JPH1179702A - Reforming of methanol - Google Patents

Reforming of methanol

Info

Publication number
JPH1179702A
JPH1179702A JP9255997A JP25599797A JPH1179702A JP H1179702 A JPH1179702 A JP H1179702A JP 9255997 A JP9255997 A JP 9255997A JP 25599797 A JP25599797 A JP 25599797A JP H1179702 A JPH1179702 A JP H1179702A
Authority
JP
Japan
Prior art keywords
reforming
catalyst
gas
temperature
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9255997A
Other languages
Japanese (ja)
Other versions
JP3546658B2 (en
Inventor
Susumu Nagano
進 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP25599797A priority Critical patent/JP3546658B2/en
Publication of JPH1179702A publication Critical patent/JPH1179702A/en
Application granted granted Critical
Publication of JP3546658B2 publication Critical patent/JP3546658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a reforming method of methanol by which a reforming catalyst can be maintained in a highly active state and methanol can be reformed at a high efficiency for a long time. SOLUTION: A reformed gas containing hydrogen gas and carbonic acid gas is produced by the reforming reaction of methanol in the presence of a reforming catalyst. In this method, when the reforming catalyst deteriorates to a preliminarily determined deterioration degree, air is supplied to the reforming catalyst to regenerate. Then the reforming process is again carried out. These operation of reforming and regenerating are repeated to produce a reformed gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,水素燃料電池,各種有機化合物
の水素化,或いは各種工業用等に用いられる水素ガスを
製造するためのメタノールの改質方法,特にそれに用い
る改質触媒の賦活,再生方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reforming methanol for producing hydrogen gas used for hydrogen fuel cells, various organic compounds, or various industrial uses, and more particularly, activation and regeneration of a reforming catalyst used therefor. About the method.

【0002】[0002]

【従来技術】メタノール改質方法は,近年,特に自動車
搭載用の水素燃料電池に適用すべく,種々の研究開発が
行なわれている。メタノール改質方法は,気相によりメ
タノールと水とを改質触媒の存在下で反応させる改質反
応操作を行ない,水素ガスと炭酸ガスとからなる改質ガ
スを製造する方法である。
2. Description of the Related Art In recent years, various researches and developments have been made on a methanol reforming method, particularly for application to a hydrogen fuel cell mounted on an automobile. The methanol reforming method is a method of producing a reformed gas composed of hydrogen gas and carbon dioxide gas by performing a reforming reaction operation of reacting methanol and water in the gas phase in the presence of a reforming catalyst.

【0003】そして,上記改質触媒としては,酸化銅
(CuO)と酸化亜鉛(ZnO)とアルミナ(Al2
3 )とからなる混合酸化物が用いられている。また,上
記改質反応操作は,通常200〜300℃で行なわれ
る。また,上記従来の改質方法においては,一般に上記
改質反応操作の初期は改質触媒の活性が大きいために比
較的低温度で反応を行ない,活性低下と共に反応温度を
上昇させている。
[0003] As the reforming catalyst, copper oxide (CuO), zinc oxide (ZnO), and alumina (Al 2 O) are used.
3 ) is used. The above-mentioned reforming reaction operation is usually performed at 200 to 300 ° C. In addition, in the above-mentioned conventional reforming method, the reaction is generally performed at a relatively low temperature in the early stage of the reforming reaction operation because the activity of the reforming catalyst is large, and the reaction temperature is raised as the activity decreases.

【0004】[0004]

【解決しようとする課題】しかしながら,このような昇
温方式を採用すると,高温になるに従って改質触媒の破
砕が生じ易く,そのため触媒層に目づまりが発生して,
触媒層内の圧力損失が大きくなる。そのため,かかる圧
力損失により,生産効率が低下する。また,上記昇温操
作に伴い,大きな加熱エネルギーを必要とする。
[Problems to be Solved] However, if such a temperature raising method is adopted, the reforming catalyst is liable to be crushed as the temperature becomes higher, so that the catalyst layer is clogged.
The pressure loss in the catalyst layer increases. Therefore, such pressure loss reduces production efficiency. In addition, a large heating energy is required for the above-mentioned temperature raising operation.

【0005】そこで,従来は,かかる生産効率,総合熱
効率,それに伴うコストアップを考慮して,適当な段階
で改質触媒を交換している。しかし,かかる改質触媒交
換のためには,反応タンクからの古い改質触媒の取り出
し,清掃,反応タンクへの新しい改質触媒の充填等に長
期間を必要とする。また,その間,改質反応操作は全く
行なえず,改質ガスを製造することができない。かかる
状態では,例えばメタノール改質装置を自動車に搭載し
て,それから得られる水素ガスを水素燃料電池に使用す
る場合,自動車使用に大きな障害となる。
Therefore, conventionally, the reforming catalyst is replaced at an appropriate stage in consideration of the production efficiency, the overall thermal efficiency, and the accompanying cost increase. However, in order to exchange such a reforming catalyst, it takes a long time to remove the old reforming catalyst from the reaction tank, clean it, and fill the reaction tank with a new reforming catalyst. In the meantime, the reforming reaction operation cannot be performed at all, and the reformed gas cannot be produced. In such a state, for example, when a methanol reformer is mounted on a vehicle and hydrogen gas obtained from the device is used for a hydrogen fuel cell, it becomes a major obstacle to use of the vehicle.

【0006】かかる問題を解決するために,特開昭62
−36001号公報では間欠的に燃料ガス,改質ガスと
酸素を触媒中に20時間にわたり共存させ,活性を回復
する方法を提案している。しかし,この場合には,改質
反応中に酸素が共存しても,劣化を止めることはできな
かった。これについては,後述の実施例4で示す。
To solve such a problem, Japanese Patent Laid-Open No.
Japanese Patent Publication No. 36001 proposes a method for intermittently coexisting fuel gas, reformed gas and oxygen in a catalyst for 20 hours to recover the activity. However, in this case, even if oxygen coexisted during the reforming reaction, the deterioration could not be stopped. This will be described in a fourth embodiment described later.

【0007】また。特開平4−200640号公報で
は,改質触媒を120℃〜650℃にて分子状酸素濃度
5モル%以下の雰囲気に付することを提案している。ま
た,特開平9−75734号公報では,改質触媒を
(1)水素含有ガスによる前処理,(2)酸素合有ガス
による酸化処理,及び(3)還元性ガスにより再生処理
をすること提案している。しかしながら,上記2者の処
理をするには,酸素濃度や水素濃度を規定した特別のガ
ス供給装置をもつ必要が有る。
[0007] Also. Japanese Patent Application Laid-Open No. 4-200640 proposes subjecting a reforming catalyst to an atmosphere having a molecular oxygen concentration of 5 mol% or less at 120 ° C. to 650 ° C. Japanese Patent Application Laid-Open No. 9-75734 proposes that a reforming catalyst be (1) pretreated with a hydrogen-containing gas, (2) oxidized with an oxygen-containing gas, and (3) regenerated with a reducing gas. doing. However, in order to perform the above two treatments, it is necessary to have a special gas supply device that regulates the oxygen concentration and the hydrogen concentration.

【0008】また,上記3つの公報に示される方法にお
いては,いずれの実施例でも,再生処理に,最低10
分,ほとんどの場合10〜30時間を要している。ま
た,これらの方法は,改質率をガスクロマトグラフなど
により測定するのみであり,劣化度検出手段を有してい
ない。このように,上記方法は,特別のガス供給装置
や,再生処理に長時間を要し,容易な劣化度検出手段を
もたないため,高い改質率を維持しにくく,自動車用な
ど移動用はもとより,定置用でも使用しにくい。
Further, in the methods disclosed in the above three publications, in any of the embodiments, at least 10
It takes 10 to 30 hours in most cases. In addition, these methods only measure the reforming rate by gas chromatography or the like, and do not have means for detecting the degree of deterioration. As described above, the above method does not require a special gas supply device or a long time for the regeneration treatment, and does not have an easy deterioration detection means. Of course, it is difficult to use even for stationary use.

【0009】本発明はかかる従来の問題点に鑑みて,改
質触媒を高活性状態に維持し,長期間に渡り高能率でメ
タノールの改質を行なうことができるメタノールの改質
方法を提供しようとするものである。
In view of the above-mentioned conventional problems, the present invention provides a method for reforming methanol which can maintain the reforming catalyst in a highly active state and perform the reforming of methanol with high efficiency for a long period of time. It is assumed that.

【0010】[0010]

【課題の解決手段】本発明は,改質触媒の存在下で,メ
タノールの改質反応操作を行なうことにより水素ガスと
炭酸ガスとを含有する改質ガスを製造する方法におい
て,上記改質触媒が所定の設定劣化度に達した際には,
上記改質触媒に対して空気を供給してその再生を図る再
生操作を行ない,その後再び上記改質反応操作を行な
い,かかる改質反応操作と再生操作とを繰り返して改質
ガスを製造することを特徴とするメタノールの改質方法
にある。
The present invention relates to a method for producing a reformed gas containing hydrogen gas and carbon dioxide gas by performing a methanol reforming reaction operation in the presence of a reforming catalyst. When has reached the specified degree of deterioration,
A reforming operation for supplying air to the reforming catalyst to regenerate the reforming catalyst is performed, and then the reforming reaction operation is performed again, and the reforming reaction operation and the regenerating operation are repeated to produce a reformed gas. A method for reforming methanol.

【0011】本発明において最も注目すべき点は,改質
触媒が所定の活性度まで劣化した場合には改質触媒に対
して空気を供給して,その賦活,再生を図り,その後再
び改質反応を行ない,これを繰り返すことである。
The most remarkable point in the present invention is that when the reforming catalyst has deteriorated to a predetermined activity, air is supplied to the reforming catalyst to activate and regenerate the reforming catalyst, and thereafter, the reforming catalyst is re-formed. Perform the reaction and repeat this.

【0012】次に,本発明の作用効果につき説明する。
本発明においては,後に詳述するごとく,上記改質反応
操作中に改質触媒が劣化し,その活性が所定の設定劣化
度に達したときに,改質反応操作を一旦中止して,改質
触媒に対して,空気を供給する再生操作を行なう。これ
により,改質触媒は再び当初とほぼ同程度の活性に再生
される。
Next, the operation and effect of the present invention will be described.
In the present invention, as will be described in detail later, when the reforming catalyst deteriorates during the above-mentioned reforming reaction operation and its activity reaches a predetermined degree of deterioration, the reforming reaction operation is temporarily stopped and the reforming reaction is stopped. A regeneration operation for supplying air to the high quality catalyst is performed. As a result, the reforming catalyst is again regenerated to almost the same activity as at the beginning.

【0013】そこで,再び改質反応操作を行なう。そし
て,この改質反応操作中に再び上記設定劣化度に達した
ときには,上記と同様の再生操作を行なう。そのため,
改質触媒は,常に高活性状態に維持され,長期間に渡り
高能率でメタノールの改質を行なうことができる。
Then, the reforming reaction operation is performed again. Then, when the set deterioration degree is reached again during the reforming reaction operation, the same regeneration operation as described above is performed. for that reason,
The reforming catalyst is always maintained in a highly active state, and can reform methanol with high efficiency over a long period of time.

【0014】また,改質触媒の存在下で,気相によりメ
タノールと水とを反応させる改質反応操作を行なうこと
又は,メタノールと水と空気とを反応させる改質反応操
作を行なうことにより水素ガスと炭酸ガス,又は水素ガ
スと炭酸ガスと窒素ガスとを含有する改質ガスを製造す
る方法において,上記改質触媒が所定の設定劣化度に達
した際には,上記改質触媒に対して空気を供給してその
再生を図る再生操作を行ない,その後再び上記改質反応
操作を行ない,かかる改質反応操作と再生操作とを繰り
返して改質ガスを製造するメタノールの改質方法があ
る。この場合にも上記と同様の効果を得ることができ
る。
In addition, by performing a reforming reaction operation for reacting methanol and water in a gas phase in the presence of a reforming catalyst, or by performing a reforming reaction operation for reacting methanol with water and air, In the method for producing a reformed gas containing a gas and a carbon dioxide gas, or a hydrogen gas, a carbon dioxide gas and a nitrogen gas, when the reforming catalyst reaches a predetermined degree of deterioration, the reforming catalyst is There is a method for reforming methanol in which a regeneration operation is performed to supply air to regenerate the air, and then the reforming reaction operation is performed again, and the reforming reaction operation and the regeneration operation are repeated to produce a reformed gas. . In this case, the same effect as above can be obtained.

【0015】次に,上記改質方法を行なう際の好ましい
態様につき,説明する。まず,上記設定劣化度を検出す
るために,劣化度検出手段を具備することが好ましい。
これにより,設定劣化度を自動的に検出することができ
る。
Next, a preferred embodiment of the above reforming method will be described. First, it is preferable to include a deterioration degree detecting means for detecting the set deterioration degree.
As a result, the degree of setting deterioration can be automatically detected.

【0016】次に,上記劣化度検出手段としては,温
度,CO濃度,メタノール濃度,水素濃度,CO2
度,H2 O濃度,ガス流量のいずれか1種類以上を検出
する手段が好ましい。また,劣化度検出手段としては,
温度,CO濃度,メタノール濃度,水素濃度,CO2
度,H2 O濃度,ガス流量のいずれか1種類以上を検出
する手段を具備し,かつ改質触媒の入り口側と出口側の
比により劣化度を決定する手段を有することが好まし
い。
Next, as the deterioration degree detecting means, means for detecting at least one of temperature, CO concentration, methanol concentration, hydrogen concentration, CO 2 concentration, H 2 O concentration and gas flow rate is preferable. In addition, as means for detecting the degree of deterioration,
Equipped with means for detecting at least one of temperature, CO concentration, methanol concentration, hydrogen concentration, CO 2 concentration, H 2 O concentration and gas flow rate, and deteriorated by the ratio between the inlet side and the outlet side of the reforming catalyst It is preferable to have a means for determining the degree.

【0017】更に,劣化度検出手段としては,温度,
O濃度,メタノール濃度,水素濃度,CO2 濃度,H2
O濃度ガス流量のいずれか1種類以上を検出する手段を
具備し,かつ,検出された値を劣化度とし,この劣化度
と設定劣化度との比をとり,設定劣化度に達するまでの
期間の比例予測に基づいて再生操作の時期を決定する手
段を有することが好ましい。
Further, as means for detecting the degree of deterioration, temperature , C
O concentration, methanol concentration, hydrogen concentration, CO 2 concentration, H 2
A means for detecting any one or more of the O-concentration gas flow rates, and using the detected value as the degree of deterioration, calculating a ratio of the degree of deterioration to the set degree of deterioration, and calculating a period until the set degree of deterioration is reached. It is preferable to have means for determining the timing of the regenerating operation based on the proportional prediction.

【0018】更に,劣化度検出手段としては,,温度,
CO濃度,メタノール濃度,水素濃度,CO2 濃度,H
2 O濃度,ガス流量のいずれか1種類以上を検出する手
段を具備し,改質触媒の入口側と出口側の比と設定値を
比較し,設定劣化度に達するまでの期間の比例予測に基
づいて再生時期を決定する手段を有することが好まし
い。
Further, the deterioration degree detecting means includes temperature,
CO concentration, methanol concentration, hydrogen concentration, CO 2 concentration, H
Equipped with means for detecting at least one of 2 O concentration and gas flow rate, compares the ratio between the inlet and outlet sides of the reforming catalyst and the set value, and performs proportional prediction of the period until the set deterioration degree is reached. It is preferable to have a means for determining the regeneration time based on this.

【0019】次に,上記改質触媒としては,金属または
コージェライト系セラミックを担体とし銅,亜鉛,アル
ミニウム,クロムのいずれか一つまたは二つ以上の混合
酸化物を主成分とする改質触媒成分を担持したものであ
ることが好ましい。
Next, as the above-mentioned reforming catalyst, a reforming catalyst containing a metal or a cordierite-based ceramic as a carrier and a mixed oxide of one or more of copper, zinc, aluminum and chromium as a main component is used. It is preferable that the components carry components.

【0020】また,改質触媒としては,金属またはコー
ジェライト系セラミックを担体とし銅,亜鉛,アルミニ
ウム,クロムのいずれか一つまたは二つ以上の混合酸化
物を主成分とする改質触媒物質を担持し,劣化度検出手
段として,改質触媒入口側と出口側温度および出口CO
濃度を測定し,入口側と出口側の温度に対応した出口C
O濃度の設定値と比較し,設定劣化度に達する期間の比
例予測に基づき再生時期を決定する方法を採ることが好
ましい。この場合には,触媒のシンタリングといった再
生不可能な劣化が生じた場合にも出口CO濃度を一定値
に保つという効果が得られる。
The reforming catalyst may be a metal or a cordierite-based ceramic as a carrier, and a reforming catalyst substance mainly composed of one or more of mixed oxides of copper, zinc, aluminum and chromium. The temperature of the reforming catalyst inlet and outlet and the outlet CO
Measure the concentration and check the outlet C corresponding to the inlet and outlet temperatures.
It is preferable to adopt a method of comparing the set value of the O concentration and determining the reproduction time based on the proportional prediction of the period of reaching the set deterioration degree. In this case, the effect of maintaining the outlet CO concentration at a constant value is obtained even when non-renewable deterioration such as sintering of the catalyst occurs.

【0021】次に,本発明において,上記改質触媒の触
媒成分としては,例えばCuOとZnOとAl2 3
からなる混合酸化物,銅,クロム,亜鉛を担持したもの
や,それらの酸化物等がある。また,改質触媒の構造と
しては,触媒成分単独でペレットやタブレットの形状に
作成された単独触媒がある。また,上記改質触媒は,ス
テンレススチール等の金属をハニカム状等の立体形状に
構成した金属担体に,上記混合酸化物等の触媒成分を担
持させた担持触媒がある(図4参照)。
Next, in the present invention, as a catalyst component of the reforming catalyst, for example, a mixed oxide composed of CuO, ZnO, and Al 2 O 3 , copper, chromium, and zinc, There are things. In addition, as a structure of the reforming catalyst, there is a single catalyst prepared in a pellet or tablet shape by using the catalyst component alone. The reforming catalyst includes a supported catalyst in which a metal component such as stainless steel is formed in a three-dimensional shape such as a honeycomb shape and a catalyst component such as the mixed oxide is supported on the metal carrier (see FIG. 4).

【0022】本発明は,上記単独触媒,担持触媒いずれ
の場合にも適用することができる。なお,後者の担持触
媒は,熱容量が小さいため始動性に優れている。また,
反応ガス(メタノール+水のガス)と改質触媒との接触
面積が大きく取れるため,生産効率も優れ,また触媒層
の単位体積当りの重量も軽量である。また,この場合に
は改質反応操作時のメタノール基準液空間速度は,例え
ば2〜7/時と大きく,生産性が高い。なお,前者の単
独触媒の場合には,上記空間速度は,約0.3〜1.0
/時と小さい。
The present invention can be applied to both the single catalyst and the supported catalyst. Note that the latter supported catalyst has a small heat capacity and thus has excellent startability. Also,
Since the contact area between the reaction gas (methanol + water gas) and the reforming catalyst can be increased, the production efficiency is excellent, and the weight per unit volume of the catalyst layer is light. In this case, the space velocity of the methanol reference liquid during the reforming reaction operation is as large as, for example, 2 to 7 / hour, and the productivity is high. In the case of the former single catalyst, the space velocity is about 0.3 to 1.0.
/ Hour and small.

【0023】上記設定劣化度とは,長時間の改質反応操
作中に触媒活性が低下したため上記再生操作を行なう必
要が生じた触媒活性度をいう。該設定劣化度は,例えば
触媒層における温度が180〜320℃のある設定温度
に上昇した時点とする。これは,通常,改質反応操作は
180〜320℃において行なうため,その改質反応操
作温度よりも0.1〜140℃高い温度を設定劣化度と
するためである。
The above-mentioned set degree of deterioration refers to the degree of catalyst activity that requires the regeneration operation because the catalyst activity has decreased during the long-term reforming reaction operation. The set deterioration degree is, for example, a point in time when the temperature in the catalyst layer rises to a certain set temperature of 180 to 320 ° C. This is because the reforming reaction operation is usually performed at 180 to 320 ° C., so that a temperature higher than the reforming reaction operation temperature by 0.1 to 140 ° C. is set as the degree of deterioration.

【0024】また,上記設定劣化度は,出口CO濃度を
測定することによって定めることもできる。この場合に
は,例えば,CO濃度が0.01〜2%の間のいずれか
のCO濃度に達した時点を設定劣化度とする。COは,
例えば,本発明のメタノール改質方法を低温型燃料電池
(固体高分子電解質型燃料電池やリン酸型燃料電池)の
水素源として利用する際,燃料電池の電極触媒の被毒物
質となるため,できるだけ低く抑える必要がある。
Further, the set deterioration degree can be determined by measuring the outlet CO concentration. In this case, for example, the point in time when the CO concentration reaches any one of the CO concentrations between 0.01% and 2% is defined as the set deterioration degree. CO is
For example, when the methanol reforming method of the present invention is used as a hydrogen source for a low-temperature fuel cell (a solid polymer electrolyte fuel cell or a phosphoric acid fuel cell), it becomes a poisoning substance for the electrode catalyst of the fuel cell. Must be kept as low as possible.

【0025】本発明の改質方法の後処理として改質ガス
中のCOを低減する方法としては,水性ガスシフト反
応,またCOを選択的に酸化したり,メタン化する方法
がある。しかし,いずれにしても,反応器をコンパクト
にし,かつ燃料電池に供給するCO濃度を充分に低減す
るためには,改質時において,できるだけCO濃度を低
減しておく必要がある。このようにCO濃度を設定劣化
度として選択することは,燃料電池システムなどに本発
明を適用する際に適当である。
As a method of reducing CO in the reformed gas as a post-treatment of the reforming method of the present invention, there are a water gas shift reaction, a method of selectively oxidizing CO, and a method of methanizing. However, in any case, in order to make the reactor compact and sufficiently reduce the CO concentration supplied to the fuel cell, it is necessary to reduce the CO concentration as much as possible during reforming. Selecting the CO concentration as the set deterioration degree in this way is appropriate when the present invention is applied to a fuel cell system or the like.

【0026】また,上記設定劣化度は,改質反応操作時
における改質率,即ちメタノールの何%が水素ガスに改
質されたかを測定することによって定めることもでき
る。この場合には,例えば,改質率が80〜99.9%
の間のいずれかの改質率に達した時点を設定劣化度とす
る。
The above-mentioned set deterioration degree can also be determined by measuring the reforming rate during the reforming reaction operation, that is, what percentage of methanol has been reformed into hydrogen gas. In this case, for example, the reforming rate is 80 to 99.9%.
The point in time at which any of the reforming rates is reached is defined as the set degree of deterioration.

