PDThree−PD1 ). Next, in a fourth step S4, an error
e = log (PTwo/ P1) / Log (V1/ VTwo) −log (PThree/ P1) /
log (V1/ VThree). That is, the error e is the crank θ1 And θTwo
The polytropic index n obtained from the detected pressure at
Link θ1 And θThreePolytrough calculated from the detected pressure
Is the difference from the index n. The polytropic index n is constant
Therefore, the error e becomes 0.0 as the calculation proceeds.
, And the accuracy of the in-cylinder pressure P increases.

【0015】第5ステップS5では誤差eの絶対値が収
束判定係数(=10E-8)より小さいか否か判別される。誤
差eの絶対値が収束判定係数より大きい場合は、第6ス
テップS6に進み、誤差eを小さくする方向に修正値A
及び筒内圧補正値Pの修正を行う。即ち、誤差eが正の
ときは正方向の修正を行うため現在の修正値Aの絶対値
に1.0 未満の適当な補正係数(例えば0.85) を掛け算し
たものを新たな修正値Aとし、誤差eが負のときは負方
向の修正を行うため現在の修正値Aの絶対値に1.0 未満
の適当な負の補正係数(例えば-0.85)を掛け算したもの
を新たな修正値Aとする。また、補正された筒内圧力の
補正値Pを現在のPに修正値Aを加算したものとして計
算する。
In a fifth step S5, it is determined whether or not the absolute value of the error e is smaller than the convergence determination coefficient (= 10E-8). If the absolute value of the error e is larger than the convergence determination coefficient, the process proceeds to a sixth step S6, where the correction value A is set in a direction to reduce the error e.
And the in-cylinder pressure correction value P is corrected. That is, when the error e is positive, a new correction value A is obtained by multiplying the absolute value of the current correction value A by an appropriate correction coefficient (for example, 0.85) less than 1.0 in order to perform correction in the positive direction. Is negative, a new correction value A is obtained by multiplying the current absolute value of the correction value A by an appropriate negative correction coefficient less than 1.0 (for example, -0.85) in order to correct in the negative direction. The correction value P of the corrected in-cylinder pressure is calculated as a value obtained by adding the correction value A to the current P.

【0016】このような修正の結果、ループの繰り返し
の毎に誤差eの値は小さくなってゆき、最終的には第5
ステップS5で誤差eの絶対値が収束判定係数より小さ
くなる。このとき、第7ステップS7に進み、そのとき
の補正値Pの値がクランク角度θ1 での補正後の筒内圧
力の値となる。図4はこの発明により圧力補正を行った
場合の結果を示している。ドリフト補正前は曲線aで示
すようにクランク角度0〜300 °及び510 °〜720 °で
マイナスという取りえない値をとっており、これはドリ
フトの影響と考えられるが、この発明によりbに示すよ
うに本来の波形に修正することができる。
As a result of such correction, the value of the error e becomes smaller every time the loop is repeated, and finally the fifth
In step S5, the absolute value of the error e becomes smaller than the convergence determination coefficient. In this case, the process proceeds to a seventh step S7, the value of the correction value P at that time is the cylinder pressure values after correction of the crank angle theta 1. FIG. 4 shows the result when pressure correction is performed according to the present invention. Before the drift correction, as shown by the curve a, the crank angles 0 to 300 ° and 510 ° to 720 ° take inevitable values of minus, which are considered to be the influence of the drift. Thus, the original waveform can be corrected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はこの発明が実施される内燃機関の断面図
である。
FIG. 1 is a sectional view of an internal combustion engine in which the present invention is implemented.

【図2】図2は圧縮行程におけるクランク角度と筒内圧
力との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a crank angle and an in-cylinder pressure in a compression stroke.

【図3】図3は逐次代入法によりポリトロープ断熱変化
特性に応じて圧縮行程における筒内圧力を補正するため
のルーチンを示すフローチャートである。
FIG. 3 is a flowchart showing a routine for correcting in-cylinder pressure in a compression stroke according to a polytropic adiabatic change characteristic by a sequential substitution method.

【図4】図4はエンジン1サイクルにおけけるクランク
角度に対する筒内圧力の変化を従来とこの発明による補
正を実施した後との比較で示すグラフである。のルーチ
ンを示すフローチャートである。
FIG. 4 is a graph showing a change in in-cylinder pressure with respect to a crank angle in one cycle of an engine in comparison with a conventional case and after a correction according to the present invention is performed. 6 is a flowchart showing a routine of FIG.

【符号の説明】[Explanation of symbols]

10…シリンダブロック 12…ピストン 16…クランク軸 24…インジェクタ 26…吸気弁 28…排気弁 32…点火栓 34…圧力センサ 36…クランク角度センサ DESCRIPTION OF SYMBOLS 10 ... Cylinder block 12 ... Piston 16 ... Crankshaft 24 ... Injector 26 ... Intake valve 28 ... Exhaust valve 32 ... Spark plug 34 ... Pressure sensor 36 ... Crank angle sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小浜 時男 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Tokio Obama 14 Iwatani, Shimowasumi-cho, Nishio-shi, Aichi Japan Auto Parts Research Institute, Inc.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 圧電素子により気筒内の圧力に応じて電
圧信号を出力する圧力センサと、内燃機関のクランク角
度を検出するクランク角度センサと、検出されたクラン
ク角度におけるシリンダ体積から圧力センサの出力を補
正し、気筒の絶対圧力値を算出する圧力補正手段とを備
えた内燃機関の筒内圧力検出装置において、前記圧力補
正手段はポリトロープ断熱変化特性に応じて圧縮行程に
おける筒内圧力を補正することを特徴とする内燃機関の
筒内圧力検出装置。
1. A pressure sensor for outputting a voltage signal according to a pressure in a cylinder by a piezoelectric element, a crank angle sensor for detecting a crank angle of an internal combustion engine, and an output of the pressure sensor based on a cylinder volume at the detected crank angle. And a pressure correcting means for calculating an absolute pressure value of the cylinder. The pressure correcting means corrects the in-cylinder pressure in the compression stroke according to the polytropic adiabatic change characteristic. An in-cylinder pressure detection device for an internal combustion engine, characterized in that:
【請求項2】 請求の範囲1に記載の発明において、前
記圧力補正手段は、圧縮行程における3つのクランク角
度における圧力センサ出力及びこの3つのクランク角度
におけるシリンダ体積より、圧力補正値を逐次代入法に
より算出することを特徴とする内燃機関の筒内圧力検出
装置。
2. The method according to claim 1, wherein the pressure correction means sequentially substitutes a pressure correction value from a pressure sensor output at three crank angles in a compression stroke and a cylinder volume at the three crank angles. An in-cylinder pressure detecting device for an internal combustion engine, which is calculated by:
【請求項3】 請求の範囲2に記載の発明において、前
記圧力補正手段は、3つのクランク角度のうちの最初の
クランク角度における圧力の補正値の初期値を設定し、
この最初のクランク角度における圧力計測値に対する残
りの二つのクランク角度における圧力計測値の差から誤
差の計算をポリトロープ式に従って行い、補正値の修正
を行う修正値を前記誤差に応じて修正し、誤差が所定値
以下になるまで前記修正を逐次行うことを特徴とする内
燃機関の筒内圧力検出装置。
3. The invention according to claim 2, wherein the pressure correcting means sets an initial value of a pressure correction value at a first crank angle of the three crank angles,
An error is calculated from the difference between the pressure measurement value at the first crank angle and the pressure measurement value at the remaining two crank angles according to the polytrope formula, and a correction value for correcting the correction value is corrected according to the error, and the error is corrected. Wherein the correction is sequentially performed until the pressure becomes equal to or less than a predetermined value.
【請求項4】 請求項3に記載の発明において、前記誤
差は、各クランク角度での筒内圧力補正値をP1
2 ,P3 、シリンダ容積をV1 ,V2 ,V3 としたと
き、 e=log (P2/P1)/log(V1/V2)−log (P3/P1)/l
og(V1/V3 ) によって算出されることを特徴とする内燃機関の筒内圧
力検出装置。
4. The invention according to claim 3, wherein the error is determined by correcting the in-cylinder pressure correction value at each crank angle to P 1 ,
When P 2 , P 3 and the cylinder volumes are V 1 , V 2 , V 3 , e = log (P 2 / P 1 ) / log (V 1 / V 2 ) −log (P 3 / P 1 ) / l
cylinder pressure detecting device for an internal combustion engine, characterized in that calculated by og (V 1 / V 3) .
【請求項5】 請求項3に記載の発明において、補正値
の修正は前回の補正値に修正値を加算することにより行
われることを特徴とする内燃機関の筒内圧力検出装置。
5. The in-cylinder pressure detecting device for an internal combustion engine according to claim 3, wherein the correction value is corrected by adding the correction value to a previous correction value.
【請求項6】 請求項4に記載の発明において、修正値
の修正は前回の修正値の絶対値に対し誤差の正負に応じ
た符号の1.0 未満の係数を乗算することにより行われる
ことを特徴とする内燃機関の筒内圧力検出装置。
6. The invention according to claim 4, wherein the correction of the correction value is performed by multiplying the absolute value of the previous correction value by a coefficient less than 1.0 according to the sign of the error. Pressure detecting device for an internal combustion engine.
JP24558697A 1997-09-10 1997-09-10 In-cylinder pressure measuring device Expired - Fee Related JP3979704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24558697A JP3979704B2 (en) 1997-09-10 1997-09-10 In-cylinder pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24558697A JP3979704B2 (en) 1997-09-10 1997-09-10 In-cylinder pressure measuring device

Publications (2)

Publication Number Publication Date
JPH1182148A true JPH1182148A (en) 1999-03-26
JP3979704B2 JP3979704B2 (en) 2007-09-19

Family

ID=17135943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24558697A Expired - Fee Related JP3979704B2 (en) 1997-09-10 1997-09-10 In-cylinder pressure measuring device

Country Status (1)

Country Link
JP (1) JP3979704B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126171A (en) * 2004-10-26 2006-05-18 Robert Bosch Gmbh Measuring method of combustion chamber pressure
JP2006234469A (en) * 2005-02-23 2006-09-07 Honda Motor Co Ltd Abnormality detector for cylinder pressure sensor
JP2006284533A (en) * 2005-04-05 2006-10-19 Honda Motor Co Ltd Abnormality detector for cylinder pressure sensor
JP2009079594A (en) * 2001-05-21 2009-04-16 Ricardo Consulting Eng Plc Improved engine management
JP2011017343A (en) * 2006-12-20 2011-01-27 Delphi Technologies Holding Sarl Combustion control of internal combustion engine
WO2011036743A1 (en) 2009-09-24 2011-03-31 トヨタ自動車株式会社 Control device for internal combustion engine
FR3064357A1 (en) * 2017-03-24 2018-09-28 Continental Automotive France METHOD FOR CORRECTING THE SIGNAL OF A PRESSURE SENSOR

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079594A (en) * 2001-05-21 2009-04-16 Ricardo Consulting Eng Plc Improved engine management
JP2006126171A (en) * 2004-10-26 2006-05-18 Robert Bosch Gmbh Measuring method of combustion chamber pressure
JP2006234469A (en) * 2005-02-23 2006-09-07 Honda Motor Co Ltd Abnormality detector for cylinder pressure sensor
JP2006284533A (en) * 2005-04-05 2006-10-19 Honda Motor Co Ltd Abnormality detector for cylinder pressure sensor
JP2011017343A (en) * 2006-12-20 2011-01-27 Delphi Technologies Holding Sarl Combustion control of internal combustion engine
WO2011036743A1 (en) 2009-09-24 2011-03-31 トヨタ自動車株式会社 Control device for internal combustion engine
US8744733B2 (en) 2009-09-24 2014-06-03 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
FR3064357A1 (en) * 2017-03-24 2018-09-28 Continental Automotive France METHOD FOR CORRECTING THE SIGNAL OF A PRESSURE SENSOR

Also Published As

Publication number Publication date
JP3979704B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
EP1936157B1 (en) Combustion control in an internal combustion engine
US7909018B2 (en) Control for determining a firing timing of an internal-combustion engine
US7455047B2 (en) Control unit for an internal combustion engine
US7377262B2 (en) Air-fuel ratio controlling apparatus for an engine
JPS6340268B2 (en)
JP4281445B2 (en) Control device for internal combustion engine and control method for internal combustion engine
US5474045A (en) Engine control device
JP6006228B2 (en) In-cylinder pressure sensor abnormality diagnosis device and in-cylinder pressure sensor sensitivity correction device including the same
JP5381755B2 (en) In-cylinder pressure sensor output correction device
JPH05125986A (en) Device and method for controlling engine
CA2525020C (en) A combustion state detecting apparatus for an engine
JP5229394B2 (en) Control device for internal combustion engine
JP3979704B2 (en) In-cylinder pressure measuring device
JP4375213B2 (en) Control device and control method for internal combustion engine
JP4277280B2 (en) Crank angle measuring device and measuring method
JP2000170590A (en) Control device for internal combustion engine
JP2625862B2 (en) Fuel injection amount control device for multi-cylinder internal combustion engine
JP4186163B2 (en) In-cylinder pressure measuring device and in-cylinder pressure measuring method
JP2010071107A (en) Control device for internal combustion engine
JP4269931B2 (en) In-cylinder pressure measuring device and in-cylinder pressure measuring method
JPH04314951A (en) Pressure detector for engine
JP2000352349A (en) Control system for internal combustion engine
JPH063304A (en) Air/fuel ratio detecting device for internal combustion engine
JPH0495838A (en) Detecting apparatus for internal pressure of cylinder of internal combustion engine
JPS6378037A (en) Combustion pressure detector for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070626

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees