JPH117950A - Non-sintered nickel electrode for alkali storage battery - Google Patents

Non-sintered nickel electrode for alkali storage battery

Info

Publication number
JPH117950A
JPH117950A JP9176315A JP17631597A JPH117950A JP H117950 A JPH117950 A JP H117950A JP 9176315 A JP9176315 A JP 9176315A JP 17631597 A JP17631597 A JP 17631597A JP H117950 A JPH117950 A JP H117950A
Authority
JP
Japan
Prior art keywords
cobalt
hydroxide
active material
yttrium
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9176315A
Other languages
Japanese (ja)
Other versions
JP3433050B2 (en
Inventor
Mitsunori Tokuda
光紀 徳田
Kousuke Satoguchi
功祐 里口
Mutsumi Yano
睦 矢野
Shin Fujitani
伸 藤谷
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP17631597A priority Critical patent/JP3433050B2/en
Priority to DE69801870T priority patent/DE69801870T2/en
Priority to EP98110938A priority patent/EP0886331B1/en
Priority to US09/097,679 priority patent/US6077625A/en
Publication of JPH117950A publication Critical patent/JPH117950A/en
Application granted granted Critical
Publication of JP3433050B2 publication Critical patent/JP3433050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain a non-sintered nickel pole which developes a high coefficienet of use of active material is developed in the case of being charged under a high temperature atmosphere by comprising an active material powder comprised of a complex powder consisting of an covered inner consisting of a base body particle containing nickel hydroxide and yttrium covering the base body particle or the like, and a covered outer layer consisting of cobalt covering the covered inner layer or a compound thereof. SOLUTION: A base body particle contains a single component particle consisting of only nickel hydroxide and a particle in which an element such as cobalt or the like is solidified and solved in nickel hydroxide. A cobalt compound of a covered inner layer includes cobalt monoxide or the like. A ratio of the base body particle and the covered inner layer is preferably 3 to 15 wt.%. A covered outer layer consists of yttrium, scandium, lanthanoid, or a compound thereof, and preferably hydroxide, oxide, carbonic acid salt, or fluoride. A rate of the element in the covered outer layer to the nickel oxide in the base body particle is 0.05 to 5 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池用
非焼結式ニッケル極に係わり、詳しくは、常温下で充電
した場合はもとより、高温雰囲気下で充電した場合に
も、高い活物質利用率を発現するアルカリ蓄電池用非焼
結式ニッケル極を提供することを目的とした、活物質の
改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-sintered nickel electrode for an alkaline storage battery, and more particularly, to a high active material utilization rate not only when charged at room temperature but also when charged under a high temperature atmosphere. The present invention relates to an improvement of an active material for the purpose of providing a non-sintered nickel electrode for an alkaline storage battery exhibiting the following.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池な
どの正極として、ニッケル粉末を穿孔鋼板等に焼結させ
て得た焼結基板に活物質(水酸化ニッケル)を含浸させ
てなる焼結式ニッケル極がよく知られている。
2. Description of the Related Art
As a positive electrode of a nickel-hydrogen battery or a nickel-cadmium battery, a sintered nickel electrode obtained by impregnating a sintered substrate obtained by sintering nickel powder into a perforated steel plate or the like and impregnating an active material (nickel hydroxide) is often used. Are known.

【0003】焼結式ニッケル極において活物質の充填量
を多くするためには、多孔度の大きい焼結基板を用いる
必要がある。しかし、焼結によるニッケル粒子間の結合
は弱いので、焼結基板の多孔度を大きくするとニッケル
粒子が焼結基板から脱落し易くなる。従って、実用上
は、焼結基板の多孔度を80%より大きくすることがで
きず、それゆえ焼結式ニッケル極には、活物質の充填量
が少ないという問題がある。また、一般に、ニッケル粉
末の焼結体の孔径は10μm以下と小さいため、活物質
の焼結基板への充填を、煩雑な含浸工程を数回繰り返し
行う必要がある溶液含浸法により行わなければならない
という問題もある。
In order to increase the amount of active material to be filled in a sintered nickel electrode, it is necessary to use a sintered substrate having high porosity. However, since the bond between the nickel particles due to sintering is weak, if the porosity of the sintered substrate is increased, the nickel particles are likely to fall off the sintered substrate. Therefore, in practice, the porosity of the sintered substrate cannot be made larger than 80%, and therefore, the sintered nickel electrode has a problem that the active material filling amount is small. In addition, since the pore size of the sintered body of nickel powder is generally as small as 10 μm or less, the filling of the active material into the sintered substrate must be performed by a solution impregnation method in which a complicated impregnation step needs to be repeated several times. There is also a problem.

【0004】このようなことから、最近、非焼結式ニッ
ケル極が提案されている。非焼結式ニッケル極は、活物
質(水酸化ニッケル)と結着剤(メチルセルロース水溶
液など)との混練物(ペースト)を多孔度の大きい基板
に充填することにより作製される。非焼結式ニッケル極
では、多孔度の大きい基板を用いることができるので
(多孔度95%以上の基板を用いることができる)、活
物質の充填量を多くすることができるとともに、活物質
の基板への充填が容易である。
[0004] Under such circumstances, a non-sintered nickel electrode has recently been proposed. The non-sintered nickel electrode is produced by filling a kneaded material (paste) of an active material (nickel hydroxide) and a binder (aqueous methylcellulose solution) in a substrate having high porosity. In the case of the non-sintered nickel electrode, a substrate having a high porosity can be used (a substrate having a porosity of 95% or more can be used). Filling the substrate is easy.

【0005】しかしながら、非焼結式ニッケル極におい
て活物質の充填量を多くするべく多孔度の大きい基板を
用いると、基板の集電性が悪くなり、活物質利用率が低
下する。
However, if a nonporous nickel electrode is used with a substrate having a high porosity in order to increase the amount of the active material to be filled, the current collecting properties of the substrate will deteriorate and the active material utilization will decrease.

【0006】そこで、非焼結式ニッケル極の活物質利用
率を高めるべく、活物質粒子として、水酸化ニッケル粒
子の表面に水酸化コバルトからなる被覆層を形成した複
合体粒子や、水酸化ニッケル粒子の表面にオキシ水酸化
コバルト層を形成した複合体粒子を用いることが提案さ
れている(特開昭62−234867号公報及び特開平
3−78965号公報)。活物質粒子の表面の電子伝導
性(導電性)を高めることにより、活物質利用率の向上
を図ったものである。
Accordingly, in order to increase the utilization rate of the active material of the non-sintered nickel electrode, composite particles in which a coating layer made of cobalt hydroxide is formed on the surface of nickel hydroxide particles or nickel hydroxide are used as active material particles. It has been proposed to use composite particles having a cobalt oxyhydroxide layer formed on the surface of the particles (JP-A-62-234867 and JP-A-3-78965). The use of the active material is improved by increasing the electron conductivity (conductivity) of the surface of the active material particles.

【0007】しかしながら、上記の非焼結式ニッケル極
には、活物質利用率、特に高温雰囲気下での活物質利用
率が低いという欠点が有る。高温になると、電極の酸素
過電圧が低下して、充電電気量が、水酸化ニッケルのオ
キシ水酸化ニッケルへの充電反応以外に、水(アルカリ
電解液中の水)が分解することによる酸素発生反応にも
消費されるからである。
[0007] However, the above-mentioned non-sintered nickel electrode has a drawback that the utilization rate of the active material, particularly the utilization rate of the active material in a high-temperature atmosphere, is low. When the temperature becomes high, the oxygen overvoltage of the electrode decreases, and the amount of charged electricity is increased by the decomposition reaction of water (water in the alkaline electrolyte) in addition to the charging reaction of nickel hydroxide to nickel oxyhydroxide. Is also consumed.

【0008】そこで、幅広い温度範囲(0〜45°C)
にわたって高い活物質利用率を発現する非焼結式ニッケ
ル極として、水酸化ニッケル粉末に金属コバルト、水酸
化コバルト及びイットリウム化合物を添加したものが、
提案されている(特開平5−28992号公報参照)。
Therefore, a wide temperature range (0 to 45 ° C.)
As a non-sintered nickel electrode that expresses a high active material utilization rate over time, one obtained by adding metallic cobalt, cobalt hydroxide and an yttrium compound to nickel hydroxide powder,
It has been proposed (see JP-A-5-28992).

【0009】しかしながら、本発明者らが検討した結
果、特開平5−28992号公報に開示の非焼結式ニッ
ケル極には、60°C程度の高温雰囲気下で充電する
と、活物質利用率が大きく低下するという課題があるこ
とが分かった。
However, as a result of investigations by the present inventors, when the non-sintered nickel electrode disclosed in Japanese Patent Application Laid-Open No. Hei 5-28992 is charged in a high-temperature atmosphere of about 60 ° C., the active material utilization rate is reduced. It was found that there was a problem of a large decrease.

【0010】本発明は、以上の事情に鑑みなされたもの
であって、常温下で充電した場合はもとより、高温雰囲
気下で充電した場合にも、高い活物質利用率を発現する
アルカリ蓄電池用非焼結式ニッケル極を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and is not limited to a battery for an alkaline storage battery that exhibits a high active material utilization rate not only when charged at room temperature but also when charged under a high temperature atmosphere. An object of the present invention is to provide a sintered nickel electrode.