【0027】上記改質率は,触媒出口における,水素濃
度,CO2 濃度,メタノール濃度,H2 O濃度,ガス流
量のいずれか一つを測定することでも検知できる。即
ち,既知であるメタノールと水の供給量とあらかじめ測
定しておいた水素濃度,CO2濃度,メタノール濃度,
2 O濃度,ガス流量のいずれか一つまたは二つ以上の
量と,改質率の関係から簡易的に改質率を求めることが
できる。
The above-mentioned reforming rate can also be detected by measuring any one of hydrogen concentration, CO 2 concentration, methanol concentration, H 2 O concentration and gas flow rate at the catalyst outlet. That is, the known supply amounts of methanol and water and the previously measured hydrogen concentration, CO 2 concentration, methanol concentration,
The reforming rate can be easily obtained from the relationship between one or more of the H 2 O concentration and the gas flow rate and the reforming rate.

【0028】改質反応操作中の温度やCO濃度,又は簡
易な改質率による設定劣化度の設定は,温度や各種濃度
のいずれか,又はガス流量により検知できるため,応答
性に優れている。一方,全てのガス成分を測定して改質
率を求める場合には,実質的な改質程度により設定劣化
度を設定することができる。
The setting of the degree of deterioration by the temperature or CO concentration during the reforming reaction operation or by a simple reforming rate can be detected by any of the temperature and various concentrations or the gas flow rate, so that the response is excellent. . On the other hand, when the reforming rate is obtained by measuring all the gas components, the set deterioration degree can be set according to the substantial reforming degree.

【0029】次に,上記再生操作における空気の供給
は,触媒層におけるガス空間速度を200〜800/時
とすることが好ましい。なお,この空間速度は,25℃
の空気を用いた場合の値である。200/時未満では再
生操作に長時間を要し,800/時を越えると,次に示
すごとく,改質触媒の表面温度が上昇し過ぎて,改質触
媒表面がシンタリング(焼結)を起こして活状能力が低
下してしまうおそれがある。後述の実施例では,この範
囲で空気供給したが,320℃を越えないならば空気を
増量し,反応を早めてもよい。
Next, it is preferable that the supply of air in the regeneration operation be performed at a gas space velocity of 200 to 800 / hour in the catalyst layer. This space velocity is 25 ° C
This is the value when the air is used. If it is less than 200 / hour, the regeneration operation takes a long time, and if it exceeds 800 / hour, the surface temperature of the reforming catalyst rises too much and the sintering (sintering) occurs on the reforming catalyst surface as shown below. There is a possibility that the activity capacity may be lowered to lower the activity. In the examples described later, air is supplied in this range. However, if the temperature does not exceed 320 ° C., the amount of air may be increased to accelerate the reaction.

【0030】即ち,上記再生操作時には,空気の供給に
よって,改質触媒の温度が上昇する。これは,改質反応
操作中に改質ガスの水素ガスによって一旦Cu等に還元
されていた触媒成分が上記空気中の酸素と反応して酸化
物に再生され,その時の反応熱によって上昇するためと
考えられる。
That is, during the regeneration operation, the temperature of the reforming catalyst rises due to the supply of air. This is because, during the reforming reaction operation, the catalyst component once reduced to Cu or the like by the hydrogen gas of the reforming gas reacts with the oxygen in the air to be regenerated into an oxide, which is raised by the reaction heat at that time. it is conceivable that.

【0031】そこで,この改質触媒の温度上昇を検知
し,再生操作時における触媒層の温度が一定値に達した
ところで空気の供給,即ち再生操作を中止する。上記温
度の上限は,450℃が好ましく,更に好ましくは32
0℃である。これよりも,高温度になると,改質触媒の
表面がシンタリングを起こし,触媒性能が劣化するおそ
れがある。
Then, the temperature rise of the reforming catalyst is detected, and when the temperature of the catalyst layer at the time of the regeneration operation reaches a certain value, the supply of air, that is, the regeneration operation is stopped. The upper limit of the above temperature is preferably 450 ° C, more preferably 32 ° C.
0 ° C. If the temperature is higher than this, the surface of the reforming catalyst may sinter and the catalyst performance may be degraded.

【0032】上記再生操作時における空気の供給は,改
質反応操作を中止した直後に行なうことが好ましい。こ
れにより,再生操作を高温下(180〜320℃)にお
いて,開始することができ,再生操作を効率的に行なう
ことができる。また,再生操作は,改質反応操作中止
後,例えば窒素(N2 )ガスを供給して触媒層中の反応
ガス,改質ガスをパージした後,空気を供給することに
より行なうこともできる。この場合には,触媒層に残留
した改質ガス又はメタノールの酸化による発熱を柔らげ
る効果が得られる。また,再生操作を効率的に行なうた
め,空気供給の開始時には触媒層の温度は100〜45
0℃であることが好ましく更に好ましくは180〜30
0℃の範囲である。
The supply of air during the regeneration operation is preferably performed immediately after the reforming reaction operation is stopped. Thus, the regeneration operation can be started at a high temperature (180 to 320 ° C.), and the regeneration operation can be performed efficiently. Alternatively, the regeneration operation can be performed by stopping the reforming reaction operation, for example, by supplying nitrogen (N 2 ) gas to purge the reaction gas and reformed gas in the catalyst layer, and then supplying air. In this case, the effect of softening the heat generated by oxidation of the reformed gas or methanol remaining in the catalyst layer can be obtained. In order to perform the regeneration operation efficiently, the temperature of the catalyst layer is set to 100 to 45 at the start of the air supply.
The temperature is preferably 0 ° C, more preferably 180 to 30 ° C.
It is in the range of 0 ° C.

【0033】以上は,改質触媒が所定の設定劣化度に達
した際の再生操作について述べたが,本発明のメタノー
ル改質ガスを自動車搭載用の改質装置に適用する場合に
は,上記再生操作は,例えば夜間等,自動車運転の終了
時に短時間行なうこともできる。これにより,翌朝は,
常に高活状状態の改質触媒による改質反応操作を行なう
ことができる。また,給油時などシステム停止時に短時
間で再生させ,次回始動時には,高活性状態の改質触媒
による改質反応操作を行なうこともできる。
Although the regeneration operation when the reforming catalyst has reached a predetermined degree of deterioration has been described above, when the methanol reformed gas of the present invention is applied to a reformer for mounting on an automobile, the above-mentioned operation is performed. The regenerating operation can be performed for a short time at the end of driving the car, for example, at night. The next morning,
The reforming reaction operation with the reforming catalyst in a highly active state can be always performed. In addition, the system can be regenerated in a short time when the system is stopped such as at the time of refueling, and at the next start, a reforming reaction operation using a highly active reforming catalyst can be performed.

【0034】[0034]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 本発明の実施形態例にかかるメタノールの改質方法につ
き図1〜図3を用いて説明する。本例のメタノールの改
質方法は,図2,図3に示すごとく,改質触媒11の存
在下で,気相によりメタノールと水とを反応させる改質
反応操作を行なうことにより水素ガスと炭酸ガスとから
なる改質ガスを製造する方法である。
First Embodiment A method for reforming methanol according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 2 and 3, the methanol reforming method of the present embodiment performs a reforming reaction operation of reacting methanol and water in a gas phase in the presence of a reforming catalyst 11 to thereby produce hydrogen gas and carbon dioxide. This is a method for producing a reformed gas composed of gas.

【0035】そして,上記改質反応操作中に上記改質触
媒11が所定の設定劣化度,例えば設定温度に達した際
(図2)には,上記改質触媒11に対して空気を供給し
てその再生を図る再生操作を行ない,その後再び上記改
質反応操作を行ない,かかる改質反応操作と再生操作と
を繰り返して改質ガスを製造する。
When the reforming catalyst 11 reaches a predetermined set deterioration degree, for example, a set temperature during the reforming reaction operation (FIG. 2), air is supplied to the reforming catalyst 11. Then, a regeneration operation for regenerating the gas is performed, and then the reforming reaction operation is performed again. The reforming reaction operation and the regeneration operation are repeated to produce a reformed gas.

【0036】以下,上記改質方法につき,詳細に説明す
る。まず,図3は,上記改質方法に用いるメタノール改
質装置の概略説明図である。本装置は,改質触媒11を
充填した反応タンク1と,該反応タンク1にポンプ2
2,気化器23,原料パイプ24を介して接続した溶液
タンク21と,上記反応タンク1に空気パイプ32を介
して接続したブロワー31とを有する。また,反応タン
ク1の下流側には改質ガスを送出する改質ガスパイプ1
2,パージパイプ16を有する。反応タンク1は,外壁
をヒータ加熱して,改質触媒11に熱供給する。
Hereinafter, the reforming method will be described in detail. First, FIG. 3 is a schematic explanatory view of a methanol reforming apparatus used in the above-mentioned reforming method. This apparatus comprises a reaction tank 1 filled with a reforming catalyst 11 and a pump 2
2, a solution tank 21 connected via a vaporizer 23 and a raw material pipe 24, and a blower 31 connected to the reaction tank 1 via an air pipe 32. A reformed gas pipe 1 for sending reformed gas is provided downstream of the reaction tank 1.
2. It has a purge pipe 16. The reaction tank 1 supplies heat to the reforming catalyst 11 by heating the outer wall with a heater.

【0037】また,上記反応タンク1内の温度又はCO
濃度など各種濃度,又はガス流量を検出して,上記パイ
プ22又はブロワー31を運転制御するコントローラ3
を有する。また,該コントローラは反応タンク1内に配
置した触媒層入口側温度センサ35,触媒層出口側温度
センサ36,又は入口側濃度センサ又はガス流量センサ
37出口側濃度センサ又はガス流量センサ38を有す
る。
The temperature in the reaction tank 1 or CO 2
A controller 3 that detects various concentrations such as concentration or a gas flow rate and controls the operation of the pipe 22 or the blower 31.
Having. The controller has a catalyst layer inlet side temperature sensor 35, a catalyst layer outlet side temperature sensor 36, or an inlet side concentration sensor or gas flow rate sensor 37 disposed in the reaction tank 1.

【0038】上記改質装置により,上記改質方法を行な
う場合につき例示すると,まず反応タンク1には溶液タ
ンク21内のメタノール及び水の混合液20をポンプ2
2により反応タンク1内の改質触媒11に供給する。こ
のとき,上記混合液は約300℃に加熱した気化器23
により気化され,原料パイプ24よりガス状態で送入さ
れる。反応タンク1の外壁は約290℃に加熱される。
そして,触媒層平均温度約280℃において改質反応操
作が行なわれ,水素ガス(H2 )と炭酸ガス(CO2
とからなる改質ガスは改質ガスパイプ12より送出され
る。
As an example of the case where the above-mentioned reforming method is performed by the above-mentioned reforming apparatus, first, a mixed solution 20 of methanol and water in a solution tank 21 is pumped into a reaction tank 1 by a pump 2.
2 feeds to the reforming catalyst 11 in the reaction tank 1. At this time, the mixed solution is heated to a vaporizer 23 heated to about 300 ° C.
And is sent in a gaseous state from the raw material pipe 24. The outer wall of the reaction tank 1 is heated to about 290 ° C.
Then, a reforming reaction operation is performed at an average temperature of the catalyst layer of about 280 ° C., and hydrogen gas (H 2 ) and carbon dioxide gas (CO 2 )
Is sent out from the reformed gas pipe 12.

【0039】このように改質反応操作が行なわれている
間に,改質触媒11は徐々に劣化していく。そこで,反
応タンク1内の改質触媒11の温度,例えば入口側温度
と出口側温度の平均温度が,所定の設定劣化度である例
えば285℃に上昇したことを温度センサ35,36が
キャッチすると,コントローラ3はポンプ22を停止す
る。また,これと共に反応タンク1のヒータ加熱を停止
し,上記混合液20の供給を停止する。これにより,改
質反応操作が中止される。次いで,コントローラ3はブ
ロワー31を作動させて,空気パイプ32を介して,反
応タンク1内に空気を送り再生操作を行なう。再生操作
時のガスはパージパイプ16より排出する。
While the reforming reaction operation is being performed, the reforming catalyst 11 gradually deteriorates. Therefore, when the temperature sensors 35 and 36 detect that the temperature of the reforming catalyst 11 in the reaction tank 1, for example, the average temperature of the inlet side temperature and the outlet side temperature has risen to a predetermined degree of deterioration, for example, 285 ° C. , The controller 3 stops the pump 22. At the same time, the heater heating of the reaction tank 1 is stopped, and the supply of the mixed liquid 20 is stopped. Thereby, the reforming reaction operation is stopped. Next, the controller 3 operates the blower 31 to send air into the reaction tank 1 through the air pipe 32 to perform a regeneration operation. Gas during the regeneration operation is discharged from the purge pipe 16.

【0040】上記の改質反応操作及び再生操作時におけ
る,反応タンク1内の温度変化,改質反応操作時の改質
率変化の概要を図1に,またその部分拡大説明図を図2
に示す。両図に示すごとく,時間と共に改質率が徐々に
低下し,改質反応の吸熱量が小さくなり,またこれに伴
って反応タンク内の触媒層温度も徐々に上昇する。そし
て,触媒層温度が設定劣化度として設定した温度(上記
285℃)まで上昇したときには上記再生操作を行な
う。そして,その後再び改質反応操作を行なう。これに
より,図1に示すごとく,改質率は曲線41〜45に示
すごとく低下,上昇,低下のジグザグ状態を繰り返す。
これに伴って,触媒層の温度も曲線410〜450に示
すごとく,ジグザグ状態を繰り返す。
FIG. 1 shows an outline of a change in the temperature in the reaction tank 1 and a change in the reforming rate during the reforming reaction operation during the above-mentioned reforming reaction operation and regeneration operation, and FIG.
Shown in As shown in both figures, the reforming rate gradually decreases with time, the endothermic amount of the reforming reaction decreases, and the catalyst layer temperature in the reaction tank also gradually increases. When the temperature of the catalyst layer rises to the temperature (285 ° C.) set as the degree of deterioration, the regeneration operation is performed. Then, the reforming reaction operation is performed again. As a result, as shown in FIG. 1, the reforming rate repeats a zigzag state of decreasing, increasing and decreasing as shown by curves 41 to 45.
Along with this, the temperature of the catalyst layer also repeats a zigzag state as shown by curves 410 to 450.

【0041】また,図2は,再生操作時における触媒層
の温度状態を示している。同図に示すごとく,改質反応
操作時に温度は徐々に上昇し,設定劣化度である設定温
度に達したときには,上記のごとく,混合液20の供給
を停止し反応タンク1のヒータが熱を停止して,再生開
始温度まで降温させ,空気を供給する。そのため,上記
のごとく酸化反応により,触媒層の温度は上昇する。そ
こで,本例では,触媒層の温度を上限の320℃以下に
コントロールしながら再生操作を行う。そして,再生操
作の終了後に再び改質反応操作を行なう。上記のように
して,改質反応操作と再生操作を繰り返す。
FIG. 2 shows the temperature state of the catalyst layer during the regeneration operation. As shown in the figure, the temperature gradually rises during the reforming reaction operation, and when the temperature reaches the set temperature, which is the set degree of deterioration, the supply of the mixed liquid 20 is stopped and the heater of the reaction tank 1 generates heat as described above. Stop, cool down to the regeneration start temperature, and supply air. Therefore, the temperature of the catalyst layer increases due to the oxidation reaction as described above. Therefore, in this example, the regeneration operation is performed while controlling the temperature of the catalyst layer to the upper limit of 320 ° C. or less. Then, after the regeneration operation, the reforming reaction operation is performed again. As described above, the reforming reaction operation and the regeneration operation are repeated.

【0042】なお,図1には,上記再生操作を行なわな
かった場合における改質率の低下状態を点線曲線49で
示した。また,上例は,改質触媒として,ハニカム状メ
タル担体にCuO−ZnO−Al2 3 からなる触媒成
分を担持した改質触媒(実施形態例2の図4参照)につ
き示した。
In FIG. 1, a dotted line curve 49 shows a state in which the reforming rate is reduced when the regeneration operation is not performed. Further, above example, as the reforming catalyst, it is shown per honeycomb metal carrier to the reforming catalyst supporting a catalyst component consisting of CuO-ZnO-Al 2 O 3 ( see FIG. 4 of Embodiment 2).

【0043】上記より知られるごとく,本発明の改質方
法によれば,改質触媒を高活性状態に維持し,高能率で
メタノールの改質を行なうことができる。
As is known from the above, according to the reforming method of the present invention, the reforming catalyst can be maintained in a highly active state, and methanol can be reformed with high efficiency.

【0044】実施形態例2 本例は,図4,図5に示すごとく,実施形態例1に示し
た改質装置を用いて改質ガスの製造を行なった具体例に
つき説明する。まず,改質触媒11は,図4に示すごと
く,メタル担体5に触媒成分10を担持したものであ
る。メタル担体5は多数の平板51の間にそれぞれ波板
52を配置し,両者間を接合したもので,600セル/
平方インチのハニカム構造を呈している。
Embodiment 2 In this embodiment, as shown in FIGS. 4 and 5, a specific example in which a reformed gas is produced using the reformer shown in Embodiment 1 will be described. First, as shown in FIG. 4, the reforming catalyst 11 has a catalyst component 10 supported on a metal carrier 5. The metal carrier 5 has corrugated plates 52 arranged between a number of flat plates 51 and joined to each other.
It has a square inch honeycomb structure.

【0045】触媒成分10は上記平板51,波板52の
表面に接着された状態にある。上記メタル担体5の平板
51,波板52はステンレス鋼板を用いてある。メタル
担体に対する触媒成分10の担持量は172g/リット
ルである。触媒成分は,約42重量%CuO−約47重
量%ZnO−約11重量%Al2 3 からなる。改質反
応操作に当っては,まず初めに還元ガスにより,触媒層
の平均温度200℃,ガス空間速度2000/時で,4
時間還元処理を行なった。その後改質反応操作を行なっ
た。
The catalyst component 10 is adhered to the surfaces of the flat plate 51 and the corrugated plate 52. The flat plate 51 and the corrugated plate 52 of the metal carrier 5 are made of a stainless steel plate. The supported amount of the catalyst component 10 on the metal carrier is 172 g / liter. The catalyst component consists of about 42 wt% CuO- about 47 wt% ZnO- about 11 wt% Al 2 O 3. In the reforming reaction operation, first, a reducing gas is used to obtain a catalyst layer having an average temperature of 200 ° C. and a gas space velocity of 2000 / hour.
Time reduction treatment was performed. Thereafter, a reforming reaction operation was performed.

【0046】改質反応操作においては,メタノール47
重量%と水53重量%よりなる混合液を,気化器にて気
化させ,これを260〜290℃の触媒層内に,メタノ
ール空間速度(LHSV−M)=2h-1で供給した。改
質反応操作により得られた改質ガスの組成は,ガスクロ
マトグラフにより測定した。また,上記改質反応操作に
おいては,設定劣化度として,触媒層入口側温度270
℃を設定した。
In the reforming reaction operation, methanol 47
A mixed solution consisting of 53% by weight of water and 53% by weight of water was vaporized by a vaporizer, and supplied into the catalyst layer at 260 to 290 ° C. at a methanol space velocity (LHSV-M) of 2 h −1 . The composition of the reformed gas obtained by the reforming reaction operation was measured by gas chromatography. In the above reforming reaction operation, the catalyst layer inlet side temperature 270
° C was set.

【0047】そして,触媒層入口側温度が上記設定劣化
度である270℃に上昇した時点で,改質反応操作を中
止し,直ちに再生操作を行なった。再生操作は約25℃
の空気を0.2〜0.4リットル/分,即ち空間速度4
00〜800/時で,触媒層内に供給することにより,
10分間行なった。また,上記再生操作時には,触媒層
の温度が320℃を超えないように,空気供給量を調整
した。なお,再生にかかる時間は温度変化から5分以内
であった。上記再生操作終了後は,再び上記と同じ改質
反応操作を行ない,その後同様の再生操作と改質反応操
作を繰り返し行なった。
When the temperature at the catalyst layer inlet side rose to the above-mentioned set deterioration degree of 270 ° C., the reforming reaction operation was stopped, and the regeneration operation was immediately performed. Regeneration operation is about 25 ° C
Of air at 0.2 to 0.4 liter / min, ie, space velocity 4
By supplying to the catalyst layer at 00 to 800 / hour,
Performed for 10 minutes. During the regeneration operation, the air supply was adjusted so that the temperature of the catalyst layer did not exceed 320 ° C. The time required for regeneration was within 5 minutes from the temperature change. After the completion of the regeneration operation, the same reforming reaction operation as described above was performed again, and thereafter, the same regeneration operation and reforming reaction operation were repeatedly performed.

【0048】図5は,上記改質反応操作,再生操作を繰
り返し行なった場合における,触媒層使用開始後380
〜410時間の間の触媒層温度と改質率とを示してい
る。また,同図の上部には,再生操作を行なった時間を
矢印で示してある。また,各空気供給時における改質ガ
ス中のCO濃度,触媒層入口側温度は,表1のようであ
った。
FIG. 5 shows 380 samples after the start of use of the catalyst layer when the above-mentioned reforming reaction operation and regeneration operation are repeatedly performed.
The graph shows the catalyst layer temperature and the reforming rate during 〜410 hours. At the top of the figure, the time at which the playback operation was performed is indicated by an arrow. Table 1 shows the CO concentration in the reformed gas and the catalyst layer inlet side temperature at the time of each air supply.

【0049】[0049]

【表1】 [Table 1]

【0050】同図及び表1より知られるごとく,改質反
応操作の間,触媒層の温度は約250〜310℃に維持
され,また改質率は95〜100%を保持していること
がわかる。また,各再生操作後は改質率が向上すること
がわかる。
As can be seen from the figure and Table 1, during the reforming reaction operation, the temperature of the catalyst layer is maintained at about 250-310 ° C., and the reforming rate is maintained at 95-100%. Recognize. Also, it can be seen that the reforming rate is improved after each regeneration operation.

【0051】実施形態例3 本例は,図6に示すごとく,再生操作として,まず窒素
ガス(N2 )1リットル/分で,10分間,触媒層のパ
ージを行ない,その後空気を0.2〜0.4リットル/
分,10分間,触媒層に供給し,更に約12時間後に再
び改質反応操作を行なった例を示している。
Embodiment 3 In this embodiment, as shown in FIG. 6, as a regenerating operation, first, the catalyst layer is purged with nitrogen gas (N 2 ) at 1 liter / min for 10 minutes, and then air is purged for 0.2 min. ~ 0.4 liters /
This shows an example in which the reforming reaction operation is carried out again after about 12 hours by supplying to the catalyst layer for 10 minutes and 10 minutes.

【0052】また,同図の上部には,上記再生操作を行
なった時間を矢印で示した。この場合には,設定劣化度
として出口CO濃度0.53%を採用している。出口C
O濃度が0.53%を越えると上記再生操作を実施し
た。また,各空気供給時における改質ガス中のCO濃
度,触媒層入口側温度は,表2のようであった。
At the top of the figure, the time at which the above-mentioned reproduction operation was performed is indicated by an arrow. In this case, the outlet CO concentration of 0.53% is adopted as the set deterioration degree. Exit C
When the O concentration exceeded 0.53%, the above-mentioned regeneration operation was performed. Table 2 shows the CO concentration in the reformed gas and the catalyst layer inlet side temperature at the time of each air supply.

【0053】[0053]

【表2】 [Table 2]

【0054】同図及び表2より知られるごとく,再生操
作はN2 ガスによるパージの後に行ない,また改質反応
操作は再生操作の約12時間後に行なっても,高い改質
率を長時間維持できることがわかる。また,各再生操作
後には,改質率が向上することがわかる。
As can be seen from the figure and Table 2, the regeneration operation is performed after purging with N 2 gas, and the reforming reaction operation is performed about 12 hours after the regeneration operation, and the high reforming rate is maintained for a long time. We can see that we can do it. Also, it can be seen that the reforming rate is improved after each regeneration operation.

【0055】なお,上記のN2 ガスはN2 とCO2 又は
2 Oとの混合ガスでもよく,空気中の酸素を原料であ
るメタノールや改質ガス中の水素,COと酸化反応させ
て除去することにより,移動用改質器でも容易に使用可
能である。
The above-mentioned N 2 gas may be a mixed gas of N 2 and CO 2 or H 2 O, and the oxygen in the air is oxidized by reacting with the raw material methanol, hydrogen and CO in the reformed gas. By removing it, it can be easily used even in a reformer for transfer.

【0056】実施形態例4 本例は表3に示すごとく,まず実施形態例2と同一触媒
で同一条件で改質反応を行ない,改質率が87%まで劣
化した状態(表中の1)の触媒に特開昭62−3600
1にならって,燃料ガスのみを供給して改質反応中に,
触媒中に空気を導入した。そして,燃料ガスと改質ガス
と酸素(空気)とを触媒中で30〜50分間共存させ
後,この燃料ガスと改質ガスと酸素(空気)共存下で改
質反応した。この場合の改質率,温度を同表に示す(表
中の2と4)。そして,空気を止め,燃料ガスのみを供
給した場合の改質率,温度を示す(表中の3と5)。
Embodiment 4 As shown in Table 3, in this embodiment, first, a reforming reaction was performed under the same conditions with the same catalyst as in Embodiment 2 and the reforming rate was deteriorated to 87% (1 in the table). No. 62-3600
According to 1, during the reforming reaction by supplying only the fuel gas,
Air was introduced into the catalyst. After the fuel gas, the reformed gas, and oxygen (air) were allowed to coexist in the catalyst for 30 to 50 minutes, the reforming reaction was performed in the coexistence of the fuel gas, the reformed gas, and oxygen (air). The reforming rate and temperature in this case are shown in the same table (2 and 4 in the table). The reforming rate and temperature when the air is stopped and only the fuel gas is supplied are shown (3 and 5 in the table).

【0057】表3から明らかなように,燃料ガスと改質
ガスと酸素(空気)を触媒中で共存させても再生は起こ
らず,改質率は回復しない。その後,本発明の再生操作
を実施した場合の改質率,温度を同表に示す。改質触媒
は,本発明の再生操作を行なうことにより,活性回復し
吸熱反応が活発になり触媒層入口温度は低下し,改質率
は改質開始初期と同等の99%以上にまで再生している
(表中の6と7)。
As is apparent from Table 3, even if the fuel gas, the reformed gas, and the oxygen (air) coexist in the catalyst, the regeneration does not occur, and the reforming rate does not recover. Thereafter, the reforming rate and the temperature when the regeneration operation of the present invention is performed are shown in the same table. By performing the regeneration operation of the present invention, the reforming catalyst recovers its activity, activates the endothermic reaction, lowers the catalyst layer inlet temperature, and regenerates the reforming rate to 99% or more, which is the same as the initial stage of reforming. (6 and 7 in the table).

【0058】[0058]

【表3】 [Table 3]

【0059】[0059]

【発明の効果】本発明によれば,改質触媒を高活性状態
に維持し,長期間に渡り高能率でメタノールの改質を行
なうことができるメタノールの改質方法を提供すること
ができる。
According to the present invention, it is possible to provide a method for reforming methanol capable of maintaining the reforming catalyst in a high active state and reforming methanol with high efficiency for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1における,改質反応操作時間と,
改質率及び触媒層温度の関係を示す線図。
FIG. 1 shows the operation time of a reforming reaction in Embodiment 1;
FIG. 4 is a diagram showing a relationship between a reforming rate and a catalyst layer temperature.

【図2】実施形態例1における,再生操作時の前後にお
ける触媒層の温度変化を示す線図。
FIG. 2 is a diagram showing a change in temperature of a catalyst layer before and after a regeneration operation in the first embodiment.

【図3】実施形態例1における,改質装置の説明図。FIG. 3 is an explanatory diagram of a reforming apparatus according to the first embodiment.

【図4】実施形態例2における,メタル担体触媒の説明
図。
FIG. 4 is an explanatory view of a metal carrier catalyst in a second embodiment.

【図5】実施形態例2における,改質反応操作時間と,
改質率及び触媒層温度などの関係を示す線図。
FIG. 5 shows the operation time of the reforming reaction in Embodiment 2;
FIG. 3 is a diagram illustrating a relationship between a reforming rate and a catalyst layer temperature.

【図6】実施形態例3における,改質反応操作時間と,
改質率及び触媒層温度などの関係を示す線図。
FIG. 6 shows the operation time of the reforming reaction in Embodiment 3;
FIG. 3 is a diagram illustrating a relationship between a reforming rate and a catalyst layer temperature.

【符号の説明】[Explanation of symbols]

1...反応タンク, 11...触媒層, 20...メタノールと水の混合液, 3...コントローラ, 1. . . 10. reaction tank, . . Catalyst layer, 20. . . 2. a mixture of methanol and water; . . controller,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 改質触媒の存在下で,メタノールの改質
反応操作を行なうことにより水素ガスと炭酸ガスとを含
有する改質ガスを製造する方法において,上記改質触媒
が所定の設定劣化度に達した際には,上記改質触媒に対
して空気を供給してその再生を図る再生操作を行ない,
その後再び上記改質反応操作を行ない,かかる改質反応
操作と再生操作とを繰り返して改質ガスを製造すること
を特徴とするメタノールの改質方法。
1. A method for producing a reformed gas containing hydrogen gas and carbon dioxide gas by performing a reforming reaction operation of methanol in the presence of a reforming catalyst, wherein the reforming catalyst has a predetermined set deterioration. When the temperature reaches the temperature, a regeneration operation for supplying air to the reforming catalyst to regenerate the air is performed.
Thereafter, the reforming reaction operation is performed again, and the reforming reaction operation and the regeneration operation are repeated to produce a reformed gas.
JP25599797A 1997-09-03 1997-09-03 Methanol reforming method Expired - Fee Related JP3546658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25599797A JP3546658B2 (en) 1997-09-03 1997-09-03 Methanol reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25599797A JP3546658B2 (en) 1997-09-03 1997-09-03 Methanol reforming method

Publications (2)

Publication Number Publication Date
JPH1179702A true JPH1179702A (en) 1999-03-23
JP3546658B2 JP3546658B2 (en) 2004-07-28

Family

ID=17286477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25599797A Expired - Fee Related JP3546658B2 (en) 1997-09-03 1997-09-03 Methanol reforming method

Country Status (1)

Country Link
JP (1) JP3546658B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1059262A1 (en) * 1999-06-08 2000-12-13 Matsushita Electric Industrial Co., Ltd. Fuel reforming apparatus
WO2001000524A1 (en) * 1999-06-24 2001-01-04 Johnson Matthey Public Limited Company Process for the regeneration of reforming catalysts
JP2002134151A (en) * 2000-10-24 2002-05-10 Toyota Motor Corp Removing of precipitated carbon in reformer
JP2002175826A (en) * 2000-12-07 2002-06-21 Ebara Ballard Corp Fuel cell power generation system
WO2004105168A1 (en) * 2003-05-21 2004-12-02 Aisin Seiki Kabushiki Kaisha Method for activating solid polymer fuel cell
WO2005018035A1 (en) * 2003-08-19 2005-02-24 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation system, method of detecting deterioration degree of reformer for the system, and fuel cell power generation method
US6905998B2 (en) * 2001-03-28 2005-06-14 Honda Giken Kogyo Kabushiki Kaisha Catalyst performance recovery method for reforming catalyst apparatus
JP2005353348A (en) * 2004-06-09 2005-12-22 Aisin Seiki Co Ltd Fuel cell system
JP2007193980A (en) * 2006-01-17 2007-08-02 Casio Comput Co Ltd Power generation system
US7285247B2 (en) * 2003-10-24 2007-10-23 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer so as to purge soot therefrom
JP2007284322A (en) * 2006-04-20 2007-11-01 Yanmar Co Ltd Method for activating catalyst in fuel reforming catalyst apparatus
JP2008519746A (en) * 2004-12-10 2008-06-12 ベバスト・アクチィエンゲゼルシャフト Method for regenerating reformer
WO2008099893A1 (en) * 2007-02-16 2008-08-21 Nippon Oil Corporation Reformer system, fuel cell system, and their operation method
US7416572B2 (en) * 2003-04-18 2008-08-26 Toyota Jidosha Kabushiki Kaisha Apparatus and method for determining reforming catalyst degradation
JP2010184843A (en) * 2009-02-13 2010-08-26 Nissan Motor Co Ltd Fuel reforming apparatus
JP2012082131A (en) * 2010-10-14 2012-04-26 Precision Conbustion Inc In-situ coke removal
CN102834599A (en) * 2010-04-08 2012-12-19 福特环球技术公司 Engine fuel reformer monitoring
US8853480B2 (en) 2010-07-01 2014-10-07 Meidensha Corporation Method for producing aromatic hydrocarbon

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5251730B2 (en) * 2008-07-18 2013-07-31 株式会社豊田中央研究所 Reformed gas generator, reformed gas combustion engine system equipped with the same, and method for recovering the activity of the reformed catalyst
JP2015151873A (en) * 2014-02-10 2015-08-24 株式会社デンソー Fuel reformer of internal combustion engine

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1059262A1 (en) * 1999-06-08 2000-12-13 Matsushita Electric Industrial Co., Ltd. Fuel reforming apparatus
WO2001000524A1 (en) * 1999-06-24 2001-01-04 Johnson Matthey Public Limited Company Process for the regeneration of reforming catalysts
US6878471B1 (en) 1999-06-24 2005-04-12 Johnson Matthey Public Limited Company Process for the regeneration of reforming catalysts
JP2002134151A (en) * 2000-10-24 2002-05-10 Toyota Motor Corp Removing of precipitated carbon in reformer
JP2002175826A (en) * 2000-12-07 2002-06-21 Ebara Ballard Corp Fuel cell power generation system
US6905998B2 (en) * 2001-03-28 2005-06-14 Honda Giken Kogyo Kabushiki Kaisha Catalyst performance recovery method for reforming catalyst apparatus
US7416572B2 (en) * 2003-04-18 2008-08-26 Toyota Jidosha Kabushiki Kaisha Apparatus and method for determining reforming catalyst degradation
WO2004105168A1 (en) * 2003-05-21 2004-12-02 Aisin Seiki Kabushiki Kaisha Method for activating solid polymer fuel cell
US7923160B2 (en) 2003-05-21 2011-04-12 Aisin Seiki Kabushiki Kaisha Method for activating solid polymer fuel cell
WO2005018035A1 (en) * 2003-08-19 2005-02-24 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation system, method of detecting deterioration degree of reformer for the system, and fuel cell power generation method
US7285247B2 (en) * 2003-10-24 2007-10-23 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer so as to purge soot therefrom
JP2005353348A (en) * 2004-06-09 2005-12-22 Aisin Seiki Co Ltd Fuel cell system
JP2008519746A (en) * 2004-12-10 2008-06-12 ベバスト・アクチィエンゲゼルシャフト Method for regenerating reformer
JP2007193980A (en) * 2006-01-17 2007-08-02 Casio Comput Co Ltd Power generation system
JP2007284322A (en) * 2006-04-20 2007-11-01 Yanmar Co Ltd Method for activating catalyst in fuel reforming catalyst apparatus
WO2008099893A1 (en) * 2007-02-16 2008-08-21 Nippon Oil Corporation Reformer system, fuel cell system, and their operation method
JP2008204655A (en) * 2007-02-16 2008-09-04 Nippon Oil Corp Reformer system, fuel cell system, and its operation method
KR101361597B1 (en) * 2007-02-16 2014-02-12 제이엑스 닛코닛세키에너지주식회사 Reformer system, fuel cell system, and their operation method
TWI473339B (en) * 2007-02-16 2015-02-11 Nippon Oil Corp A reformer system, a fuel cell system and a method of operation
JP2010184843A (en) * 2009-02-13 2010-08-26 Nissan Motor Co Ltd Fuel reforming apparatus
CN102834599A (en) * 2010-04-08 2012-12-19 福特环球技术公司 Engine fuel reformer monitoring
US8853480B2 (en) 2010-07-01 2014-10-07 Meidensha Corporation Method for producing aromatic hydrocarbon
JP2012082131A (en) * 2010-10-14 2012-04-26 Precision Conbustion Inc In-situ coke removal

Also Published As

Publication number Publication date
JP3546658B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
JP3546658B2 (en) Methanol reforming method
JP5065605B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
US6486087B1 (en) Method for periodically reactivating a copper-containing catalyst material
JP4487401B2 (en) Combustion exhaust gas treatment of fuel reformer
US6171992B1 (en) Treatment process for a methanol reforming catalyst therefor
EP1325778B1 (en) Method of activating catalyst for carbon monoxide removal
WO2000048261A1 (en) Carbon monoxide converting apparatus for fuel cell and generating system of fuel cell
US6905998B2 (en) Catalyst performance recovery method for reforming catalyst apparatus
JP4779446B2 (en) Catalyst regeneration method, hydrogen generator and fuel cell system
US6309768B1 (en) Process for regenerating a carbon monoxide oxidation reactor
JP3473896B2 (en) Hydrogen purification equipment
JP4192518B2 (en) Method for operating reformer and reformer
JPH1072202A (en) Method for removing carbon monoxide in reformed gas and device therefor
EP3942639A1 (en) Fuel cell startup/shutdown degradation mitigation by removal of oxygen ad/absorption media
JPH05201702A (en) Selective removing method of carbon monoxide and its device
US7029640B2 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
JP2005238025A (en) Fuel reforming catalyst and fuel reforming system using the same
JPH07185303A (en) Device for removing carbon monoxide
JP2003217636A (en) Modification catalyst degradation determining unit, and hydrogen generator
EP1329417A1 (en) Hydrogen forming device
US20050217181A1 (en) Method and system for supplying hydrogen to fuel cell
JP2006306665A (en) Operation method of hydrogen manufacturing device
JP2003071287A (en) Catalyst membrane, method for producing the same, and method for selectively removing carbon monoxide by using the same
US20030211025A1 (en) Process, control system and apparatus for the optimal operation of a selective oxidation reactor
JP2004175966A (en) Method and apparatus for desulfurizing kerosene, fuel cell system and method for operating the same system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees