JPH1179704A - Steam reforming of hydrocarbon - Google Patents

Steam reforming of hydrocarbon

Info

Publication number
JPH1179704A
JPH1179704A JP10160746A JP16074698A JPH1179704A JP H1179704 A JPH1179704 A JP H1179704A JP 10160746 A JP10160746 A JP 10160746A JP 16074698 A JP16074698 A JP 16074698A JP H1179704 A JPH1179704 A JP H1179704A
Authority
JP
Japan
Prior art keywords
catalyst
nickel
gold
steam reforming
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10160746A
Other languages
Japanese (ja)
Other versions
JP4233633B2 (en
Inventor
Jens Hyldtoft
イエンス・ハイルドトフト
Jens Kehlet Norskov
イエンス・ケーレト・ノョルスコフ
Bjerne Steffen Clausen
ブジエルネ・シユテフエン・クラウゼン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Publication of JPH1179704A publication Critical patent/JPH1179704A/en
Application granted granted Critical
Publication of JP4233633B2 publication Critical patent/JP4233633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To prevent the deposition of carbon in a steam reforming of hydrocar bon by allowing a hydrocarbon feed to contact with a nickel-carrying catalyst containing a specific quantity of gold. SOLUTION: The carbon forming reaction generated during the steam reforming is practically decreased by allowing the supply raw material to contact with the nickel-carrying catalyst containing 0.01-30 wt.% gold calculated basing on the quantity of nickel as a reference in the addition of nickel. The gold-containing nickel catalyst is produced by impregnating or successively impregnating a carrier material with a solution containing a soluble nickel salt and a gold salt as a co-catalyst. As a salt, a chloride, a carbonate, an acetate or an oxalate is mentioned. As the carrier material, alumina, calcium aluminate or a magnesium-aluminum-spinel is mentioned. The gold-containing catalyst is arranged on the upper part position of a fixed bed of a conventional Ni-steam reforming catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の利用分野】本発明は炭化水素のスチームリフォ
ーミングによって水素および/または一酸化炭素の豊富
なガスを製造することに関する。特に本発明は、炭化水
素供給原料のスチームリフォーミングで使用する為のリ
フォーミング用金含有ニッケル触媒に関する。
FIELD OF THE INVENTION The present invention relates to the production of hydrogen and / or carbon monoxide-rich gases by steam reforming of hydrocarbons. In particular, the present invention relates to a reforming gold-containing nickel catalyst for use in steam reforming of hydrocarbon feedstocks.

【0002】[0002]

【従来の技術】水素および/または一酸化炭素の豊富な
ガスを製造する公知の方法の場合には、炭化水素とスチ
ームおよび/または二酸化炭素との混合物を高温および
高圧で、触媒、例えば活性触媒成分が主としてニッケル
より成る触媒が充填された反応器に通される。
BACKGROUND OF THE INVENTION In the known processes for producing hydrogen- and / or carbon monoxide-rich gases, mixtures of hydrocarbons with steam and / or carbon dioxide are heated at high temperatures and pressures, such as active catalysts. It is passed through a reactor packed with a catalyst whose components consist primarily of nickel.

【0003】スチームリフォーミングに適する炭化水素
供給原料は例えば天然ガス、製油所オフガス、プロパ
ン、ナフサおよび液化石油ガスである。例としてメタン
を採る場合には、行なわれる反応は次の反応式で表すこ
とができる: (1) CH4 + H2 O → CO + 3H2 (2) CH4 + CO2 → 2CO + 2H2 (3) CO + H2 O → CO2 +H2 リフォーミング反応(1)および(2)の他に、炭素を
生成するかなりの反応は次の様に生じ得る: (4) CH4 →C +2H2 (5) 2CO→C + CO2 この反応によって生成する炭素は幾つかの観点から不利
である。炭素は触媒の活性を、その活性点をブロックす
ることによって低下させる。更に炭素の生成は触媒粒子
のスポーリング(spalling) および粉末化を引き起し、
触媒床に落ちて圧力を上昇させそして反応器を閉塞させ
てリフォーミング操作の停止を引き起こす。
[0003] Hydrocarbon feedstocks suitable for steam reforming are, for example, natural gas, refinery offgas, propane, naphtha and liquefied petroleum gas. In the case of taking methane as an example, the reaction performed can be represented by the following reaction formula: (1) CH 4 + H 2 O → CO + 3H 2 (2) CH 4 + CO 2 → 2CO + 2H 2 (3) CO + H 2 O → CO 2 + H 2 Reforming reactions In addition to (1) and (2), significant reactions that produce carbon can occur as follows: (4) CH 4 → C + 2H 2 (5) 2CO → C + CO 2 The carbon generated by this reaction is disadvantageous from several viewpoints. Carbon reduces the activity of the catalyst by blocking its active sites. Furthermore, the formation of carbon causes spalling and pulverization of the catalyst particles,
Dropping into the catalyst bed raises the pressure and closes the reactor, causing the reforming operation to stop.