【0011】[0011]

【課題を解決するための手段】本発明に係るアルカリ蓄
電池用非焼結式ニッケル極(本発明電極)においては、
活物質粉末が、水酸化ニッケルを含有する基体粒子と、
当該基体粒子を被覆するコバルト又はコバルト化合物か
らなる被覆内層と、当該被覆内層を被覆するイットリウ
ム、スカンジウム若しくはランタノイド、又は、それら
の化合物からなる被覆外層とからなる複合体粒子からな
る。
In the non-sintered nickel electrode for an alkaline storage battery according to the present invention (the electrode of the present invention),
Active material powder, the base particles containing nickel hydroxide,
The composite particles are composed of an inner coating layer made of cobalt or a cobalt compound, which coats the base particles, and an outer coating layer made of yttrium, scandium, or lanthanoid, or a compound thereof, which coats the inner coating layer.

【0012】本発明電極の活物質粉末は、水酸化ニッケ
ルを含有する基体粒子を、被覆内層と、被覆外層との二
層で被覆した複合体粒子からなる。
The active material powder of the electrode of the present invention is composed of composite particles obtained by coating base particles containing nickel hydroxide with two layers of an inner coating layer and an outer coating layer.

【0013】水酸化ニッケルを含有する基体粒子として
は、水酸化ニッケルのみからなる単一成分粒子の外、水
酸化ニッケルに、コバルト、亜鉛、カドミウム、カルシ
ウム、マンガン、マグネシウム、ビスマス、アルミニウ
ム、ランタノイド及びイットリウムから選ばれた少なく
とも一種の元素が固溶した粒子(固溶体粒子)も含まれ
る。水酸化ニッケルに、上記の元素を一種又は二種以上
固溶させることにより、非焼結式ニッケル極の充電時の
膨化が抑制される。
The base particles containing nickel hydroxide include, in addition to single component particles consisting of nickel hydroxide only, nickel hydroxide containing cobalt, zinc, cadmium, calcium, manganese, magnesium, bismuth, aluminum, lanthanoid, Particles in which at least one element selected from yttrium is dissolved (solid solution particles) are also included. By making one or more of the above elements form a solid solution in nickel hydroxide, expansion of the non-sintered nickel electrode during charging is suppressed.

【0014】基体粒子を被覆する被覆内層は、コバルト
又はコバルト化合物からなる。コバルト化合物として
は、一酸化コバルト、水酸化コバルト、オキシ水酸化コ
バルト、ナトリウム含有コバルト化合物が例示される。
The inner coating layer for coating the base particles is made of cobalt or a cobalt compound. Examples of the cobalt compound include cobalt monoxide, cobalt hydroxide, cobalt oxyhydroxide, and a sodium-containing cobalt compound.

【0015】水酸化コバルトからなる被覆内層を基体粒
子の上に形成する方法としては、例えば、コバルト塩水
溶液(例えば、硫酸コバルト水溶液など)に、水酸化ニ
ッケル粉末を添加し、攪拌しながらアルカリ水溶液(例
えば、水酸化ナトリウム水溶液など)を滴下してpHを
9〜12(通常11程度)に調整した後、pHが低下し
た時点でアルカリ水溶液を適宜滴下してpHをほぼ一定
に保持しつつ所定時間攪拌して、基体粒子の表面に水酸
化コバルトを析出させる方法が挙げられる。
As a method for forming a coating inner layer made of cobalt hydroxide on the base particles, for example, nickel hydroxide powder is added to an aqueous solution of a cobalt salt (eg, an aqueous solution of cobalt sulfate), and an aqueous alkali solution is stirred while stirring. (E.g., aqueous sodium hydroxide solution) to adjust the pH to 9 to 12 (normally about 11), and then, when the pH drops, appropriately add an alkaline aqueous solution to maintain the pH substantially constant. For example, there is a method in which cobalt hydroxide is precipitated on the surface of the base particles by stirring for a time.

【0016】水酸化コバルトからなる被覆内層は、水酸
化ニッケル粉末と水酸化コバルト粉末とを不活性ガス中
にて圧縮磨砕粉砕機を用いて乾式混合するメカニカルチ
ャージ法によっても形成することができる。上記のメカ
ニカルチャージ法において、水酸化コバルト粉末に代え
て一酸化コバルト粉末又はコバルト粉末を用いれば、そ
れぞれ一酸化コバルトからなる被覆内層、及び、コバル
トからなる被覆内層を形成することができる。
The coating inner layer made of cobalt hydroxide can also be formed by a mechanical charge method in which nickel hydroxide powder and cobalt hydroxide powder are dry-mixed in an inert gas using a compression grinding mill. . In the above-described mechanical charge method, if a cobalt monoxide powder or a cobalt powder is used instead of the cobalt hydroxide powder, a coating inner layer made of cobalt monoxide and a coating inner layer made of cobalt can be formed.

【0017】オキシ水酸化コバルトからなる被覆内層
は、例えば、基体粒子の表面に水酸化コバルト層を形成
した後、この水酸化コバルト層を40°C程度に加熱し
た過酸化水素水で酸化することにより形成することがで
きる。ナトリウム含有コバルト化合物からなる被覆内層
は、例えば、基体粒子の表面に、コバルト層、又は、水
酸化コバルト層、一酸化コバルト層、オキシ水酸化コバ
ルト層等のコバルト化合物層を形成した粒子粉末に、水
酸化ナトリウム水溶液を添加し、酸素存在下にて加熱処
理することにより形成することができる。水酸化ナトリ
ウム水溶液を添加するだけではナトリウム含有コバルト
化合物からなる被覆層は形成されず、酸素存在下にて加
熱処理することが必要である。このときの加熱処理温度
は、50〜200°Cが好ましい。加熱処理温度が50
°C未満の場合は、電導率の低いCoHO2 が多く析出
し、一方加熱処理温度が200°Cを越えた場合は、電
導率の低い四酸化三コバルト(Co3 4 )が多く析出
する。なお、コバルト化合物層がオキシ水酸化コバルト
層の場合は、50°C未満で加熱処理してもCoHO2
が析出することはないが、ナトリウムが挿入されにくく
なる。加熱処理時間は、使用する水酸化ナトリウム水溶
液の量、濃度、加熱処理温度等によって異なる。一般的
には、0.5〜10時間である。
The inner coating layer made of cobalt oxyhydroxide is formed, for example, by forming a cobalt hydroxide layer on the surface of the base particles and then oxidizing the cobalt hydroxide layer with a hydrogen peroxide solution heated to about 40 ° C. Can be formed. Coating inner layer made of sodium-containing cobalt compound, for example, on the surface of the substrate particles, a cobalt layer, or a cobalt hydroxide layer, a cobalt monoxide layer, a particle powder formed with a cobalt compound layer such as a cobalt oxyhydroxide layer, It can be formed by adding an aqueous sodium hydroxide solution and performing heat treatment in the presence of oxygen. A coating layer made of a sodium-containing cobalt compound is not formed only by adding an aqueous solution of sodium hydroxide, and it is necessary to perform a heat treatment in the presence of oxygen. The heat treatment temperature at this time is preferably 50 to 200 ° C. Heat treatment temperature is 50
If the temperature is lower than ° C, a large amount of CoHO 2 having a low conductivity is precipitated, while if the heat treatment temperature exceeds 200 ° C, a large amount of tricobalt tetroxide (Co 3 O 4 ) having a low conductivity is deposited. . In the case where the cobalt compound layer is a cobalt oxyhydroxide layer, CoHO 2
Is not precipitated, but sodium is hardly inserted. The heat treatment time differs depending on the amount and concentration of the aqueous sodium hydroxide used, the heat treatment temperature, and the like. Generally, it is 0.5 to 10 hours.

【0018】ナトリウム含有コバルト化合物の具体例と
しては、ナトリウム含有水酸化コバルト、ナトリウム含
有オキシ水酸化コバルト及びこれらの混合物が挙げられ
る。ナトリウム含有コバルト化合物の化学構造は、本発
明者らにおいても現在のところ定かでないが、これが極
めて高い電導率を有することから、コバルト化合物とナ
トリウムとの単なる混合物ではなく、コバルト化合物の
結晶中にナトリウムが取り込まれた形の特殊な結晶構造
を有する化合物ではないかと推察される。ナトリウム含
有コバルト化合物の好適なナトリウム含有率は、0.1
〜10重量%である。ナトリウム含有率がこの範囲を外
れると被覆層の導電性が悪くなり、活物質利用率が低下
する傾向がある。
Specific examples of the sodium-containing cobalt compound include sodium-containing cobalt hydroxide, sodium-containing cobalt oxyhydroxide, and a mixture thereof. The chemical structure of the sodium-containing cobalt compound is not yet clear to the present inventors, but since it has an extremely high conductivity, it is not a simple mixture of the cobalt compound and sodium, but sodium in the crystal of the cobalt compound. Is presumed to be a compound having a special crystal structure in which is incorporated. The preferred sodium content of the sodium-containing cobalt compound is 0.1
-10% by weight. If the sodium content is out of this range, the conductivity of the coating layer tends to deteriorate, and the utilization rate of the active material tends to decrease.

【0019】基体粒子と被覆内層の総量に対する被覆内
層の比率は、3〜15重量%が好ましい。この比率が3
重量%未満の場合は、活物質粒子の表面の電子伝導性が
不充分となり、活物質利用率の高い非焼結式ニッケル極
を得ることが困難となる。一方、同比率が15重量%を
超えた場合は、活物質(水酸化ニッケル)の充填密度が
小さくなり、電極の比容量が減少する。
The ratio of the coating inner layer to the total amount of the base particles and the coating inner layer is preferably 3 to 15% by weight. This ratio is 3
If the amount is less than the weight percentage, the electron conductivity of the surface of the active material particles becomes insufficient, and it becomes difficult to obtain a non-sintered nickel electrode having a high active material utilization rate. On the other hand, when the ratio exceeds 15% by weight, the packing density of the active material (nickel hydroxide) decreases, and the specific capacity of the electrode decreases.

【0020】被覆内層を被覆する被覆外層は、イットリ
ウム、スカンジウム若しくはランタノイド、又は、それ
らの化合物からなる。イットリウム化合物としては、水
酸化イットリウム(Y(OH)3 )、三酸化二イットリ
ウム(Y2 3 )、炭酸イットリウム(Y2 (CO3
3 )、フッ化イットリウム(YF3 )が例示される。ス
カンジウム又はランタノイドの化合物としては、それら
の水酸化物(Sc(OH)3 、La(OH)3 、Ce
(OH)3 、Pr(OH)3 、Nd(OH)3 、Pm
(OH)3 、Eu(OH)3 、Gd(OH)3 、Tb
(OH)3 、Dy(OH)3 、Ho(OH)3 、Er
(OH)3 、Tm(OH)3 など)、酸化物(Sc2
3 、La2 3 、CeO2 、Pr6 11、Nd2 3
Sm2 3 、Eu2 3 、Gd2 3 、Tb4 7 、D
2 3 、Ho2 3 、Er2 3 、Tm2 3 、Yb
2 3 、Lu2 3 など)、炭酸塩(La2 (CO3
3 、Ce2(CO3 3 、Nd2 (CO3 3 、Sm2
(CO3 3 など)又はフッ化物(LaF3 、Ce
3 、PrF3 、NdF3 、SmF3 、GdF3 、Tb
3 、DyF3 、ErF3 、YbF3 、HoF3 など)
が例示される。
The outer coating layer covering the inner coating layer is made of yttrium, scandium or lanthanoid, or a compound thereof. As the yttrium compound, yttrium hydroxide (Y (OH) 3 ), yttrium trioxide (Y 2 O 3 ), yttrium carbonate (Y 2 (CO 3 ))
3 ) and yttrium fluoride (YF 3 ). Scandium or lanthanoid compounds include those hydroxides (Sc (OH) 3 , La (OH) 3 , Ce
(OH) 3 , Pr (OH) 3 , Nd (OH) 3 , Pm
(OH) 3 , Eu (OH) 3 , Gd (OH) 3 , Tb
(OH) 3 , Dy (OH) 3 , Ho (OH) 3 , Er
(OH) 3 , Tm (OH) 3, etc.), oxides (Sc 2 O
3 , La 2 O 3 , CeO 2 , Pr 6 O 11 , Nd 2 O 3 ,
Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 4 O 7 , D
y 2 O 3, Ho 2 O 3, Er 2 O 3, Tm 2 O 3, Yb
2 O 3 , Lu 2 O 3, etc., carbonate (La 2 (CO 3 )
3 , Ce 2 (CO 3 ) 3 , Nd 2 (CO 3 ) 3 , Sm 2
(CO 3 ) 3 ) or fluoride (LaF 3 , Ce)
F 3 , PrF 3 , NdF 3 , SmF 3 , GdF 3 , Tb
Such as F 3, DyF 3, ErF 3 , YbF 3, HoF 3)
Is exemplified.

【0021】イットリウム、スカンジウム又はランタノ
イドの水酸化物からなる被覆外層を被覆内層の上に形成
する方法としては、例えば、イットリウム、スカンジウ
ム又はランタノイドの塩水溶液(例えば、硫酸イットリ
ウム水溶液など)に、被覆内層を形成した水酸化ニッケ
ル粉末を添加し、攪拌しながらアルカリ水溶液(例え
ば、水酸化ナトリウム水溶液など)を滴下してpHを9
〜12(通常11程度)に調整した後、pHが低下した
時点でアルカリ水溶液を適宜滴下してpHをほぼ一定に
保持しつつ所定時間攪拌して、被覆内層の表面にイット
リウム、スカンジウム又はランタノイドの水酸化物を析
出させる方法が挙げられる。
As a method for forming an outer coating layer made of a hydroxide of yttrium, scandium or lanthanoid on the inner coating layer, for example, an aqueous solution of a salt of yttrium, scandium or lanthanoid (for example, an aqueous solution of yttrium sulfate or the like) may be used. Was added, and an aqueous alkaline solution (eg, aqueous sodium hydroxide solution) was added dropwise with stirring to adjust the pH to 9
After adjusting the pH to about 12 (usually about 11), when the pH is lowered, an alkaline aqueous solution is appropriately dropped and stirred for a predetermined time while keeping the pH almost constant, and the surface of the coating inner layer is coated with yttrium, scandium or lanthanoid. A method of precipitating a hydroxide may be used.

【0022】イットリウム、スカンジウム又はランタノ
イドの水酸化物からなる被覆外層は、水酸化ニッケル粉
末とイットリウム、スカンジウム又はランタノイドの水
酸化物粉末とを不活性ガス中にて圧縮磨砕粉砕機を用い
て乾式混合するメカニカルチャージ法によっても形成す
ることができる。このメカニカルチャージ法において、
イットリウム、スカンジウム又はランタノイドの水酸化
物粉末に代えて、イットリウム、スカンジウム若しくは
ランタノイド、又は、それらの酸化物、炭酸塩若しくは
フッ化物の粉末を用いれば、それぞれイットリウム、ス
カンジウム若しくはランタノイド、又は、それらの酸化
物、炭酸塩若しくはフッ化物からなる被覆外層を形成す
ることができる。
The coating outer layer made of yttrium, scandium or lanthanoid hydroxide is formed by dry-drying nickel hydroxide powder and yttrium, scandium or lanthanoid hydroxide powder in an inert gas using a compression grinding machine. It can also be formed by a mechanical charge method of mixing. In this mechanical charge method,
If yttrium, scandium, or lanthanoid hydroxide powder is used instead of yttrium, scandium, or lanthanoid, or their oxide, carbonate, or fluoride powder, yttrium, scandium, or lanthanoid, or their oxidation, respectively. An outer coating layer made of a substance, a carbonate or a fluoride can be formed.

【0023】基体粒子中の水酸化ニッケルに対する被覆
外層中のイットリウム、スカンジウム又はランタノイド
の比率は、0.05〜5重量%が好ましい。この比率が
0.05重量%未満の場合は、高温雰囲気下での活物質
利用率の低下を充分に抑制することが困難となり、一方
同比率が5重量%を超えた場合は、活物質(水酸化ニッ
ケル)の充填密度が小さくなり、電極の比容量(放電容
量)が減少する。
The ratio of yttrium, scandium or lanthanoid in the outer coating layer to nickel hydroxide in the base particles is preferably 0.05 to 5% by weight. When this ratio is less than 0.05% by weight, it is difficult to sufficiently suppress the decrease in the utilization rate of the active material under a high temperature atmosphere. On the other hand, when the ratio exceeds 5% by weight, the active material ( The packing density of nickel hydroxide decreases, and the specific capacity (discharge capacity) of the electrode decreases.

【0024】本発明を適用して好適なアルカリ蓄電池用
非焼結式ニッケル極としては、導電性芯体に、活物質を
含有するペーストを塗布し、乾燥してなるペースト式ニ
ッケル極が挙げられる。このときの導電性芯体の具体例
としては、ニッケル発泡体、フェルト状金属繊維多孔体
及びパンチングメタルが挙げられる。その外、本発明
は、チューブ状の金属導電体の中に活物質を充填するチ
ューブ式ニッケル極、ポケット状の金属導電体の中に活
物質を充填するポケット式ニッケル極、活物質を網目状
の金属導電体とともに加圧成形するボタン型電池用ニッ
ケル極などにも、適用して好適である。
As a non-sintered nickel electrode suitable for an alkaline storage battery to which the present invention is applied, a paste-type nickel electrode obtained by applying a paste containing an active material to a conductive core and drying the paste is used. . Specific examples of the conductive core at this time include a nickel foam, a felt-like metal fiber porous body, and a punching metal. In addition, the present invention provides a tubular nickel electrode for filling an active material in a tubular metal conductor, a pocket nickel electrode for filling an active material in a pocket-shaped metal conductor, and a mesh-like active material. The present invention is also suitably applied to a nickel electrode for a button type battery and the like, which is molded under pressure together with the metal conductor.

【0025】本発明電極を正極として用いて好適なアル
カリ蓄電池の具体例としては、ニッケル−水素蓄電池
(負極:水素吸蔵合金電極)、ニッケル−カドミウム蓄
電池(負極:カドミウム電極)及びニッケル−亜鉛蓄電
池(負極:亜鉛電極)が挙げられる。
Specific examples of a suitable alkaline storage battery using the electrode of the present invention as a positive electrode include a nickel-hydrogen storage battery (negative electrode: hydrogen storage alloy electrode), a nickel-cadmium storage battery (negative electrode: cadmium electrode), and a nickel-zinc storage battery ( Negative electrode: zinc electrode).

【0026】本発明電極は、水酸化ニッケルを含有する
基体粒子と、電子伝導性を付与するコバルト又はコバル
ト化合物からなる被覆内層と、高温充電時の酸素過電圧
の低下を抑制するイットリウム、スカンジウム若しくは
ランタノイド、又は、それらの化合物からなる被覆外層
とからなる複合体粒子を活物質として使用しているの
で、高温雰囲気下で充電した場合の活物質利用率の低下
が少ない。被覆内層により、活物質粒子表面の電子伝導
性が高められるとともに、被覆外層により、高温充電時
の酸素過電圧の低下が抑制されて、充電電気量が活物質
の充電反応に有効に消費されるからである。
The electrode of the present invention comprises a base particle containing nickel hydroxide, a coating inner layer made of cobalt or a cobalt compound for imparting electron conductivity, and a yttrium, scandium or lanthanoid for suppressing a decrease in oxygen overvoltage during high-temperature charging. Alternatively, since composite particles composed of a coating outer layer made of such a compound and an outer layer are used as an active material, a decrease in the active material utilization rate when charged in a high-temperature atmosphere is small. The inner layer of the coating enhances the electron conductivity on the surface of the active material particles, and the outer layer of the coating suppresses a decrease in oxygen overvoltage during high-temperature charging, so that the amount of charged electricity is effectively consumed for the charging reaction of the active material. It is.

【0027】因みに、水酸化ニッケル粉末に、金属コバ
ルト、水酸化コバルト及びイットリウム化合物を粉体混
合する先に挙げた特開平5−28992号公報に開示の
方法では、本発明電極の如き優れた高温での充電特性を
有する非焼結式ニッケル極は得られない。金属コバルト
及び水酸化コバルトの水酸化ニッケル粒子表面に対する
電子伝導性付与効果が、イットリウム化合物の添加によ
り減殺されるからである。
Incidentally, the method disclosed in Japanese Patent Application Laid-Open No. Hei 5-28992 mentioned above, in which metallic cobalt, cobalt hydroxide and yttrium compound are mixed with nickel hydroxide powder, is excellent in high temperature such as the electrode of the present invention. A non-sintered nickel electrode having the charging characteristics described above cannot be obtained. This is because the effect of imparting electron conductivity to the surface of the nickel hydroxide particles of the metal cobalt and the cobalt hydroxide is reduced by the addition of the yttrium compound.

【0028】[0028]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0029】(予備実験)水酸化コバルトと、25重量
%水酸化ナトリウム水溶液とを、重量比1:10で混合
し、85°Cで8時間加熱処理した後、水洗し、60°
Cで乾燥して、ナトリウム含有コバルト化合物を作製し
た。作製したナトリウム含有コバルト化合物のナトリウ
ム含有率を原子吸光分析により求めたところ、1重量%
であった。
(Preliminary experiment) Cobalt hydroxide and a 25% by weight aqueous sodium hydroxide solution were mixed at a weight ratio of 1:10, heated at 85 ° C. for 8 hours, washed with water, and washed at 60 ° C.
C was dried to produce a sodium-containing cobalt compound. When the sodium content of the produced sodium-containing cobalt compound was determined by atomic absorption analysis, it was 1% by weight.
Met.

【0030】(実施例1)下記のステップ1〜5の操作
により、本発明電極及びアルカリ蓄電池を作製した。
Example 1 An electrode and an alkaline storage battery of the present invention were manufactured by the following steps 1 to 5.

【0031】ステップ1:硫酸コバルト13.1gの水
溶液1リットルに、水酸化ニッケル粉末(平均粒径10
μm)100gを入れ、攪拌しながら1Mの水酸化ナト
リウム水溶液を加えて液のpHを11に調整した後、1
時間攪拌を続けて反応させた。なお、液のpHが若干低
下した時点で1M水酸化ナトリウム水溶液を適宜滴下し
て液のpHを11に保持した。このときのpHの監視は
自動温度補償付きガラス電極(pHメータ)にて行っ
た。
Step 1: To 1 liter of an aqueous solution of 13.1 g of cobalt sulfate, add nickel hydroxide powder (average particle size of 10
μm), and the pH of the solution was adjusted to 11 by adding a 1M aqueous sodium hydroxide solution with stirring.
The reaction was continued while stirring for hours. When the pH of the solution dropped slightly, a 1M aqueous solution of sodium hydroxide was appropriately added dropwise to maintain the pH of the solution at 11. The pH was monitored at this time using a glass electrode (pH meter) with automatic temperature compensation.

【0032】次いで、沈殿物をろ別し、水洗し、真空乾
燥して、水酸化ニッケル粒子(基体粒子)の表面に水酸
化コバルトからなる被覆層が形成された粒子粉末を得
た。水酸化ニッケルと水酸化コバルトの総量に対する水
酸化コバルトの比率を原子吸光分析によりコバルト量を
測定して求めたところ、5重量%であった。
Next, the precipitate was separated by filtration, washed with water, and dried under vacuum to obtain a particle powder in which a coating layer made of cobalt hydroxide was formed on the surface of nickel hydroxide particles (substrate particles). The ratio of cobalt hydroxide to the total amount of nickel hydroxide and cobalt hydroxide was determined by measuring the amount of cobalt by atomic absorption spectrometry and found to be 5% by weight.

【0033】ステップ2:ステップ1で得た粒子粉末
と、25重量%水酸化ナトリウム水溶液とを、重量比
1:10で混合し、85°Cで8時間加熱処理した後、
水洗し、65°Cで乾燥して、基体粒子の表面に、ナト
リウム含有コバルト化合物からなる被覆内層が形成され
た粒子粉末を作製した。ナトリウム含有コバルト化合物
のナトリウム含有率は、先の予備実験から、1重量%と
推定される。水酸化ニッケルとナトリウム含有コバルト
化合物の総量に対するナトリウム含有コバルト化合物
(被覆内層)の比率を原子吸光分析によりコバルト量を
測定して求めたところ、約5重量%であった。
Step 2: The particle powder obtained in Step 1 and a 25% by weight aqueous sodium hydroxide solution are mixed at a weight ratio of 1:10, and heated at 85 ° C. for 8 hours.
After washing with water and drying at 65 ° C., a particle powder having a coated inner layer made of a sodium-containing cobalt compound formed on the surface of the base particles was prepared. The sodium content of the sodium-containing cobalt compound is estimated to be 1% by weight from previous preliminary experiments. The ratio of the sodium-containing cobalt compound (coating inner layer) to the total amount of nickel hydroxide and the sodium-containing cobalt compound was determined to be about 5% by weight by measuring the amount of cobalt by atomic absorption analysis.

【0034】ステップ3:硫酸イットリウム2.62g
の水溶液1リットルに、ステップ2で得た粒子粉末10
0gを入れ、攪拌しながら1Mの水酸化ナトリウム水溶
液を加えて液のpHを11に調整した後、1時間攪拌を
続けて反応させた。なお、ステップ1と同様に、液のp
Hが若干低下した時点で1M水酸化ナトリウム水溶液を
適宜滴下して液のpHを11に保持した。
Step 3: 2.62 g of yttrium sulfate
1 liter of the aqueous solution of
After adding 0 g and stirring, a 1M aqueous solution of sodium hydroxide was added to adjust the pH of the solution to 11, and stirring was continued for 1 hour to cause a reaction. Note that, as in step 1, the p
When H dropped slightly, 1M aqueous sodium hydroxide solution was appropriately added dropwise to maintain the pH of the solution at 11.

【0035】次いで、沈殿物をろ別し、水洗し、真空乾
燥して、ステップ2で得た粒子の表面に水酸化イットリ
ウムからなる被覆外層が形成された複合体粒子からなる
活物質粉末を得た。基体粒子中の水酸化ニッケルに対す
る被覆外層中のイットリウムの比率を、発光分析により
イットリウム量を測定して求めたところ、1重量%であ
った。
Next, the precipitate is separated by filtration, washed with water, and vacuum-dried to obtain an active material powder composed of composite particles having a coating outer layer made of yttrium hydroxide formed on the surface of the particles obtained in step 2. Was. The ratio of yttrium in the coating outer layer to nickel hydroxide in the base particles was determined by measuring the amount of yttrium by emission spectrometry, and was 1% by weight.

【0036】ステップ4:ステップ3で得た活物質粉末
(平均粒径10μm)100重量部と、結着剤としての
1重量%メチルセルロース水溶液20重量部とを混練し
てペーストを調製し、このペーストをニッケル発泡体
(多孔度95%、平均孔径200μm)からなる多孔性
の基板に充填し、乾燥し、加圧成形して、非焼結式ニッ
ケル極(本発明電極)a1を作製した。本発明電極a1
の寸法は、縦70mm、横40mm、厚み0.70mm
であった。以下の実施例及び比較例で作製した非焼結式
ニッケル極の寸法も、全てこれに統一した。
Step 4: A paste is prepared by kneading 100 parts by weight of the active material powder (average particle size: 10 μm) obtained in Step 3 and 20 parts by weight of a 1% by weight aqueous solution of methylcellulose as a binder. Was filled in a porous substrate made of a nickel foam (porosity: 95%, average pore diameter: 200 μm), dried, and pressed to produce a non-sintered nickel electrode (electrode of the present invention) a1. Inventive electrode a1
The dimensions are 70mm long, 40mm wide, 0.70mm thick
Met. The dimensions of the non-sintered nickel electrodes produced in the following Examples and Comparative Examples were all unified.

【0037】ステップ5:ステップ4で作製した本発明
電極a1(正極)、この正極の1.5倍の容量を有する
従来公知のペースト式カドミウム極(負極)、ポリアミ
ド不織布(セパレータ)、30重量%水酸化カリウム水
溶液(アルカリ電解液)、金属製の電池缶、金属製の電
池蓋などを用いて、AAサイズのアルカリ蓄電池(電池
容量:約1000mAh)A1を作製した。カドミウム
極の寸法は、縦85mm、横40mm、厚み0.35m
mである。非焼結式ニッケル極の特性を調べるべく、負
極の容量を正極のそれの約1.5倍とした。なお、以下
の実施例及び比較例で作製した電池についても、同様
に、負極の容量を正極のそれの約1.5倍とした。
Step 5: The electrode a1 of the present invention (positive electrode) prepared in step 4, a conventionally known paste-type cadmium electrode (negative electrode) having 1.5 times the capacity of the positive electrode, a polyamide nonwoven fabric (separator), 30% by weight An AA-size alkaline storage battery (battery capacity: about 1000 mAh) A1 was prepared using a potassium hydroxide aqueous solution (alkaline electrolyte), a metal battery can, a metal battery cover, and the like. The dimensions of the cadmium electrode are 85mm long, 40mm wide, 0.35m thick
m. In order to examine the characteristics of the non-sintered nickel electrode, the capacity of the negative electrode was set to about 1.5 times that of the positive electrode. In addition, the capacity of the negative electrode was similarly set to about 1.5 times that of the positive electrode in the batteries manufactured in the following Examples and Comparative Examples.

【0038】(実施例2〜17)ステップ3において、
硫酸イットリウムに代えて、表1に示すスカンジウム又
はランタノイドの硝酸塩を使用したこと以外は実施例1
と同様にして、本発明電極a2〜a17及びアルカリ蓄
電池A2〜A17を作製した。
(Embodiments 2 to 17) In step 3,
Example 1 except that scandium or a lanthanoid nitrate shown in Table 1 was used instead of yttrium sulfate.
In the same manner as in the above, electrodes a2 to a17 of the present invention and alkaline storage batteries A2 to A17 were produced.

【0039】[0039]

【表1】 [Table 1]

【0040】(実施例18〜21)ステップ2で得た粒
子粉末100gと、イッテルビウム(Yb)2.04
g、三酸化二イッテルビウム(Yb2 3 )2.32
g、フッ化イッテルビウム(YbF3 )2.71g又は
炭酸イッテルビウム(Yb2 (CO3 3 )3.10g
とを、メカニカルチャージ法により粉体混合して、ステ
ップ2で得た粒子の表面に被覆外層が形成された複合体
粒子からなる活物質粉末を得た。これらの各活物質粉末
を用いたこと以外はステップ4及び5と同様にして、本
発明電極a18〜a21及びアルカリ蓄電池A18〜A
21を作製した。
(Examples 18 to 21) 100 g of the particle powder obtained in Step 2 and 2.04 of ytterbium (Yb)
g, ytterbium trioxide (Yb 2 O 3 ) 2.32
g, ytterbium fluoride (YbF 3 ) 2.71 g or ytterbium carbonate (Yb 2 (CO 3 ) 3 ) 3.10 g
Were mixed by a mechanical charge method to obtain an active material powder composed of composite particles having the outer coating layer formed on the surface of the particles obtained in Step 2. Except that these respective active material powders were used, the electrodes a18 to a21 of the present invention and the alkaline storage batteries A18 to A
21 was produced.

【0041】(実施例22)硫酸ニッケル166.9g
の水溶液1000mlに、硝酸イッテルビウム4.87
gを溶かした水溶液に、アンモニア水を滴下した後、激
しく攪拌しながら1Mの水酸化ナトリウム水溶液を滴下
して、水洗し、乾燥して、水酸化ニッケルにイッテルビ
ウムが固溶した固溶体粒子粉末を得た。この固溶体粒子
粉末を、水酸化ニッケル粉末に代えて用いたこと以外
は、実施例16と同様にして、本発明電極a22及びア
ルカリ蓄電池A22を作製した。
Example 22 166.9 g of nickel sulfate
4.87 ml of an aqueous solution of ytterbium nitrate
Aqueous ammonia was added dropwise to the aqueous solution in which g was dissolved, and then a 1M aqueous solution of sodium hydroxide was added dropwise with vigorous stirring, followed by washing with water and drying to obtain solid solution particles in which ytterbium was dissolved in nickel hydroxide. Was. An electrode a22 of the present invention and an alkaline storage battery A22 were produced in the same manner as in Example 16, except that this solid solution particle powder was used instead of the nickel hydroxide powder.

【0042】(実施例23〜26)硫酸ニッケル16
6.9gの水溶液1000mlに、硝酸イッテルビウム
4.87gを溶かした水溶液に、アンモニア水を滴下し
た後、激しく攪拌しながら1Mの水酸化ナトリウム水溶
液を滴下して、水洗し、乾燥して、水酸化ニッケルにイ
ッテルビウムが固溶した固溶体粒子粉末を得た。次い
で、この固溶体粒子粉末と、25重量%水酸化ナトリウ
ム水溶液とを、重量比1:10で混合し、85°Cで8
時間加熱処理した後、水洗し、65°Cで乾燥して、固
溶体粒子の表面に、ナトリウム含有コバルト化合物から
なる被覆内層が形成された粒子粉末を作製した。この粒
子粉末を100gと、イッテルビウム2.04g、三酸
化二イッテルビウム4.65g、フッ化イッテルビウム
2.71g又は炭酸イッテルビウム3.10gとを、メ
カニカルチャージ法により粉体混合して、複合体粒子か
らなる活物質粉末を得た。これらの各活物質粉末を用い
たこと以外はステップ4及び5と同様にして、本発明電
極a23〜a26及びアルカリ蓄電池A23〜A26を
作製した。
(Examples 23 to 26) Nickel sulfate 16
Aqueous ammonia was added dropwise to an aqueous solution in which 4.87 g of ytterbium nitrate was dissolved in 1000 ml of an aqueous solution of 6.9 g, and then a 1M aqueous solution of sodium hydroxide was added dropwise with vigorous stirring. A solid solution particle powder in which ytterbium was dissolved in nickel was obtained. Next, the solid solution particle powder and a 25% by weight aqueous sodium hydroxide solution were mixed at a weight ratio of 1:10, and mixed at 85 ° C. for 8 hours.
After the heat treatment for a time, the particles were washed with water and dried at 65 ° C. to prepare a particle powder in which a coating inner layer made of a sodium-containing cobalt compound was formed on the surface of the solid solution particles. 100 g of this particle powder, 2.04 g of ytterbium, 4.65 g of ytterbium trioxide, 2.71 g of ytterbium fluoride, or 3.10 g of ytterbium carbonate are powder-mixed by a mechanical charge method to form composite particles. An active material powder was obtained. Except that these respective active material powders were used, electrodes a23 to a26 of the present invention and alkaline storage batteries A23 to A26 were produced in the same manner as in steps 4 and 5.

【0043】(比較例1)ステップ3を実施しなかった
こと以外は実施例1と同様にして、比較電極b及び比較
電池Bを作製した。
Comparative Example 1 A comparative electrode b and a comparative battery B were produced in the same manner as in Example 1 except that Step 3 was not performed.

【0044】(比較例2)水酸化ニッケル100重量
部、金属コバルト7重量部、水酸化コバルト5重量部、
三酸化二イットリウム(平均粒径1μm)3重量部、結
着剤としての1重量%メチルセルロース水溶液20重量
部とを混練してペーストを調製し、このペーストをニッ
ケル発泡体(多孔度95%、平均孔径200μm)から
なる多孔性の基板に充填し、乾燥し、加圧成形して、比
較電極cを作製した。次いで、ステップ5においてこの
比較電極cを使用したこと以外は実施例1と同様にし
て、比較電池Cを作製した。この電池は、特開平5−2
8992号公報に開示の方法に準拠して作製したもので
ある。
Comparative Example 2 100 parts by weight of nickel hydroxide, 7 parts by weight of metallic cobalt, 5 parts by weight of cobalt hydroxide,
A paste is prepared by kneading 3 parts by weight of yttrium trioxide (average particle size: 1 μm) and 20 parts by weight of a 1% by weight aqueous solution of methylcellulose as a binder, and the paste is formed into a nickel foam (porosity: 95%, average A porous substrate having a pore size of 200 μm) was filled, dried, and pressed to form a comparative electrode c. Next, a comparative battery C was produced in the same manner as in Example 1 except that the comparative electrode c was used in Step 5. This battery is disclosed in
It was prepared according to the method disclosed in JP-A-8992.

【0045】(比較例3)ステップ3に代えて、ステッ
プ2で得た粒子粉末中の水酸化ニッケル100重量部に
対して、水酸化イットリウムを、イットリウムとして1
重量部添加したこと以外は、実施例1と同様にして、比
較電極d及び比較電池Dを作製した。
(Comparative Example 3) Instead of Step 3, with respect to 100 parts by weight of nickel hydroxide in the particle powder obtained in Step 2, 1 part of yttrium hydroxide was used as yttrium.
A comparative electrode d and a comparative battery D were produced in the same manner as in Example 1 except that the parts were added by weight.

【0046】(比較例4)ステップ2及び3を実施せず
に、ステップ1で得た粒子粉末をそのまま活物質粉末と
して用いたこと以外は実施例1と同様にして、比較電極
e及び比較電池Eを作製した。この電池は、特開昭62
−234867号公報に開示の方法に準拠して作製した
ものである。
Comparative Example 4 A comparative electrode e and a comparative battery were prepared in the same manner as in Example 1 except that the particle powder obtained in Step 1 was used as an active material powder without performing Steps 2 and 3. E was produced. This battery is disclosed in
It was prepared according to the method disclosed in Japanese Patent No. 234867.

【0047】(比較例5)硫酸ニッケル166.9gの
水溶液1000mlに、硝酸イッテルビウム4.87g
を溶かした水溶液に、アンモニア水を滴下した後、激し
く攪拌しながら1Mの水酸化ナトリウム水溶液を滴下し
て、水洗し、乾燥して、水酸化ニッケルにイッテルビウ
ムが固溶した固溶体粒子粉末を得た。次いで、この固溶
体粒子粉末と、25重量%水酸化ナトリウム水溶液と
を、重量比1:10で混合し、85°Cで8時間加熱処
理した後、水洗し、65°Cで乾燥して、固溶体粒子の
表面に、ナトリウム含有コバルト化合物からなる被覆内
層が形成された粒子粉末を作製した。この粒子粉末を活
物質粉末として用いたこと以外は実施例23〜26と同
様にして、比較電極f及び比較電池Fを作製した。
Comparative Example 5 4.87 g of ytterbium nitrate was added to 1000 ml of an aqueous solution of 166.9 g of nickel sulfate.
Aqueous ammonia was added dropwise to the aqueous solution in which was dissolved, and then a 1 M aqueous solution of sodium hydroxide was added dropwise with vigorous stirring, washed with water, and dried to obtain solid solution particles in which ytterbium was dissolved in nickel hydroxide. . Next, the solid solution particle powder and a 25% by weight aqueous solution of sodium hydroxide are mixed at a weight ratio of 1:10, heated at 85 ° C. for 8 hours, washed with water, and dried at 65 ° C. to obtain a solid solution. A particle powder having a coating inner layer made of a sodium-containing cobalt compound formed on the surface of the particle was prepared. A comparative electrode f and a comparative battery F were produced in the same manner as in Examples 23 to 26, except that this particle powder was used as an active material powder.

【0048】〈各非焼結式ニッケル極の活物質利用率〉
各電池について、25°Cにて0.1Cで160%充電
した後、25°Cにて1Cで1.0Vまで放電する充放
電を10サイクル行い、各電池に使用した非焼結式ニッ
ケル極の10サイクル目の活物質利用率を求めた。続け
て、各電池を60°Cにて0.1Cで160%充電した
後、25°Cにて1Cで1.0Vまで放電して、高温雰
囲気下で充電した時の活物質利用率を求めた。活物質利
用率は、下式に基づき算出した。
<Active Material Utilization of Each Non-Sintered Nickel Electrode>
Each battery was charged at 0.1% at 25 ° C. at 160% and then charged and discharged at 25 ° C. to 1.0 V at 1 C for 10 cycles, and the non-sintered nickel electrode used for each battery was used. Of the 10th cycle of the active material was determined. Continuously, each battery was charged at 160% at 60 ° C. at 0.1 C, then discharged at 25 ° C. to 1 V at 1 C, and the active material utilization rate when charged in a high-temperature atmosphere was determined. Was. The active material utilization was calculated based on the following equation.

【0049】活物質利用率(%)={放電容量(mA
h)/〔水酸化ニッケル量(g)×288(mAh/
g)〕}×100
Active material utilization rate (%) = {discharge capacity (mA)
h) / [amount of nickel hydroxide (g) × 288 (mAh /
g)]} × 100

【0050】結果を表2に示す。但し、表2中の活物質
利用率は、本発明電極a1の活物質利用率を100とし
たときの相対指数である。
Table 2 shows the results. However, the active material utilization rate in Table 2 is a relative index when the active material utilization rate of the electrode a1 of the present invention is 100.

【0051】[0051]

【表2】 [Table 2]

【0052】表2に示すように、本発明電極a1〜a2
6は、25°C充放電及び60°C充電時のいずれの場
合にも、活物質利用率が高い。中でも、本発明電極a1
の60°C充電時の活物質利用率が最も高いことから、
被覆外層としては、イットリウム又はイットリウム化合
物からなるものが最も好ましいことが分かる。これに対
して、比較電極bは、25°C充放電での活物質利用率
は本発明電極a1〜a26と同程度であるものの、60
°C充電時の活物質利用率が本発明電極a1〜a26に
比べて低い。被覆外層を形成しなかったために、高温充
電時の酸素過電圧の低下が充分に抑制されなかったため
と考えられる。比較電極cの25°C充放電及び60°
C充電時の活物質利用率がいずれも極めて低いのは、金
属コバルト及び水酸化コバルトの添加による電子伝導性
付与効果が、三酸化二イットリウムの同時添加により減
殺されたためと考えられる。比較電極dの25°C充放
電での活物質利用率及び60充電時の活物質利用率が本
発明電極a1〜a21に比べて低いのは、被覆外層を形
成せずに、単に水酸化イットリウムを添加しただけであ
るので、充電時の酸素過電圧を有効に高めることができ
なかったためと考えられる。比較電極e,fの25°C
充放電での活物質利用率及び60充電時の活物質利用率
が本発明電極a1〜a26に比べて格段低いのは、被覆
外層を形成しなかったために、充電時の酸素過電圧が低
く、充電電気量が活物質の充電に有効に使用されなかっ
たためと考えられる。
As shown in Table 2, the electrodes a1 to a2 of the present invention
No. 6 has a high active material utilization rate in both cases of charging and discharging at 25 ° C and charging at 60 ° C. Among them, the electrode a1 of the present invention
Because the active material utilization rate at 60 ° C charging is the highest,
It is understood that the coating outer layer is most preferably made of yttrium or a yttrium compound. On the other hand, the comparative electrode b has the same active material utilization rate at 25 ° C. charge / discharge as the electrodes a1 to a26 of the present invention, but has a 60%
The active material utilization rate at the time of charging at ° C is lower than the electrodes a1 to a26 of the present invention. It is considered that a decrease in oxygen overvoltage during high-temperature charging was not sufficiently suppressed because the outer coating layer was not formed. 25 ° C charging and discharging of the reference electrode c and 60 °
It is considered that the reason why the utilization rates of the active materials at the time of charging C are extremely low is that the effect of imparting electron conductivity by the addition of cobalt metal and cobalt hydroxide was reduced by the simultaneous addition of yttrium trioxide. The active material utilization rate of the comparative electrode d at 25 ° C. charge / discharge and the active material utilization rate at 60 charge are lower than those of the electrodes a1 to a21 of the present invention because the coating outer layer was not formed and the yttrium hydroxide was simply used. It is considered that the oxygen overvoltage at the time of charging could not be effectively increased because only was added. 25 ° C of reference electrodes e and f
The active material utilization rate during charging and discharging and the active material utilization rate during 60 charging are significantly lower than those of the electrodes a1 to a26 of the present invention because the outer coating layer was not formed, and thus the oxygen overvoltage at the time of charging was low. It is considered that the amount of electricity was not effectively used for charging the active material.

【0053】〈基体粒子と被覆内層の総量に対する被覆
内層の比率と高温充電時の活物質利用率及び放電容量の
関係〉ステップ1において、硫酸コバルト13.1gの
水溶液1リットルに代えて、硫酸コバルト1.31g、
5.25g、7.88g、26.3g、39.4g、4
4.7g又は52.5gの水溶液1リットルを用いたこ
と以外は実施例1と同様にして、非焼結式ニッケル極f
1〜f7及びアルカリ蓄電池F1〜F7を作製した。非
焼結式ニッケル極f1〜f7について、水酸化ニッケル
(基体粒子)と被覆内層の総量に対する被覆内層の比率
を原子吸光分析によりコバルト量を測定して求めたとこ
ろ、表3に示すように、順に、0.5重量%、2重量
%、3重量%、10重量%、15重量%、17重量%、
20重量%であった。
<Relationship between Ratio of Coating Inner Layer to Total Amount of Substrate Particles and Inner Coating Layer and Utilization Rate and Discharge Capacity of Active Material During High-Temperature Charging> In step 1, instead of 1 liter of an aqueous solution of 13.1 g of cobalt sulfate, cobalt sulfate was used. 1.31 g,
5.25 g, 7.88 g, 26.3 g, 39.4 g, 4
A non-sintered nickel electrode f was obtained in the same manner as in Example 1 except that 1 liter of an aqueous solution of 4.7 g or 52.5 g was used.
1 to f7 and alkaline storage batteries F1 to F7 were produced. For the non-sintered nickel electrodes f1 to f7, the ratio of the nickel hydroxide (substrate particles) and the coating inner layer to the total amount of the coating inner layer was determined by measuring the amount of cobalt by atomic absorption analysis, and as shown in Table 3, 0.5% by weight, 2% by weight, 3% by weight, 10% by weight, 15% by weight, 17% by weight,
It was 20% by weight.

【0054】[0054]

【表3】 [Table 3]

【0055】次いで、各電池について、先と同じ条件の
充放電試験(25°C充放電を10サイクル)を行い、
各電池に使用した非焼結式ニッケル極の25°C充電時
の10サイクル目の放電容量を求めた。結果を、図1に
示す。図1は、基体粒子と被覆内層の総量に対する被覆
内層の比率と放電容量の関係を、縦軸に25°C充放電
での10サイクル目の放電容量を、横軸に基体粒子と被
覆内層の総量に対する被覆内層の比率(重量%)をとっ
て示したグラフである。図1には、本発明電極a1の2
5°C充放電での10サイクル目の放電容量も示してあ
り、図1の縦軸の放電容量は、本発明電極a1の25°
C充放電での10サイクル目の放電容量を100とした
ときの相対指数である。
Next, each battery was subjected to a charge / discharge test (10 cycles of 25 ° C. charge / discharge) under the same conditions as above.
The discharge capacity at the 10th cycle at the time of charging at 25 ° C. of the non-sintered nickel electrode used for each battery was determined. The results are shown in FIG. FIG. 1 shows the relationship between the ratio of the inner coating layer to the total amount of the base particles and the inner coating layer and the discharge capacity, the vertical axis represents the discharge capacity at the 10th cycle at 25 ° C. charge / discharge, and the horizontal axis represents the relationship between the base particles and the inner coating layer. It is the graph which showed the ratio (weight%) of the coating inner layer with respect to the total amount. FIG. 1 shows the electrode a1 of the present invention.
The discharge capacity at the 10th cycle at 5 ° C charge / discharge is also shown, and the discharge capacity on the vertical axis in FIG.
This is a relative index when the discharge capacity at the 10th cycle in C charge / discharge is set to 100.

【0056】図1より、放電容量の大きい非焼結式ニッ
ケル極を得るためには、基体粒子と被覆内層の総量に対
する被覆内層の比率を、3〜15重量%とすることが好
ましいことが分かる。被覆外層を水酸化イッテルビウム
で形成した場合も、上記と同じく、基体粒子と被覆内層
の総量に対する被覆内層の比率を、3〜15重量%とす
ることが好ましいことを別途確認した。
FIG. 1 shows that in order to obtain a non-sintered nickel electrode having a large discharge capacity, it is preferable that the ratio of the coating inner layer to the total amount of the base particles and the coating inner layer is 3 to 15% by weight. . When the outer coating layer was formed of ytterbium hydroxide, it was separately confirmed that the ratio of the inner coating layer to the total amount of the base particles and the inner coating layer was preferably 3 to 15% by weight, as described above.

【0057】〈基体粒子中の水酸化ニッケルに対する被
覆外層中のイットリウムの比率と高温充電時の活物質利
用率及び放電容量の関係〉ステップ3において、硫酸イ
ットリウム2.62gの水溶液1リットルに代えて、硫
酸イットリウム0.079g、0.13g、1.31
g、7.86g、13.1g、15.7g又は20.9
gの水溶液1リットルを用いたこと以外は実施例1と同
様にして、非焼結式ニッケル極e1〜e7及びアルカリ
蓄電池E1〜E7を作製した。非焼結式ニッケル極e1
〜e7について、基体粒子中の水酸化ニッケルに対する
被覆外層中のイットリウムの比率を発光分析によりイッ
トリウム量を測定して求めたところ、表4に示すよう
に、順に、0.03重量%、0.05重量%、0.5重
量%、3重量%、5重量%、6重量%及び8重量%であ
った。
<Relationship Between the Ratio of Yttrium in the Coated Outer Layer to Nickel Hydroxide in the Base Particles and the Utilization Rate of Active Material During High-Temperature Charging and Discharge Capacity> In step 3, instead of 2.6 l of an aqueous solution of 2.62 g of yttrium sulfate, , 0.079 g of yttrium sulfate, 0.13 g, 1.31
g, 7.86 g, 13.1 g, 15.7 g or 20.9
The non-sintered nickel electrodes e1 to e7 and the alkaline storage batteries E1 to E7 were produced in the same manner as in Example 1 except that 1 liter of the aqueous solution of g was used. Non-sintered nickel electrode e1
As for e7, the ratio of yttrium in the outer coating layer to nickel hydroxide in the base particles was determined by measuring the amount of yttrium by emission spectrometry. They were 05%, 0.5%, 3%, 5%, 6% and 8% by weight.

【0058】[0058]

【表4】 [Table 4]

【0059】次いで、各電池について、先と同じ充放電
試験(25°C充放電を10サイクル、次いで60°C
充電及び25°C放電を1サイクル)を行い、各電池に
使用した非焼結式ニッケル極の60°C充電時の活物質
利用率及び25°C充放電での10サイクル目の放電容
量を求めた。それぞれの結果を、図2及び図3に示す。
Next, for each battery, the same charge / discharge test as above (10 cycles of charge / discharge at 25 ° C., then 60 ° C.)
Charge and discharge at 25 ° C for one cycle). The active material utilization rate of the non-sintered nickel electrode used for each battery at 60 ° C charge and the discharge capacity at the 10th cycle at 25 ° C charge / discharge were calculated. I asked. The respective results are shown in FIG. 2 and FIG.

【0060】図2は、基体粒子中の水酸化ニッケルに対
する被覆外層中のイットリウムの比率と高温充電時の活
物質利用率の関係を、縦軸に60°C充電時の活物質利
用率を、横軸に基体粒子中の水酸化ニッケルに対する被
覆外層中のイットリウムの比率(重量%)をとって示し
たグラフである。図2には、本発明電極a1の60°C
充電時の活物質利用率も示してあり、図2の縦軸の活物
質利用率は、本発明電極a1の25°C充放電での10
サイクル目の活物質利用率を100としたときの相対指
数である。
FIG. 2 shows the relationship between the ratio of yttrium in the outer coating layer to nickel hydroxide in the base particles and the utilization rate of the active material during high-temperature charging, and the vertical axis represents the utilization rate of the active material during charging at 60 ° C. The horizontal axis is a graph showing the ratio (% by weight) of yttrium in the coating outer layer to nickel hydroxide in the base particles. FIG. 2 shows the temperature of the electrode a1 of the present invention at 60 ° C.
The active material utilization rate at the time of charging is also shown. The active material utilization rate on the vertical axis of FIG.
This is a relative index when the active material utilization rate in the cycle is 100.

【0061】図2より、高温充電時の活物質利用率が高
い非焼結式ニッケル極を得るためには、基体粒子中の水
酸化ニッケルに対する被覆外層中のイットリウムの比率
を、0.05重量%以上とすることが好ましいことが分
かる。
As shown in FIG. 2, in order to obtain a non-sintered nickel electrode having a high utilization rate of the active material at the time of high-temperature charging, the ratio of yttrium in the coating outer layer to nickel hydroxide in the base particles was 0.05 wt. % Is preferable.

【0062】また、図3は、基体粒子中の水酸化ニッケ
ルに対する被覆外層中のイットリウムの比率と放電容量
の関係を、縦軸に25°C充電時の10サイクル目の放
電容量を、横軸に基体粒子中の水酸化ニッケルに対する
被覆外層中のイットリウムの比率(重量%)をとって示
したグラフである。図3には、本発明電極a1の25°
C充電時の10サイクル目の放電容量も示してあり、図
3の縦軸の放電容量は、本発明電極a1の25°C充電
時の10サイクル目の放電容量を100としたときの相
対指数である。
FIG. 3 shows the relationship between the ratio of the yttrium in the coating outer layer to the nickel hydroxide in the base particles and the discharge capacity, the vertical axis shows the discharge capacity at the 10th cycle at 25 ° C. charge, and the horizontal axis shows the discharge capacity. 3 is a graph showing the ratio (% by weight) of yttrium in the coating outer layer to nickel hydroxide in the base particles. FIG. 3 shows that the electrode a1 of the present invention has an angle of 25 °.
The discharge capacity at the 10th cycle at the time of charging C is also shown. The discharge capacity on the vertical axis in FIG. 3 is a relative index when the discharge capacity at the 10th cycle at 25 ° C charging of the electrode a1 of the present invention is 100. It is.

【0063】図3より、放電容量の大きい非焼結式ニッ
ケル極を得るためには、基体粒子中の水酸化ニッケルに
対する被覆外層中のイットリウムの比率を、5重量%以
下とすることが好ましいことが分かる。
As shown in FIG. 3, in order to obtain a non-sintered nickel electrode having a large discharge capacity, the ratio of yttrium in the coating outer layer to nickel hydroxide in the base particles is preferably 5% by weight or less. I understand.

【0064】図2及び図3より、基体粒子中の水酸化ニ
ッケルに対する被覆外層中のイットリウムの比率は、
0.05〜5重量%とすることが好ましいことが分か
る。被覆外層を水酸化イッテルビウムで形成する場合
も、上記と同じく、基体粒子中の水酸化ニッケルに対す
る被覆外層中のイッテルビウムの比率を、0.05〜5
重量%とすることが好ましいことを別途確認した。スカ
ンジウム及びランタノイドについても、同様の傾向が認
められた。
2 and 3, the ratio of yttrium in the outer coating layer to nickel hydroxide in the base particles was
It is understood that the content is preferably set to 0.05 to 5% by weight. When the coating outer layer is formed of ytterbium hydroxide, the ratio of ytterbium in the coating outer layer to nickel hydroxide in the base particles is 0.05 to 5 as described above.
It was separately confirmed that the content was preferably set to be% by weight. Similar trends were observed for scandium and lanthanoids.

【0065】上記の実施例では、基体粒子として水酸化
ニッケルのみからなる単一成分粒子を使用したが、水酸
化ニッケルに、コバルト、亜鉛、カドミウム、カルシウ
ム、マンガン、マグネシウム、ビスマス、アルミニウ
ム、ランタノイド及びイットリウムから選ばれた少なく
とも1種の元素が固溶した固溶体粒子を基体粒子として
用いた場合にも上記と同様に優れた効果が得られること
を別途確認した。
In the above embodiment, single-component particles consisting of only nickel hydroxide were used as the base particles. However, nickel, hydroxide, cobalt, zinc, cadmium, calcium, manganese, magnesium, bismuth, aluminum, lanthanoid and It was separately confirmed that the same excellent effects as described above were obtained also when solid solution particles in which at least one element selected from yttrium was dissolved were used as the base particles.

【0066】[0066]

【発明の効果】本発明により、常温下で充電した場合は
もとより、高温雰囲気下で充電した場合にも、高い活物
質利用率を発現するアルカリ蓄電池用非焼結式ニッケル
極が提供される。
According to the present invention, there is provided a non-sintered nickel electrode for an alkaline storage battery which exhibits a high active material utilization rate not only when charged at room temperature but also when charged under a high temperature atmosphere.

【図面の簡単な説明】[Brief description of the drawings]

【図1】基体粒子と被覆内層の総量に対する被覆内層の
比率と放電容量の関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a ratio of a coating inner layer to a total amount of a base particle and a coating inner layer and a discharge capacity.

【図2】基体粒子中の水酸化ニッケルに対する被覆外層
中のイットリウムの比率と高温充電時の活物質利用率の
関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a ratio of yttrium in a coating outer layer to nickel hydroxide in base particles and an active material utilization rate during high-temperature charging.

【図3】基体粒子中の水酸化ニッケルに対する被覆外層
中のイットリウムの比率と放電容量の関係を示すグラフ
である。
FIG. 3 is a graph showing a relationship between a ratio of yttrium in a coating outer layer to nickel hydroxide in base particles and a discharge capacity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shin Fujitani 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Koji Nishio 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】活物質粉末が複合体粒子からなるアルカリ
蓄電池用非焼結式ニッケル極であって、前記複合体粒子
が、水酸化ニッケルを含有する基体粒子と、当該基体粒
子を被覆するコバルト又はコバルト化合物からなる被覆
内層と、当該被覆内層を被覆するイットリウム、スカン
ジウム若しくはランタノイド、又は、それらの化合物か
らなる被覆外層とからなるアルカリ蓄電池用非焼結式ニ
ッケル極。
An active material powder is a non-sintered nickel electrode for an alkaline storage battery comprising composite particles, wherein the composite particles are composed of nickel hydroxide-containing base particles and cobalt coating the base particles. Alternatively, a non-sintered nickel electrode for an alkaline storage battery comprising an inner coating layer made of a cobalt compound and an outer coating layer made of yttrium, scandium, or lanthanoid, or a compound thereof, coating the inner coating layer.
【請求項2】前記基体粒子が、水酸化ニッケルに、コバ
ルト、亜鉛、カドミウム、カルシウム、マンガン、マグ
ネシウム、ビスマス、アルミニウム、ランタノイド及び
イットリウムから選ばれた少なくとも1種の元素が固溶
した固溶体粒子である請求項1記載のアルカリ蓄電池用
非焼結式ニッケル極。
2. The solid solution particles comprising at least one element selected from the group consisting of nickel hydroxide, cobalt, zinc, cadmium, calcium, manganese, magnesium, bismuth, aluminum, lanthanoid and yttrium. The non-sintered nickel electrode for an alkaline storage battery according to claim 1.
【請求項3】前記コバルト化合物が、一酸化コバルト、
水酸化コバルト、オキシ水酸化コバルト又はナトリウム
含有コバルト化合物である請求項1記載のアルカリ蓄電
池用非焼結式ニッケル極。
3. The method according to claim 1, wherein the cobalt compound is cobalt monoxide,
The non-sintered nickel electrode for an alkaline storage battery according to claim 1, which is a cobalt hydroxide, a cobalt oxyhydroxide, or a sodium-containing cobalt compound.
【請求項4】前記イットリウム、スカンジウム又はラン
タノイドの化合物が、水酸化物、酸化物、炭酸塩又はフ
ッ化物である請求項1記載のアルカリ蓄電池用非焼結式
ニッケル極。
4. The non-sintered nickel electrode for an alkaline storage battery according to claim 1, wherein said yttrium, scandium or lanthanoid compound is a hydroxide, oxide, carbonate or fluoride.
【請求項5】前記基体粒子と前記被覆内層の総量に対す
る前記被覆内層の比率が、3〜15重量%である請求項
1記載のアルカリ蓄電池用非焼結式ニッケル極。
5. The non-sintered nickel electrode for an alkaline storage battery according to claim 1, wherein the ratio of the coating inner layer to the total amount of the base particles and the coating inner layer is 3 to 15% by weight.
【請求項6】前記基体粒子中の水酸化ニッケルに対する
前記被覆外層中のイットリウム、スカンジウム又はラン
タノイドの比率が、0.05〜5重量%である請求項1
記載のアルカリ蓄電池用非焼結式ニッケル極。
6. The coating according to claim 1, wherein the ratio of yttrium, scandium or lanthanoid in the outer coating layer to nickel hydroxide in the base particles is 0.05 to 5% by weight.
A non-sintered nickel electrode for an alkaline storage battery as described in the above.
JP17631597A 1997-06-16 1997-06-16 Non-sintered nickel electrode for alkaline storage batteries Expired - Lifetime JP3433050B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17631597A JP3433050B2 (en) 1997-06-16 1997-06-16 Non-sintered nickel electrode for alkaline storage batteries
DE69801870T DE69801870T2 (en) 1997-06-16 1998-06-15 Unsintered nickel electrode for alkaline storage cells
EP98110938A EP0886331B1 (en) 1997-06-16 1998-06-15 Non-sintered nickel for alkaline storage battery
US09/097,679 US6077625A (en) 1997-06-16 1998-06-16 Non-sintered nickel electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17631597A JP3433050B2 (en) 1997-06-16 1997-06-16 Non-sintered nickel electrode for alkaline storage batteries

Publications (2)

Publication Number Publication Date
JPH117950A true JPH117950A (en) 1999-01-12
JP3433050B2 JP3433050B2 (en) 2003-08-04

Family

ID=16011443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17631597A Expired - Lifetime JP3433050B2 (en) 1997-06-16 1997-06-16 Non-sintered nickel electrode for alkaline storage batteries

Country Status (1)

Country Link
JP (1) JP3433050B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279982A (en) * 2001-03-19 2002-09-27 Yuasa Corp Active material for nickel electrode of alkaline storage battery and the alkaline storage battery
JPWO2003021698A1 (en) * 2001-09-03 2004-12-24 株式会社ユアサコーポレーション Nickel electrode material and manufacturing method thereof, and nickel electrode and alkaline storage battery
KR100596117B1 (en) * 1999-09-28 2006-07-05 산요덴키가부시키가이샤 Alkaline Storage Battery and Process for the Production Thereof
WO2012096291A1 (en) * 2011-01-11 2012-07-19 株式会社Gsユアサ Alkaline storage battery
WO2012096294A1 (en) * 2011-01-11 2012-07-19 株式会社Gsユアサ Positive electrode active material for alkaline storage battery, manufacturing method for positive electrode active material, and alkaline storage battery
JP2012150947A (en) * 2011-01-18 2012-08-09 Gs Yuasa Corp Positive electrode active material for alkali storage battery and alkali storage battery
WO2012117989A1 (en) * 2011-02-28 2012-09-07 三洋電機株式会社 Alkaline storage battery
EP4009401A1 (en) 2020-12-01 2022-06-08 Toyota Jidosha Kabushiki Kaisha Coated cathode active material, method for producing coated cathode active material, and all solid state battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100596117B1 (en) * 1999-09-28 2006-07-05 산요덴키가부시키가이샤 Alkaline Storage Battery and Process for the Production Thereof
JP2002279982A (en) * 2001-03-19 2002-09-27 Yuasa Corp Active material for nickel electrode of alkaline storage battery and the alkaline storage battery
JPWO2003021698A1 (en) * 2001-09-03 2004-12-24 株式会社ユアサコーポレーション Nickel electrode material and manufacturing method thereof, and nickel electrode and alkaline storage battery
US7635512B2 (en) 2001-09-03 2009-12-22 Yuasa Corporation Nickel electrode material, and production method therefor, and nickel electrode and alkaline battery
JP4710225B2 (en) * 2001-09-03 2011-06-29 株式会社Gsユアサ Method for producing nickel electrode material
WO2012096294A1 (en) * 2011-01-11 2012-07-19 株式会社Gsユアサ Positive electrode active material for alkaline storage battery, manufacturing method for positive electrode active material, and alkaline storage battery
WO2012096291A1 (en) * 2011-01-11 2012-07-19 株式会社Gsユアサ Alkaline storage battery
US8877372B2 (en) 2011-01-11 2014-11-04 Gs Yuasa International Ltd. Alkaline secondary battery
US9269952B2 (en) 2011-01-11 2016-02-23 Gs Yuasa International Ltd. Positive active material for alkaline secondary battery, method for manufacturing the same and alkaline secondary battery
JP2012150947A (en) * 2011-01-18 2012-08-09 Gs Yuasa Corp Positive electrode active material for alkali storage battery and alkali storage battery
WO2012117989A1 (en) * 2011-02-28 2012-09-07 三洋電機株式会社 Alkaline storage battery
JP5920334B2 (en) * 2011-02-28 2016-05-18 三洋電機株式会社 Alkaline storage battery
EP4009401A1 (en) 2020-12-01 2022-06-08 Toyota Jidosha Kabushiki Kaisha Coated cathode active material, method for producing coated cathode active material, and all solid state battery
KR20220077081A (en) 2020-12-01 2022-06-08 도요타 지도샤(주) Coated cathode active material, method for producing coated cathode active material, and all solid state battery

Also Published As

Publication number Publication date
JP3433050B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
EP0817291B1 (en) Non-sintered nickel electrode for alkaline storage battery, alkaline storage battery including the same, and method for production of non-sintered nickel electrode for alkaline storage battery
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery
JP3433050B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3469766B2 (en) Non-sintered nickel electrodes and batteries for sealed alkaline storage batteries
US6077625A (en) Non-sintered nickel electrode for alkaline storage battery
JPH117949A (en) Non-sintered nickel electrode for alkali storage battery
JP2001185138A (en) Positive electrode active material for alkaline storage battery and manufacturing method therefor
JP2000173614A (en) Positive electrode active material for sealed type alkaline storage battery
JPH11144723A (en) Non-sintered nickel electrode for sealed alkaline storage battery
WO1999017388A1 (en) Nickel-hydrogen storage battery
JP3433066B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3433083B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2001043855A (en) Non-sintered nickel electrode for alkali storage battery
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3433043B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2001313069A (en) Nickel hydrogen storage battery
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH10294109A (en) Nonsintered nickel pole for alkaline storage battery
JP3263601B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3433062B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH1021909A (en) Non-sintered nickel electrode for alkaline storage battery
JPH10270040A (en) Non-sintered nickel electrode for alkaline storage battery
JPH1173956A (en) Non-sintered nickel electrode for alkaline storage battery
JP3075114B2 (en) Nickel positive electrode for alkaline storage batteries

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180523

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term