JPH1180069A - Oxidation - Google Patents

Oxidation

Info

Publication number
JPH1180069A
JPH1180069A JP10192208A JP19220898A JPH1180069A JP H1180069 A JPH1180069 A JP H1180069A JP 10192208 A JP10192208 A JP 10192208A JP 19220898 A JP19220898 A JP 19220898A JP H1180069 A JPH1180069 A JP H1180069A
Authority
JP
Japan
Prior art keywords
oxidation step
chlorotoluene
chlorobenzaldehyde
electrochemical oxidation
manganese salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10192208A
Other languages
Japanese (ja)
Inventor
Reinhard Weigmann
ヴェイグマン レインハルド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
BASF Schweiz AG
Original Assignee
Ciba Geigy AG
Ciba Spezialitaetenchemie Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy AG, Ciba Spezialitaetenchemie Holding AG filed Critical Ciba Geigy AG
Publication of JPH1180069A publication Critical patent/JPH1180069A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/28Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/80Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C45/82Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable to produce a chlorobenzaldehyde useful as an intermediate for perfumes, fluorescent whitening agents and the like in a little consumed power and in little waste products and in a high conversion by chemically oxidizing a chlorotoluene with a specific oxidizing agent which is separately prepared. SOLUTION: This method for producing a chlorobenzaldehyde comprises chemically oxidizing (A) a chlorotoluene such as ortho- or para-chlorotoluene with (B) a trivalent manganese salt [e.g. manganese sulfate: Mn2 (SO4 )3 ] separately obtained by electrochemically oxidizing a divalent manganese salt (e.g. sulfate salt) as an oxidizing agent. The electrochemical oxidation for obtaining the component B is preferably carried out in 40-70% sulfuric acid in a total manganese salt concentration of 2-6 moles per liter of the electrolyte in an electric current density of 200-700 mA/cm<2> , while using a silver-containing lead alloy as an electrode material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】本発明は酸化方法、特にクロロトルエンを
クロロベンズアルデヒドへ酸化するための方法に関す
る。
[0001] The present invention relates to an oxidation method, in particular to a method for oxidizing chlorotoluene to chlorobenzaldehyde.

【0002】本発明によれば、第1の反応器の中でクロ
ロトルエン、好ましくは、オルトクロロトルエン(OC
T)またはパラクロロトルエン(PCT)を、酸化剤と
して第2の反応器の中で二価マンガン塩を電気化学的に
酸化することによって生成された三価マンガン塩を使用
して、化学的に酸化することを特徴とするクロロベンズ
アルデヒド、好ましくは、オルトクロロベンズアルデヒ
ド(OCB)またはパラクロロベンズアルデヒド(PC
B)の製造方法が提供される。
According to the invention, chlorotoluene, preferably orthochlorotoluene (OCC), is provided in a first reactor.
T) or parachlorotoluene (PCT) is chemically converted using a trivalent manganese salt produced by electrochemically oxidizing a divalent manganese salt in a second reactor as an oxidizing agent. Chlorobenzaldehyde characterized by oxidation, preferably ortho chlorobenzaldehyde (OCB) or parachlorobenzaldehyde (PC
The manufacturing method of B) is provided.

【0003】マンガン塩の陰イオンは任意の無機陰イオ
ンたとえばリン酸塩陰イオンでありうる。しかしなが
ら、カソードとアノードの安定性、腐食および有機反応
体または生成物に対する攻撃などの点で工程上の問題を
最も少なくする陰イオンは硫酸塩陰イオンである。した
がって本発明の方法においては、酸化剤として硫酸マン
ガンを使用するのが好ましい。
[0003] The anion of the manganese salt can be any inorganic anion, such as a phosphate anion. However, sulfate anions are the ones that minimize process problems in terms of cathode and anode stability, corrosion and attack on organic reactants or products. Therefore, in the method of the present invention, it is preferable to use manganese sulfate as the oxidizing agent.

【0004】酸化剤として硫酸マンガンを使用する好ま
しい態様におけるOCTのOCBへの化学的酸化は下記
の反応図式で示される:
[0004] The chemical oxidation of OCT to OCB in a preferred embodiment using manganese sulfate as the oxidizing agent is illustrated by the following reaction scheme:

【化1】 Embedded image

【0005】二次反応において、OCT出発物質のいく
らかは下記のごとくオルトクロロ安息香酸(OCBA)
へ酸化されるであろう:
[0005] In the secondary reaction, some of the OCT starting material is orthochlorobenzoic acid (OCBA) as follows:
Will be oxidized to:

【化2】 Embedded image

【0006】二価マンガン塩の三価マンガン塩への電気
化学的酸化は、硫酸塩を使用する好ましい態様の場合、
下記反応図式で示すことができる:
The electrochemical oxidation of a divalent manganese salt to a trivalent manganese salt, in a preferred embodiment using a sulfate,
This can be illustrated by the following reaction scheme:

【化3】 Embedded image

【0007】Mn2( SO4)3 の生成はアノードで起こ
る。アノードで起こり得る二次反応は水からの酸素の発
生(2H2 O→4H+ +O2 +4e- )ならびにOC
T、OCBおよびOCBAの水和によるCO2 とCl2
発生である。カソードで起こり得る二次反応は水素の発
生(2H+ +2e- →H2 )である。
The formation of Mn 2 (SO 4 ) 3 occurs at the anode. A possible secondary reaction at the anode is the evolution of oxygen from water (2H 2 O → 4H + + O 2 + 4e ) and OC
T, is the generation of CO 2 and Cl 2 due to hydration of OCB and OCBA. A possible secondary reaction at the cathode is the evolution of hydrogen (2H + + 2e → H 2 ).

【0008】電気化学的酸化工程は硫酸中で、特に40
乃至70%の範囲の濃度を有する硫酸中で、より好まし
くは50乃至60%の範囲の濃度を有する硫酸中で都合
よく実施される。また、電気化学的酸化工程は70乃至
100℃の範囲の温度、より好ましくは85乃至100
℃、特に好ましくは85乃至95℃の範囲の温度で実施
するのが好都合である。
The electrochemical oxidation step is carried out in sulfuric acid,
It is conveniently carried out in sulfuric acid having a concentration in the range of from 70 to 70%, more preferably in sulfuric acid having a concentration in the range of from 50 to 60%. In addition, the electrochemical oxidation step is performed at a temperature in the range of 70 to 100 ° C., more preferably 85 to 100
C., particularly preferably at a temperature in the range of from 85 to 95.degree.

【0009】電気化学的酸化工程の間の総マンガン塩の
濃度は電解質1リットルあたり2乃至6モルの範囲であ
り得、電解質1リットルあたり3乃至4モルの濃度が好
ましい。
The concentration of the total manganese salt during the electrochemical oxidation step can range from 2 to 6 moles per liter of electrolyte, with a concentration of 3 to 4 moles per liter of electrolyte being preferred.

【0010】電気化学的酸化工程で使用されるアノード
材料とカソード材料は、好ましくは同種でありそして、
たとえば、ガラス質グラファイト、鉛、鉛合金、プラチ
ナ、パラジウムまたはルテニウムでコーティングされた
ジルコニウム、またはパラジウムまたはルテニウムでコ
ーティングされたタンタルでありうる。特に好ましいの
は銀を含有する鉛合金である。
The anode and cathode materials used in the electrochemical oxidation step are preferably homogeneous and
For example, it can be vitreous graphite, lead, lead alloy, platinum, zirconium coated with palladium or ruthenium, or tantalum coated with palladium or ruthenium. Particularly preferred is a lead alloy containing silver.

【0011】電気化学的酸化工程は空気の雰囲気を備え
たセル内で実施するのが好都合である。すでに記載した
ように、電気化学的工程では爆発の可能性のある気体で
ある水素と酸素が発生するので、空気で希釈することが
爆発の危険を回避するために役立つ。これらの気体は痕
跡量の塩素を除去するため洗浄処理することができる。
[0011] The electrochemical oxidation step is conveniently carried out in a cell provided with an air atmosphere. As already mentioned, the electrochemical process produces potentially explosive gases, hydrogen and oxygen, so dilution with air helps to avoid the risk of explosion. These gases can be cleaned to remove traces of chlorine.

【0012】電気化学的酸化工程のためには不活性材料
からつくられた任意の好都合な形状の電解セルを使用す
ることができる。好ましくは、電気化学的酸化工程は、
好ましくは並列配置された、複数の電解セルの電池の中
で実施される。二極型のセルが好ましく、その中でも良
好な循環と脱ガスを保証する手段を具備しているものが
特に好ましい。
For the electrochemical oxidation step, any convenient shape of electrolytic cell made from an inert material can be used. Preferably, the electrochemical oxidation step comprises:
It is preferably carried out in a battery of a plurality of electrolysis cells arranged in parallel. Bipolar cells are preferred, among which those with means for ensuring good circulation and degassing are particularly preferred.

【0013】電気化学的酸化工程において付与される電
流密度は、たとえば、200乃至700mA/cm2であり得
る。300乃至500mA/cm2の電流密度が好ましい。
The current density applied in the electrochemical oxidation step can be, for example, between 200 and 700 mA / cm 2 . A current density of 300 to 500 mA / cm 2 is preferred.

【0014】電気化学的酸化工程における二価マンガン
の三価マンガンへの転化率は高い。80%までの転化率
が容易に達成可能である。
The conversion of divalent manganese to trivalent manganese in the electrochemical oxidation step is high. Conversions of up to 80% are easily achievable.

【0015】電気化学的酸化工程とは別途に実施される
化学的酸化工程に関しては、同じく硫酸中で実施するの
が好ましく、特に40乃至70%の濃度範囲、より好ま
しくは50乃至60%の濃度を有する硫酸中で実施する
のが好ましい。この化学的酸化工程は80乃至110℃
の範囲の温度、特に85乃至105℃の温度で実施する
のが好都合である。
The chemical oxidation step which is carried out separately from the electrochemical oxidation step is also preferably carried out in sulfuric acid, particularly in the concentration range of 40 to 70%, more preferably in the concentration range of 50 to 60%. It is preferably carried out in sulfuric acid having This chemical oxidation step is 80-110 ° C
It is expedient to carry out at a temperature in the range of in particular 85 to 105 ° C.

【0016】化学的酸化工程中の総マンガン塩の濃度は
酸化反応媒質1リットルあたり2乃至6モルでありう
る。酸化反応媒質1リットルあたり3乃至4モルの範囲
が好ましい。酸化反応媒質は水性相(硫酸)、水性相に
懸濁された固体無機マンガン塩およびOCT、OCB、
OCBAを含む有機液体相を包含する。OCT以外の付
加的有機溶剤を使用する必要はない。
The concentration of the total manganese salt during the chemical oxidation step can be from 2 to 6 moles per liter of oxidation reaction medium. The range is preferably 3 to 4 mol per liter of the oxidation reaction medium. The oxidation reaction medium is an aqueous phase (sulfuric acid), a solid inorganic manganese salt suspended in the aqueous phase and OCT, OCB,
Organic liquid phase comprising OCBA. It is not necessary to use additional organic solvents other than OCT.

【0017】化学酸化工程においては、クロロトルエン
のクロロベンズアルデヒドへの、好ましくはOCTのO
CBへの89%の転化率が容易に達成可能である。クロ
ロトルエンのクロロベンズアルデヒドへの転化の選択性
を最大にしそしてクロロ安息香酸の生成を最少にするた
めに、約30乃至50%の転化率が達成された時にクロ
ロトルエンのクロロベンズアルデヒドへの転化を中断す
るのが好ましい。本化学酸化工程ではクロロトルエン、
いくらかの水およびいくらかの電気エネルギーのみが消
費される。廃生成物は少量のクロロ安息香酸(クロロト
ルエンを基準にして約3%)と水素と痕跡量の塩素だけ
である。
In the chemical oxidation step, chlorotoluene to chlorobenzaldehyde, preferably OCT
A conversion of 89% to CB is easily achievable. To maximize the selectivity of the conversion of chlorotoluene to chlorobenzaldehyde and minimize the production of chlorobenzoic acid, the conversion of chlorotoluene to chlorobenzaldehyde is interrupted when a conversion of about 30-50% is achieved. Is preferred. In this chemical oxidation process, chlorotoluene,
Only some water and some electrical energy are consumed. The waste products are only small amounts of chlorobenzoic acid (about 3% based on chlorotoluene), hydrogen and traces of chlorine.

【0018】化学酸化工程の反応生成物混合物から所望
のクロロベンズアルデヒドを分離する操作は任意の常用
方法によって実施することができる。たとえば、カラム
抽出装置が使用できる。有機相をアルカリ洗浄して痕跡
量の硫酸を除去し、そのあと蒸留してクロロベンズアル
デヒド生成物を未反応クロロトルエンから分離すること
ができ、その未反応クロロトルエンはそのあと化学的酸
化工程に再循環することができる。
The operation of separating the desired chlorobenzaldehyde from the reaction product mixture in the chemical oxidation step can be carried out by any conventional method. For example, a column extraction device can be used. The organic phase can be washed with alkali to remove traces of sulfuric acid and then distilled to separate the chlorobenzaldehyde product from unreacted chlorotoluene, which is then recycled to the chemical oxidation step. Can circulate.

【0019】本発明の方法によって得られるクロロベン
ズアルデヒド、好ましくはOCBまたはPCBは公知化
合物でありそして広範な化学的最終製品、たとえば、香
料、蛍光増白剤、染料、紫外線吸収剤などのための中間
生成物として使用することができる。
The chlorobenzaldehydes, preferably OCB or PCB, obtained by the process of the present invention are known compounds and intermediates for a wide range of chemical end products, such as fragrances, optical brighteners, dyes, UV absorbers and the like. It can be used as a product.

【0020】以下、本発明を実施例によってさらに説明
する。
Hereinafter, the present invention will be further described with reference to examples.

【実施例】下記構成要素からなる電気化学的装置を組み
立てた:1.5リットル容量の反応器;循環ポンプ;鉛
アノードと鉛カソードを有し、そのアノードの表面積が
1平方デシメータである電気化学的セル。
EXAMPLE An electrochemical device was constructed comprising the following components: a 1.5 liter reactor; a circulating pump; an electrochemical device having a lead anode and a lead cathode, the anode having a surface area of one square decimator. Cell.

【0021】装置にMnSO4・H2 O745gとH2
4 (55%)1655gとからなる電解質2400g
を充填した。36アンペアの電流と3.1ボルトの電池
電圧を使用して85乃至90℃の温度で6.5時間電気
分解(電気化学的酸化)を実施したところMn2(SO4)
3 1704gが得られた。電流効率は55%であった。
745 g of MnSO 4 .H 2 O and H 2 S
2400 g of electrolyte consisting of 1655 g of O 4 (55%)
Was charged. The electrolysis (electrochemical oxidation) was carried out at a temperature of 85-90 ° C. for 6.5 hours using a current of 36 amps and a battery voltage of 3.1 volts, and Mn 2 (SO 4 )
3 1704 g were obtained. The current efficiency was 55%.

【0022】得られたMn2(SO4)3 の懸濁物を強力撹
拌しながらOCT315gを含有する1.5リットル容
量の反応器に導入し、この混合物を105乃至110℃
の温度にサーモスタットで調温した。1.5時間の反応
時間後のMn3+のMn2+への転化率は95%を越えるも
のであった。
The resulting suspension of Mn 2 (SO 4 ) 3 was introduced with vigorous stirring into a 1.5 liter reactor containing 315 g of OCT, and the mixture was heated to 105 ° -110 ° C.
The temperature was adjusted with a thermostat. After a reaction time of 1.5 hours, the conversion of Mn 3+ to Mn 2+ exceeded 95%.

【0023】反応後、反応混合物を傾瀉フラスコに移
し、そのフラスコの中で有機相を1時間かけて熱間傾瀉
することによって無機相から分離した。この分離効率は
99.0%であった。このあと、無機相を残留有機生成
物の濃度が400ppm 以下となるまでストリッピングし
て精製した。精製された無機相は次に電解質の初期濃度
に調整したあと、次の電気分解工程へ再循環させた。有
機相の全部(317g)をNaOH(1%)100gで
洗って真空蒸留した。これにより、OCB112gが未
反応OCTおよび残留物から分離された。OCTのOC
Bへの転化率は81.1%であり、Mn3+のOCTへの
転化率は84.4%であった。
After the reaction, the reaction mixture was transferred to a decantation flask in which the organic phase was separated from the inorganic phase by hot decanting for 1 hour. The separation efficiency was 99.0%. Thereafter, the inorganic phase was purified by stripping until the concentration of residual organic products was 400 ppm or less. The purified inorganic phase was then adjusted to the initial electrolyte concentration and then recycled to the next electrolysis step. All of the organic phase (317 g) was washed with 100 g of NaOH (1%) and distilled under vacuum. This separated 112 g of OCB from unreacted OCT and residue. OC of OC
The conversion to B was 81.1%, and the conversion of Mn 3+ to OCT was 84.4%.

【0024】同様の結果がOCTの代わりにp−クロロ
トルエン(PCT)を使用した場合にも得られた。
Similar results were obtained when p-chlorotoluene (PCT) was used instead of OCT.

Claims (28)

【特許請求の範囲】[Claims] 【請求項1】 第1の反応器の中でクロロトルエンを、
酸化剤として第2の反応器の中で二価マンガン塩を電気
化学的に酸化することによって生成された三価のマンガ
ン塩を使用して、化学的に酸化することを特徴とするク
ロロベンズアルデヒドの製造方法。
1. A chlorotoluene in a first reactor,
Chemically oxidizing a trivalent manganese salt produced by electrochemically oxidizing a divalent manganese salt in a second reactor as an oxidizing agent, wherein the chlorobenzaldehyde is chemically oxidized. Production method.
【請求項2】 クロロトルエンがオルト−またはパラ−
クロロトルエンでありそして製造されるクロロベンズア
ルデヒドがオルト−またはパラ−クロロベンズアルデヒ
ドである請求項1記載の方法。
2. Chlorotoluene is ortho- or para-
A process according to claim 1 which is chlorotoluene and the chlorobenzaldehyde produced is ortho- or para-chlorobenzaldehyde.
【請求項3】 クロロトルエンがオルト−クロロトルエ
ンでありそして製造されるクロロベンズアルデヒドがオ
ルトクロロベンズアルデヒドである請求項2記載の方
法。
3. The method of claim 2 wherein the chlorotoluene is ortho-chlorotoluene and the chlorobenzaldehyde produced is ortho chlorobenzaldehyde.
【請求項4】 マンガン塩の陰イオンが硫酸塩陰イオン
である前記請求項のいずれかに記載の方法。
4. The method according to claim 1, wherein the manganese salt anion is a sulfate anion.
【請求項5】 電気化学的酸化工程が硫酸中で実施され
る前記請求項のいずれかに記載の方法。
5. The method according to claim 1, wherein the electrochemical oxidation step is performed in sulfuric acid.
【請求項6】 電気化学的酸化工程が40乃至70%の
範囲の濃度を有する硫酸中で実施される請求項5記載の
方法。
6. The method of claim 5, wherein the electrochemical oxidation step is performed in sulfuric acid having a concentration ranging from 40 to 70%.
【請求項7】 電気化学的酸化工程が50乃至60%の
範囲の濃度を有する硫酸中で実施される請求項5記載の
方法。
7. The method of claim 5, wherein the electrochemical oxidation step is performed in sulfuric acid having a concentration in the range of 50-60%.
【請求項8】 電気化学的酸化工程が70乃至100℃
の範囲の温度で実施される前記請求項のいずれかに記載
の方法。
8. An electrochemical oxidation process at 70 to 100 ° C.
A method according to any of the preceding claims, carried out at a temperature in the range
【請求項9】 電気化学的酸化工程が85乃至95℃の
範囲の温度で実施される請求項8記載の方法。
9. The method according to claim 8, wherein the electrochemical oxidation step is performed at a temperature in the range of 85 to 95 ° C.
【請求項10】 電気化学的酸化工程の間の総マンガン
塩の濃度が電解質1リットルあたり2乃至6モルである
前記請求項のいずれかに記載の方法。
10. The method according to claim 1, wherein the concentration of the total manganese salt during the electrochemical oxidation step is between 2 and 6 mol per liter of electrolyte.
【請求項11】 電気化学的酸化工程の間の総マンガン
塩の濃度が電解質1リットルあたり3乃至4モルである
請求項9記載の方法。
11. The method according to claim 9, wherein the concentration of the total manganese salt during the electrochemical oxidation step is between 3 and 4 mol per liter of electrolyte.
【請求項12】 電気化学的酸化工程で使用されるアノ
ード材料とカソード材料が同種であって、ガラス質グラ
ファイト、鉛、鉛合金、プラチナ、パラジウムまたはル
テニウムでコーティングされたジルコニウム、またはパ
ラジウムまたはルテニウムでコーティングされたタンタ
ルである前記請求項のいずれかに記載の方法。
12. The anode and cathode materials used in the electrochemical oxidation process are of the same type and are made of vitreous graphite, lead, lead alloy, platinum, palladium or ruthenium coated zirconium, or palladium or ruthenium. The method according to any of the preceding claims, which is a coated tantalum.
【請求項13】 アノード材料とカソード材料が銀を含
有する鉛合金である請求項12記載の方法。
13. The method of claim 12, wherein the anode and cathode materials are silver-containing lead alloys.
【請求項14】 電気化学的酸化工程が空気希釈を具備
したセル内で実施される前記請求項のいずれかに記載の
方法。
14. The method according to any of the preceding claims, wherein the electrochemical oxidation step is performed in a cell with air dilution.
【請求項15】 電気化学的酸化工程が不活性材料から
つくられた電解セル中で実施される前記請求項のいずれ
かに記載の方法。
15. The method according to any of the preceding claims, wherein the electrochemical oxidation step is performed in an electrolytic cell made from an inert material.
【請求項16】 電気化学的酸化工程が並列配置された
複数の電解セルの電池中で実施される請求項15記載の
方法。
16. The method of claim 15, wherein the electrochemical oxidation step is performed in a battery of a plurality of electrolytic cells arranged in parallel.
【請求項17】 該複数の電解セルが二極型のものであ
りそして良好な循環と脱ガスを保証する手段を具備して
いる請求項16記載の方法。
17. The method of claim 16, wherein said plurality of electrolysis cells are of the bipolar type and include means for ensuring good circulation and degassing.
【請求項18】 電気化学的酸化工程の間に与えられる
電流密度が200乃至700mA/cm2である前記請求項の
いずれかに記載の方法。
18. The method according to claim 1, wherein the current density applied during the electrochemical oxidation step is between 200 and 700 mA / cm 2 .
【請求項19】 電気化学的酸化工程の間に与えられる
電流密度が300乃至500mA/cm2である請求項18記
載の方法。
19. The method of claim 18, wherein the current density provided during the electrochemical oxidation step is between 300 and 500 mA / cm 2 .
【請求項20】 化学的酸化工程が硫酸中で実施される
前記請求項のいずれかに記載の方法。
20. The method according to any of the preceding claims, wherein the chemical oxidation step is performed in sulfuric acid.
【請求項21】 化学的酸化工程が40乃至70%の範
囲の濃度を有する硫酸中で実施される請求項20記載の
方法。
21. The method according to claim 20, wherein the chemical oxidation step is performed in sulfuric acid having a concentration ranging from 40 to 70%.
【請求項22】 化学的酸化工程が45乃至60%の範
囲の濃度を有する硫酸中で実施される請求項21記載の
方法。
22. The method according to claim 21, wherein the chemical oxidation step is performed in sulfuric acid having a concentration ranging from 45 to 60%.
【請求項23】 化学的酸化工程が80乃至110℃の
範囲の温度で実施される前記請求項のいずれかに記載の
方法。
23. The method according to any of the preceding claims, wherein the chemical oxidation step is performed at a temperature in the range of 80 to 110 ° C.
【請求項24】 化学的酸化工程が85乃至105℃の
範囲の温度で実施される請求項23記載の方法。
24. The method according to claim 23, wherein the chemical oxidation step is performed at a temperature in the range of 85 to 105 ° C.
【請求項25】 化学的酸化工程の間の総マンガン塩の
濃度が酸化反応媒質1リットルあたり2乃至6モルであ
る前記請求項のいずれかに記載の方法。
25. The method according to any of the preceding claims, wherein the concentration of the total manganese salt during the chemical oxidation step is between 2 and 6 mol per liter of oxidation reaction medium.
【請求項26】 化学的酸化工程の間の総マンガン塩の
濃度が酸化反応媒質1リットルあたり3乃至4モルであ
る請求項25記載の方法。
26. The method of claim 25, wherein the concentration of the total manganese salt during the chemical oxidation step is between 3 and 4 moles per liter of the oxidation reaction medium.
【請求項27】 クロロトルエンのクロロベンズアルデ
ヒドへの転化の選択性を最大にしそしてクロロ安息香酸
の生成を最少にするために、約30乃至50%の転化率
が達成された時にクロロトルエンのクロロベンズアルデ
ヒドへの転化を中断する前記請求項のいずれかに記載の
方法。
27. To maximize the selectivity of the conversion of chlorotoluene to chlorobenzaldehyde and to minimize the production of chlorobenzoic acid, the chlorotoluene aldehyde of chlorotoluene is obtained when a conversion of about 30 to 50% is achieved. A method according to any of the preceding claims, in which the conversion to H2 is interrupted.
【請求項28】 所望のクロロベンズアルデヒドを化学
的酸化工程の反応生成物混合物から分離する分離操作を
カラム抽出装置を使用して実施し;そして有機相をアル
カリ洗浄の処理にかけて痕跡量の硫酸を除去し、そのあ
と蒸留してクロロベンズアルデヒド生成物を未反応クロ
ロトルエンから分離し、その未反応クロロトルエンはそ
のあと化学的酸化工程に再循環される前記請求項のいず
れかに記載の方法。
28. A separation operation which separates the desired chlorobenzaldehyde from the reaction product mixture of the chemical oxidation step is performed using a column extractor; and the organic phase is subjected to an alkaline wash to remove traces of sulfuric acid. A process according to any of the preceding claims, wherein the chlorobenzaldehyde product is subsequently separated by distillation from unreacted chlorotoluene, which unreacted chlorotoluene is then recycled to the chemical oxidation step.
JP10192208A 1997-07-08 1998-07-08 Oxidation Pending JPH1180069A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9714275.6A GB9714275D0 (en) 1997-07-08 1997-07-08 Oxidation process
GB9714275.6 1997-07-08

Publications (1)

Publication Number Publication Date
JPH1180069A true JPH1180069A (en) 1999-03-23

Family

ID=10815470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10192208A Pending JPH1180069A (en) 1997-07-08 1998-07-08 Oxidation

Country Status (3)

Country Link
EP (1) EP0890566A1 (en)
JP (1) JPH1180069A (en)
GB (1) GB9714275D0 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140124341A (en) * 2013-04-16 2014-10-24 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 Chrome-free methods of etching organic polymers with mixed acid solutions
JP2015518083A (en) * 2012-01-23 2015-06-25 マクダーミッド アキューメン インコーポレーテッド Etching of plastic using acidic solution containing trivalent manganese
CN105209667A (en) * 2013-03-12 2015-12-30 麦克德米德尖端有限公司 Electrolytic generation of manganese (III) ions in strong sulfuric acid
JP2016504492A (en) * 2012-11-15 2016-02-12 マクダーミッド アキューメン インコーポレーテッド Electrolytic production of manganese (III) ions in concentrated sulfuric acid

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752241B2 (en) 2012-01-23 2017-09-05 Macdermid Acumen, Inc. Electrolytic generation of manganese (III) ions in strong sulfuric acid using an improved anode
US9534306B2 (en) 2012-01-23 2017-01-03 Macdermid Acumen, Inc. Electrolytic generation of manganese (III) ions in strong sulfuric acid
CN106621695B (en) * 2016-11-21 2020-11-10 湖北绿色家园材料技术股份有限公司 Method for treating and recycling tail gas generated in benzaldehyde production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR207228A1 (en) * 1973-08-01 1976-09-22 Oxy Metal Industries Corp A METHOD OF PRODUCING P-SUBSTITUTE BENZALDEHYDE
JPS58502027A (en) * 1981-11-23 1983-11-24 バロ−ス・コ−ポレ−ション Peripherals adapted to monitor low data rate serial input/output interfaces
GB2140034B (en) * 1983-05-18 1986-07-09 Electricity Council Electrolytic oxidation of manganous ion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015518083A (en) * 2012-01-23 2015-06-25 マクダーミッド アキューメン インコーポレーテッド Etching of plastic using acidic solution containing trivalent manganese
JP2016504492A (en) * 2012-11-15 2016-02-12 マクダーミッド アキューメン インコーポレーテッド Electrolytic production of manganese (III) ions in concentrated sulfuric acid
CN105209667A (en) * 2013-03-12 2015-12-30 麦克德米德尖端有限公司 Electrolytic generation of manganese (III) ions in strong sulfuric acid
KR20140124341A (en) * 2013-04-16 2014-10-24 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 Chrome-free methods of etching organic polymers with mixed acid solutions

Also Published As

Publication number Publication date
GB9714275D0 (en) 1997-09-10
EP0890566A1 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
Kramer et al. Indirect electrolytic oxidation of some aromatic derivatives
JP2648313B2 (en) Electrolysis method
US4917781A (en) Process for preparing quaternary ammonium hydroxides
DE1468149B1 (en) PROCESS FOR THE PRODUCTION OF OLEFIN OXIDES
JP2751969B2 (en) Method for oxidizing cerium (III) ion to cerium (IV) ion, method for producing carbonyl-containing reaction product using the same, and electrochemical cell
EP0390158A2 (en) Electrolysis cell and method of use
FI74945C (en) FOERFARANDE FOER FRAMSTAELLNING AV HYDROKSIFOERENINGAR GENOM ELEKTROKEMISK REDUKTION.
Jow et al. Paired electro-oxidation. I. Production of benzaldehyde
JPH1180069A (en) Oxidation
JPS62280384A (en) Oxidation of organic compound using serium ion in aqueous trifluoromethanesulfonic acid
US4235684A (en) Process for producing glyoxalic acid by electrolytic oxidation
JP2633244B2 (en) Oxidation of organic compounds using cerium methanesulfonate in aqueous organic solutions
JP4755458B2 (en) Method for producing 2-alkyne-1-acetal
GB2030178A (en) Process for preparing alkali metal and ammonium peroxydisulphates
EP0288344B1 (en) Electrochemical process for recovery of metallic rhodium from used catalysts&#39; aqueous solutions
Huissoud et al. Electrochemical reduction of 2-ethyl-9, 10-anthraquinone (EAQ) and mediated formation of hydrogen peroxide in a two-phase medium Part II: Production of alkaline hydrogen peroxide by the intermediate electroreduction of EAQ in a flow-by porous electrode in two-phase liquid–liquid flow
JP2509206B2 (en) Cerium oxidizer
Lee et al. Paired electro-oxidation Part II: Production of anthraquinone in an undivided cell
US4387007A (en) Process for the manufacture of an aldehyde
US5466346A (en) Quinone synthesized from an aromatic compound in an undivided electrochemical cell
US6984303B2 (en) Electrochemical production of dyes using graphite felt electrodes
TW201627227A (en) Method of producing vanadyl sulfate from vanadium pentoxide
JP3806181B2 (en) Method for producing naphthalene aldehydes
JP4306859B2 (en) Process for producing 1,2-diols and equivalents thereof
JP3168954B2 (en) Method for producing hydrogen halide and oxygen