【0004】プロセスガス中の水蒸気:炭化水素−比を
増すことによってまたは供給原料の分子量を減らすこと
によって炭素生成の潜在性を低減させて、炭素の生成を
防止することは熟知されている。 しかしながら水蒸気:炭化水素−比の増加は一酸化炭素
を超えて二酸化炭素に変わることによりCOの収率低下
をもたらす。それ故に所望の生成比でのCO/H2-生成
を維持するためには、多量の触媒および供給原料が必要
とされ、このことはリフォーミング工程の経済性を低下
させる。
It is well known to reduce the potential for carbon formation by increasing the water vapor: hydrocarbon ratio in the process gas or by reducing the molecular weight of the feedstock to prevent carbon formation. However, an increase in the steam: hydrocarbon ratio leads to a reduction in CO yield by converting to carbon dioxide over carbon monoxide. Therefore, large amounts of catalyst and feed are required to maintain CO / H 2 -production at the desired production ratio, which reduces the economics of the reforming process.

【0005】最適なスチーム:炭化水素−比に影響を及
ぼすことなく炭素の析出を回避する種々の試みがされて
来た。高い還元ポテンシャルを持つ還元ガスを製造する
リフォーミング工程の間に炭素が生成するのを防止する
方法が英国特許第2、015、027号明細書に開示さ
れている。この方法によるとメタンの豊富な供給ガス
を、該供給ガス中に硫黄または硫黄化合物2〜10pp
m(容量)が存在するもとでニッケル担持触媒でリフォ
ーミングする。これによって硫黄の存在が炭素の生成を
低減させ、そして一酸化炭素および水素を生成するため
の、触媒のリフォーミング活性を十分に保証する。
Various attempts have been made to avoid carbon deposition without affecting the optimal steam: hydrocarbon ratio. A method for preventing the formation of carbon during the reforming step to produce a reducing gas having a high reduction potential is disclosed in GB 2,015,027. According to this method, a methane-rich feed gas is contained in the feed gas with 2-10 pp of sulfur or sulfur compounds.
Reforming with a nickel-supported catalyst in the presence of m (capacity). The presence of sulfur thereby reduces the production of carbon and sufficiently guarantees the reforming activity of the catalyst for producing carbon monoxide and hydrogen.

【0006】更に、炭素の析出を低減させる数種類の触
媒が過去で提案されている。一般に炭素の析出を抑制す
る効果を示す従来技術の触媒は主としてニッケルとアル
カリ助触媒とより成る。助触媒としてアルカリを含む触
媒の欠点は活性が低いこと、および触媒の作用下にアル
カリ助触媒の移動および蒸発を引き起こすアルカリ金属
の可動性にある。
In addition, several types of catalysts that reduce carbon deposition have been proposed in the past. Prior art catalysts that generally exhibit the effect of suppressing carbon deposition mainly consist of nickel and an alkaline promoter. The disadvantages of catalysts containing alkali as co-catalyst are the low activity and the mobility of the alkali metal which causes the movement and evaporation of the alkali co-catalyst under the action of the catalyst.

【0007】アルカリ金属を含まない触媒が米国特許第
3、926、583号明細書で提案されており、それに
よるとニッケル−、鉄−またはコバルト系リフォーミン
グ触媒はマグネシウム−アルミニウム−スピネルとニッ
ケル、鉄またはコバルトの酸化物の混合固体層との均質
混合物を還元することによって製造され、そして米国特
許第3、791、993号明細書にはニッケル、鉄また
はコバルト、酸化マグネシウム−リフォーミング触媒が
開示されている。他の助触媒が従来には提案されて来
た。米国特許第4、060、498号明細書には、耐熱
性の酸化物担体に担持された、銀を助触媒とするニッケ
ル触媒を用いるスチームリフォーミング法が開示されて
いる。更にヨーロッパ特許第470、626号明細書に
は、炭素の生成を抑制する周期律表第IVaおよびVa族
の元素の作用効果が説明されている。金属ニッケルの量
を基準として計算して0.1〜30重量%の量のゲルマ
ニウム、錫、鉛、砒素、アンチモンおよびビスマスがニ
ッケル含有触媒に含まれている。
An alkali metal-free catalyst has been proposed in US Pat. No. 3,926,583, in which a nickel-, iron- or cobalt-based reforming catalyst comprises magnesium-aluminum-spinel and nickel, Produced by reducing a homogeneous mixture of iron or cobalt oxides with a mixed solid layer, and US Pat. No. 3,791,993 discloses nickel, iron or cobalt, magnesium oxide-reforming catalysts Have been. Other cocatalysts have been proposed in the past. U.S. Pat. No. 4,060,498 discloses a steam reforming method using a nickel catalyst supported on a heat-resistant oxide carrier and using silver as a co-catalyst. Furthermore, EP 470,626 describes the effects of elements of groups IVa and Va of the Periodic Table which suppress the formation of carbon. Germanium, tin, lead, arsenic, antimony and bismuth are included in the nickel-containing catalyst in an amount of 0.1 to 30% by weight, calculated based on the amount of metallic nickel.

【0008】周期律表第Ib族の元素はこの特許では含
まれておらず、この文献では、金を添加することが炭素
の生成にもリフォーミング活性にも作用しないことが記
載されている[Mono and bi-metallic catalysts for st
eam reforming (スチームリフォーミングのための一成
分金属−または二成分金属触媒) 、Isar Ul Haque のP
h.D. 論文、University of New South Wales 、1990]
[0008] Elements of Group Ib of the Periodic Table are not included in this patent, and this document states that the addition of gold has no effect on carbon formation or reforming activity [ Mono and bi-metallic catalysts for st
eam reforming (a one-component or two-component catalyst for steam reforming), P of Isar Ul Haque
hD dissertation, University of New South Wales, 1990]
.

【0009】最近のSTM研究 [L.P. Nielsen等、Phy
s. Rev. Lett. 71(1993) 754]は、金とニッケルの両方
の元素は塊状では混和しないのに、金がニッケル単結晶
の表面で合金を形成し得ることを示している。更に密度
機能理論(density functionaltheory) を用いる計算
は、少量の金の添加が隣接ニッケル原子の反応性を変え
ることを予想させる[P.Kratzer等、J.Chem. Phys.105
(13)(1996) 5595] 。少量の金で促進されるニッケル単
結晶の分子ビーム研究でこのことが確認された[P.M.Hol
mbald 等、"J. Chem. Phy.",104 (1996) 7289].
Recent STM studies [LP Nielsen et al., Phy
s. Rev. Lett. 71 (1993) 754] shows that gold can form an alloy on the surface of a nickel single crystal, although both elements, gold and nickel, are immiscible in bulk. Furthermore, calculations using density functional theory predict that the addition of small amounts of gold will alter the reactivity of neighboring nickel atoms [P. Kratzer et al., J. Chem. Phys. 105
(13) (1996) 5595]. Molecular beam studies of nickel single crystals promoted by small amounts of gold confirm this [PMHol
mbald et al., "J. Chem. Phy.", 104 (1996) 7289].

【0010】[0010]

【発明が解決しようとする課題】従って本発明の課題
は、炭化水素のスチームリフォーミングにおいて炭素が
析出するのを防止することである。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to prevent the deposition of carbon during the steam reforming of hydrocarbons.

【0011】[0011]

【課題を解決するための手段】本発明者は、ニッケル含
有触媒に少量の金を添加することが炭化水素のスチーム
リフォーミングの間に炭素が析出するのを抑制する触媒
をもたらすことを見出した。金はニッケル触媒の触媒活
性を低下させるけれども、この触媒はスチームリフォー
ミングにとってなお十分な活性を示す。EXAFSは、
金がニッケル表面に局所的に位置することを確認してい
る(Annual Report from HASYLAB, 1996) 。
SUMMARY OF THE INVENTION The present inventors have found that the addition of small amounts of gold to nickel-containing catalysts results in a catalyst that suppresses carbon deposition during hydrocarbon steam reforming. . Although gold reduces the catalytic activity of the nickel catalyst, this catalyst still shows sufficient activity for steam reforming. EXAFS is
It has been confirmed that gold is locally located on the nickel surface (Annual Report from HASYLAB, 1996).

【0012】上述の発見に基づいて、本発明の一般的実
施態様は、炭素を生成することなく炭素系供給原料を接
触的にスチームリフォーミングする方法において、スチ
ームリフォーミングの間に生じる炭素形成反応を、触媒
中のニッケルの量を基準として計算して0.01〜30
重量%の量の金をニッケルの他に含有するニッケル担持
触媒に供給原料を接触させることによって実質的に低減
させることを特徴とする、上記方法に関する。
Based on the above findings, a general embodiment of the present invention relates to a method for catalytically reforming a carbon-based feedstock without producing carbon, wherein the carbon-forming reaction which occurs during steam reforming is described. Is calculated to be 0.01 to 30 based on the amount of nickel in the catalyst.
Such a process is characterized in that the feed is substantially reduced by contacting the feed with a nickel-supported catalyst containing, in addition to nickel, an amount by weight of gold.

【0013】触媒中に混入される金の量はニッケル表面
積に左右されるであろう。金含有ニッケル触媒は、可溶
性ニッケル塩および助触媒の金の塩を含有する溶液で担
体物質を一緒に含浸処理するかまたは順次含浸処理する
ことによって製造することができる。適する塩には塩化
物、硝酸塩、炭酸塩、醋酸塩または蓚酸塩がある。
[0013] The amount of gold incorporated into the catalyst will depend on the nickel surface area. Gold-containing nickel catalysts can be prepared by co-impregnation or sequential impregnation of the carrier material with a solution containing a soluble nickel salt and a co-catalyst gold salt. Suitable salts include chloride, nitrate, carbonate, acetate or oxalate.

【0014】担体物質はアルミナ、マグネシア、チタニ
ア、シリカ、ジルコニア、ベリリア、トリア、ランタニ
ア、酸化カルシウムおよびそれらの化合物またはそれら
の混合物より成る群から選択される。有利な物質にはア
ルミナ、アルミン酸カルシウムおよびマグネシウム−ア
ルミニウム−スピネルがある。こうして得られる助触媒
含有触媒は水素および/または一酸化炭素の豊富なガス
をメタンまたはより高級な炭化水素のスチームリフォー
ミングによって製造する際に使用することができる。
[0014] The support material is selected from the group consisting of alumina, magnesia, titania, silica, zirconia, beryllia, thoria, lanthania, calcium oxide, and compounds or mixtures thereof. Preferred materials include alumina, calcium aluminate and magnesium-aluminum-spinel. The resulting catalyst containing cocatalyst can be used in the production of a gas rich in hydrogen and / or carbon monoxide by steam reforming of methane or higher hydrocarbons.

【0015】水素および/または一酸化炭素の豊富な、
得られたガスは多くの方法で使用することができる。水
素は世界中で精油所において使用されており、一方水素
と一酸化炭素との混合物は、例えば酸素化された炭化水
素および合成燃料の合成で使用される。水素の豊富なガ
スの重要な用途はアンモニアおよびメタノールの製造で
ある。
Enriched in hydrogen and / or carbon monoxide,
The resulting gas can be used in many ways. Hydrogen is used in refineries worldwide, while mixtures of hydrogen and carbon monoxide are used, for example, in the synthesis of oxygenated hydrocarbons and synthetic fuels. An important use of the hydrogen-rich gas is in the production of ammonia and methanol.

【0016】ニッケル−金触媒は一般に、トップ供給型
管状リフォーミング反応器で固定床として配置されてい
る。プロセス条件次第で、炭素を生成する潜在性は一般
に管中の上層で最も高い。それ故に、慣用のニッケル−
スチームリフォーミング触媒の固定床の上部位置に層と
してニッケル−金触媒を配置することで十分であり得
る。これによってニッケル−金触媒層は好ましくは触媒
床の5%〜50%を構成する。
The nickel-gold catalyst is generally arranged as a fixed bed in a top fed tubular reforming reactor. Depending on the process conditions, the potential to produce carbon is generally highest in the upper layers in the tube. Therefore, conventional nickel-
It may be sufficient to place the nickel-gold catalyst as a layer above the fixed bed of the steam reforming catalyst. Thereby, the nickel-gold catalyst layer preferably comprises 5% to 50% of the catalyst bed.

【0017】本発明を以下の実施例によって更に詳細に
説明する。
The present invention will be described in more detail by the following examples.

【0018】[0018]

【実施例】実施例1 スチームリフォーミング活性:17重量%のニッケルを
含有し、かつ色々な含有量で金を含有する一連のニッケ
ル/金−触媒サンプルを、スピネル担体に硝酸ニッケル
およびテトラアンミン金硝酸塩[Au(NH3)4](NO3)3で順次
含浸処理することによって製造する。金前駆体で含浸処
理する前に硝酸ニッケルを分解する。乾燥後に、触媒ペ
レットは反応器に導入されそして流動する水素中で大気
圧において350℃に加熱する間に活性化される。
EXAMPLE 1 Steam Reforming Activity: A series of nickel / gold-catalyst samples containing 17% by weight of nickel and varying amounts of gold were loaded on a spinel support with nickel nitrate and tetraammine gold nitrate. It is manufactured by sequentially impregnating with [Au (NH 3 ) 4 ] (NO 3 ) 3 . Decompose nickel nitrate before impregnation with gold precursor. After drying, the catalyst pellets are introduced into the reactor and activated while heating to 350 ° C. at atmospheric pressure in flowing hydrogen.

【0019】 スチームリフォーミング活性は次の条件のもとで測定される: 触媒粒度 (mm) 4×4 触媒量 (g) 0.2 温度 (℃) 400〜650℃ 供給ガス組成(NL/h) CH4 2 O 4.0 H2 16.0 1.6 550℃で得られる活性を表1に示す。The steam reforming activity is measured under the following conditions: catalyst particle size (mm) 4 × 4 catalyst amount (g) 0.2 temperature (° C.) 400-650 ° C. feed gas composition (NL / h) ) CH 4 H 2 O 4.0 H 2 16.0 1.6 The activity obtained at 550 ° C. is shown in Table 1.

【0020】 表1から判る通り、純粋のニッケル触媒に比較して金含
有ニッケル触媒ではスチームリフォーミング活性に僅か
な低下がある。
[0020] As can be seen from Table 1, there is a slight decrease in steam reforming activity with the gold-containing nickel catalyst as compared to the pure nickel catalyst.

【0021】実施例2 TGA測定 実施例1で製造されたリフォーミング触媒でのブタンの
スチームリフォミング下での炭素の析出速度を、450
℃〜550℃の間の色々な温度について重量分析的に測
定する。温度は0.5℃/分の速度で上昇させる。オン
ライン微量天秤に連結された加熱された管状反応器を備
えた慣用の実験装置を測定に使用する。一つの触媒ペレ
ット(0.1g)を微量天秤の一方のアームから吊るし
たバスケットに置く。触媒ペレットの上を通過する供給
流の全流量および濃度を以下に示す: 全流量 21.82NL/h ブタン 3.76容量% スチーム 22.91容量% 水素 4.58容量% 窒素 68.74容量% 上記の条件での炭素の生成速度は、色々な温度(℃・1
000)で析出される炭素の量[μg(炭素)/g(触
媒)・100]を示す図1で予測される:実施例1で製
造された触媒2を、実施例1でも製造された慣用のニッ
ケルリフォーミング触媒と比較する。
Example 2 TGA Measurement The rate of carbon deposition under steam reforming of butane on the reforming catalyst prepared in Example 1 was 450
It is measured gravimetrically for various temperatures between 550C and 550C. The temperature is increased at a rate of 0.5 ° C./min. Conventional laboratory equipment with a heated tubular reactor connected to an online microbalance is used for the measurements. One catalyst pellet (0.1 g) is placed in a basket suspended from one arm of a microbalance. The total flow and concentration of the feed stream passing over the catalyst pellets are as follows: total flow 21.82 NL / h butane 3.76 vol% steam 22.91 vol% hydrogen 4.58 vol% nitrogen 68.74 vol% Under the above conditions, the rate of carbon formation varies with the temperature (° C./1
000), which is predicted in FIG. 1 which shows the amount of carbon deposited [μg (carbon) / g (catalyst) · 100]: the catalyst 2 produced in Example 1 is replaced by the conventional In comparison with the nickel reforming catalyst.

【0022】図から明らかな通り、本発明の触媒は、ス
チームリフォーミングの間に著しく改善された炭素生成
阻止性を示す。
As can be seen, the catalysts of the present invention exhibit significantly improved carbon formation inhibition during steam reforming.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は実施例1で製造された触媒について測定
した炭素の生成速度を図示している。
FIG. 1 illustrates the rate of carbon formation measured for the catalyst prepared in Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ブジエルネ・シユテフエン・クラウゼン デンマーク国、2950ベッドバック、トレー レョド、ヘプイエルクベエイ、14 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Buzielne Schyutehuen Klausen Denmark, 2950 Bedback, Trejord, Hepuierkubey, 14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 触媒中のニッケルの量を基準として計算
して0.01〜30重量%の量で金を別に含有するニッ
ケル担持触媒に供給原料を接触させ、そしてその金が固
体炭素の生成を抑制するために存在することを特徴とす
る、改善された炭素生成阻止性のある、炭素質供給原料
の接触的スチームリフォーミング法。
1. A feedstock is contacted with a nickel-supported catalyst separately containing gold in an amount of 0.01 to 30% by weight, calculated based on the amount of nickel in the catalyst, and the gold forms solid carbon. Process for the catalytic steam reforming of carbonaceous feedstocks, characterized in that it is present in order to control carbon production.
【請求項2】 金の量が触媒の全重量を基準として0.
001〜10重量%である請求項1に記載の方法。
2. The amount of gold, based on the total weight of the catalyst, is between 0.
The method according to claim 1, wherein the amount is from 001 to 10% by weight.
【請求項3】 金含有のニッケル触媒が慣用のニッケル
系スチームリフォーミング触媒の固定床に上層として配
置されている請求項1に記載の方法。
3. The method of claim 1, wherein the gold-containing nickel catalyst is disposed as an upper layer on a fixed bed of a conventional nickel-based steam reforming catalyst.
【請求項4】 前記上層が全触媒床の5%〜50%を構
成する請求項3に記載の方法。
4. The method of claim 3, wherein said top layer comprises 5% to 50% of the total catalyst bed.
JP16074698A 1997-06-10 1998-06-09 Hydrocarbon steam reforming process Expired - Fee Related JP4233633B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK199700683A DK174077B1 (en) 1997-06-10 1997-06-10 Process for hydrocarbon vapor reforming using a gold-containing nickel vapor reforming catalyst
DK0683/97 1997-06-10

Publications (2)

Publication Number Publication Date
JPH1179704A true JPH1179704A (en) 1999-03-23
JP4233633B2 JP4233633B2 (en) 2009-03-04

Family

ID=8096355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16074698A Expired - Fee Related JP4233633B2 (en) 1997-06-10 1998-06-09 Hydrocarbon steam reforming process

Country Status (12)

Country Link
US (1) US5997835A (en)
EP (1) EP0884274B1 (en)
JP (1) JP4233633B2 (en)
KR (1) KR100508792B1 (en)
CN (1) CN1130305C (en)
AU (1) AU738898B2 (en)
CA (1) CA2239843C (en)
DE (1) DE69818748T2 (en)
DK (1) DK174077B1 (en)
ES (1) ES2209002T3 (en)
NO (1) NO321201B1 (en)
NZ (1) NZ330609A (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK173897B1 (en) * 1998-09-25 2002-02-04 Topsoe Haldor As Process for autothermal reforming of a hydrocarbon feed containing higher hydrocarbons
EP1209121A1 (en) 2000-11-22 2002-05-29 Haldor Topsoe A/S Process for the catalytic oxidation of carbon monoxide and/or methanol
JP4098508B2 (en) * 2001-08-20 2008-06-11 財団法人 ひろしま産業振興機構 Method for producing catalyst for reacting hydrocarbon and water vapor, and method for producing hydrogen from hydrocarbon using the catalyst
DE10219723B4 (en) 2002-05-02 2005-06-09 Uhde Gmbh Process for the preparation of unsaturated halogen-containing hydrocarbons and device suitable therefor
US6911161B2 (en) * 2002-07-02 2005-06-28 Conocophillips Company Stabilized nickel-containing catalysts and process for production of syngas
EP1578688A2 (en) * 2002-12-20 2005-09-28 Honda Giken Kogyo Kabushiki Kaisha Catalyst formulations for hydrogen generation
US7744849B2 (en) 2002-12-20 2010-06-29 Honda Giken Kogyo Kabushiki Kaisha Platinum-alkali/alkaline-earth catalyst formulations for hydrogen generation
US7160533B2 (en) 2002-12-20 2007-01-09 Honda Giken Kogyo Kabushiki Kaisha Platinum-ruthenium containing catalyst formulations for hydrogen generation
JP2006511333A (en) * 2002-12-20 2006-04-06 本田技研工業株式会社 Alkali-containing catalyst formulation for hydrogen production at medium and low temperatures
JP2006511425A (en) * 2002-12-20 2006-04-06 本田技研工業株式会社 Platinum-free ruthenium-cobalt catalyst formulation for hydrogen generation
JP2006511331A (en) * 2002-12-20 2006-04-06 本田技研工業株式会社 Method for producing catalyst for hydrogen production
US7270798B2 (en) * 2002-12-20 2007-09-18 Honda Giken Kogyo Kabushiki Kaisha Noble metal-free nickel catalyst formulations for hydrogen generation
EP1578529A2 (en) * 2002-12-20 2005-09-28 Honda Giken Kogyo Kabushiki Kaisha Platinum and rhodium and/or iron containing catalyst formulations for hydrogen generation
DE10319811A1 (en) 2003-04-30 2004-11-18 Uhde Gmbh Device for coupling electromagnetic radiation into a reactor and reactor containing this device
DE602004009993T2 (en) * 2003-06-12 2008-02-28 Topsoe Fuel Cell A/S Fuel cell and anode
US7829035B2 (en) 2006-01-19 2010-11-09 Massachusetts Institute Of Technology Oxidation catalyst
US20100068130A1 (en) * 2008-09-17 2010-03-18 Frederick Carl Wilhelm Process for the Production of Hydrogen Gas Employing a Thermally Stable Catalyst
US20100147749A1 (en) * 2008-12-11 2010-06-17 American Air Liquide, Inc. Multi-Metallic Catalysts For Pre-Reforming Reactions
FR2949077B1 (en) 2009-08-17 2011-07-22 Inst Francais Du Petrole PROCESS FOR THE PREPARATION OF A NI-BASED CATALYST AND A GROUP IB METAL FOR SELECTIVE HYDROGENATION OF POLYUNSATURATED HYDROCARBONS
FR2949078B1 (en) 2009-08-17 2011-07-22 Inst Francais Du Petrole PROCESS FOR PREPARING NI / SN-SUPPORTED CATALYST FOR SELECTIVE HYDROGENATION OF POLYUNSATURATED HYDROCARBONS
US9079167B2 (en) * 2011-02-07 2015-07-14 Toyota Jidosha Kabushiki Kaisha NOx purification catalyst
CN106486682B (en) * 2016-09-27 2020-07-14 上海交通大学 Spherical nuclear shell PdxNi1-x@ Pt/C catalyst and preparation thereof
CN114308061B (en) * 2020-09-29 2023-08-22 中国科学院大连化学物理研究所 NiAu bimetallic alloy nano-catalyst and synthesis and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1032754A (en) * 1962-12-17 1966-06-15 Ici Ltd Improvements in or relating to the steam reforming of hydrocarbons and catalysts therefor
GB1182829A (en) * 1967-06-12 1970-03-04 Haldor Frederik Axel Topsoe Improvements in or relating to Nickel Catalysts.
US3926583A (en) * 1967-06-12 1975-12-16 Haldor Topsoe As Process for the catalytic steam reforming of hydrocarbons
US3666412A (en) * 1968-10-21 1972-05-30 Du Pont Dispersed phase activated and stabilized metal catalysts
US4060498A (en) * 1972-06-02 1977-11-29 Hitachi, Ltd. Process for steam reforming of hydrocarbons
GB2015027B (en) * 1978-02-03 1982-06-23 Haldor Topsoe As Reforming process
DK166995B1 (en) * 1990-08-09 1993-08-16 Topsoe Haldor As CATALYST FOR VAPOR REFORM OF CARBON HYDROIDS AND USE IN THE PREPARATION OF HYDROGEN AND / OR CARBON MONOXIDE-rich gases

Also Published As

Publication number Publication date
KR100508792B1 (en) 2005-11-25
NO982649D0 (en) 1998-06-09
CA2239843A1 (en) 1998-12-10
EP0884274A1 (en) 1998-12-16
US5997835A (en) 1999-12-07
DK174077B1 (en) 2002-05-21
AU6998098A (en) 1998-12-17
MX9804630A (en) 1998-12-31
NO321201B1 (en) 2006-04-03
CN1211560A (en) 1999-03-24
DE69818748D1 (en) 2003-11-13
KR19990006806A (en) 1999-01-25
DK68397A (en) 1998-12-11
NO982649L (en) 1998-12-11
CA2239843C (en) 2008-01-15
JP4233633B2 (en) 2009-03-04
AU738898B2 (en) 2001-09-27
EP0884274B1 (en) 2003-10-08
CN1130305C (en) 2003-12-10
ES2209002T3 (en) 2004-06-16
DE69818748T2 (en) 2004-08-05
NZ330609A (en) 1999-10-28

Similar Documents

Publication Publication Date Title
JPH1179704A (en) Steam reforming of hydrocarbon
JP3329839B2 (en) Catalyst for steam reforming of hydrocarbons
JP5592250B2 (en) Catalytic hydrogenation of carbon dioxide to synthesis gas.
JP2812486B2 (en) Hydrocarbon steam reforming method
JP2013223864A (en) Catalyst and method for converting natural gas to higher carbon compound
WO2004058387A2 (en) Iron-based fischer-tropsch catalysts and methods of making and using
Van Looij et al. Mechanism of the partial oxidation of methane to synthesis gas on a silica-supported nickel catalyst
US3979332A (en) High temperature methanation with molten salt-based catalyst systems
KR20130028024A (en) Reforming catalyst for manufacturing synthesis gas, method for manufacturing synthesis gas using the same, and reactor for manufacturing synthesis gas
US4215998A (en) Catalyst and process for production of methane-containing gases
US4045461A (en) High temperature methanation with molten salt-based catalyst systems
JPS5948140B2 (en) Catalyst for steam reforming of hydrocarbons
US4196100A (en) Catalyst useful for methanation and preparation thereof
JP2010149109A (en) Catalyst for producing high calorie gas, production method therefor, and method for producing high calorie gas using catalyst for producing high calorie gas
JP5207755B2 (en) Method for producing hydrocarbon reforming catalyst
EP0030151B1 (en) Hydrogen cyanide manufacturing process
JP2683531B2 (en) Hydrocarbon steam reforming method
US20170157595A1 (en) Novel catalyst for the water gas shift reaction
MXPA98004630A (en) Process for reforming with hydrocarbon steam
US20050169835A1 (en) Process for the treatment of methane/carbon dioxide mixtures
CN116322981A (en) Catalyst for producing hydrogen and/or synthesis gas, method for obtaining same and use in steam reforming process
Wang Gold Catalyst in PROX: The Role of Dopant and Reaction Exothermicity
JPS6221721B2 (en)
JPH11300205A (en) Catalyst for production of synthetic gas and production of synthetic gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080610

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees