JP2001185138A - Positive electrode active material for alkaline storage battery and manufacturing method therefor - Google Patents

Positive electrode active material for alkaline storage battery and manufacturing method therefor

Info

Publication number
JP2001185138A
JP2001185138A JP36962599A JP36962599A JP2001185138A JP 2001185138 A JP2001185138 A JP 2001185138A JP 36962599 A JP36962599 A JP 36962599A JP 36962599 A JP36962599 A JP 36962599A JP 2001185138 A JP2001185138 A JP 2001185138A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
nickel
storage battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36962599A
Other languages
Japanese (ja)
Inventor
Mitsunori Tokuda
光紀 徳田
Kikuko Katou
菊子 加藤
Mutsumi Yano
睦 矢野
Yasuhiko Ito
靖彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP36962599A priority Critical patent/JP2001185138A/en
Publication of JP2001185138A publication Critical patent/JP2001185138A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a sealed battery having less development of hydrogen gas at a negative electrode and high reliability. SOLUTION: Complex particles are manufactured by forming a cobalt hydroxide layer on the surfaces of nickel hydroxide particles containing manganese as a solid solution element. Now, the complex particles are mixed with an alkaline aqueous solution containing hypochlorite or hypobromite to form the cobalt hydroxide layer to a cobalt oxyhydroxide layer by oxidizing the cobalt hydroxide layer. This manufactures a positive electrode active material having very good conductivity on the surfaces of the particles. The use of the positive electrode active material manufactures a paste nickel electrode having a very high utilization factor for the active material. In addition, the manufactured positive active material is used as the positive electrode active material for a sealed nickel.zinc storage battery using a zinc electrode as a negative electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、アルカリ蓄電池用
正極活物質及びその製法に関する。
The present invention relates to a positive electrode active material for an alkaline storage battery and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
アルカリ蓄電池用ペースト式ニッケル極の活物質利用率
の向上を目的として、水酸化ニッケルと一酸化コバルト
との混合物に、K22 8 、Na2 2 8 、(NH
4 2 2 8 、H2 2 等の酸化剤を添加したり、水
酸化ニッケルとコバルトイオンとを含む溶液に、K2
2 8 、Na22 8 、(NH 4 2 2 8 、H2
2 等の酸化剤を添加して、水酸化ニッケル粒子表面を
導電性の高いβ−CoOOHで被覆したりすることが、
提案されている(国際公開公報WO 93/0861
1)。
2. Description of the Related Art
Active material utilization rate of paste-type nickel electrode for alkaline storage battery
Nickel hydroxide and cobalt monoxide to improve
To the mixture withTwo STwoO8 , NaTwo S TwoO8 , (NH
Four)TwoSTwoO8 , HTwoOTwoAdd an oxidizing agent such as
In a solution containing nickel oxide and cobalt ions, KTwo S
TwoO8 , NaTwo STwoO8 , (NH Four)TwoSTwoO8 , HTwo
OTwoAdd an oxidizing agent such as
Or coating with a highly conductive β-CoOOH,
Has been proposed (WO 93/0861).
1).

【0003】しかしながら、本発明者らが検討した結
果、K22 8 等を酸化剤として用いる従来の方法で
は、β−CoOOHを水酸化ニッケル粒子の表面に均一
に分散させることができないために、活物質利用率を十
分に高めることは困難であることが分かった。
However, as a result of investigations by the present inventors, β-CoOOH cannot be uniformly dispersed on the surface of nickel hydroxide particles by the conventional method using K 2 S 2 O 8 or the like as an oxidizing agent. In addition, it was found that it was difficult to sufficiently increase the active material utilization rate.

【0004】また、特に亜鉛を負極活物質に用いる密閉
型アルカリ亜鉛蓄電池では、粒子表面を導電性の高いβ
−CoOOHで被覆していない水酸化ニッケル粒子を正
極活物質として用いた場合、以下の問題が生じる。
In particular, in a sealed alkaline zinc storage battery using zinc as a negative electrode active material, a highly conductive β
-When nickel hydroxide particles not coated with CoOOH are used as the positive electrode active material, the following problems occur.

【0005】正極に導電剤として添加するコバルト化合
物は、アルカリ水溶液中に浸漬した場合、HCoO2 -
として溶出し、これが負極(亜鉛極)にCoとして析出
するため、亜鉛の水素過電圧が低下して水素ガスが発生
し(自己放電)、電池内圧が上昇する。これは、Coの
水素過電圧が低いために、式〔1〕に示す亜鉛の自己放
電及び式〔2〕に示す水素ガス発生反応が起こるからで
ある。
[0005] Cobalt compounds to be added as a conductive agent to the positive electrode, when immersed in an alkaline aqueous solution, HCoO 2 -
, And this is precipitated as Co on the negative electrode (zinc electrode), so that the hydrogen overvoltage of zinc decreases and hydrogen gas is generated (self-discharge), and the internal pressure of the battery increases. This is because the self-discharge of zinc represented by the formula [1] and the hydrogen gas generation reaction represented by the formula [2] occur because the hydrogen overvoltage of Co is low.

【0006】 Zn+2OH- →Zn(OH)2 +2e- ……〔1〕 2H2 O+2e- →H2 +2OH- ……〔2〕[0006] Zn + 2OH - → Zn (OH ) 2 + 2e - ...... [1] 2H 2 O + 2e - → H 2 + 2OH - ...... [2]

【0007】上記の問題を解決するためには、アルカリ
水溶液を注液する前に、コバルト化合物を予め酸化して
オキシ水酸化コバルトに変化させることが必要である。
オキシ水酸化コバルトは、アルカリ水溶液に溶解しない
ので、負極に析出することがないからである。
In order to solve the above problems, it is necessary to oxidize the cobalt compound in advance to convert it to cobalt oxyhydroxide before injecting the alkaline aqueous solution.
This is because cobalt oxyhydroxide does not dissolve in the alkaline aqueous solution, and thus does not precipitate on the negative electrode.

【0008】従って、本発明は、β−CoOOHが水酸
化ニッケル粒子の表面に均一に分散して存在するために
粒子表面の導電性が極めて高いアルカリ蓄電池用正極活
物質及びその製法を提供することを目的とする。
Accordingly, the present invention provides a positive electrode active material for an alkaline storage battery having extremely high conductivity on the surface of β-CoOOH since the β-CoOOH is uniformly dispersed on the surface of the nickel hydroxide particles, and a method for producing the same. With the goal.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの本発明に係るアルカリ蓄電池用正極活物質の製法
(本発明方法)は、固溶元素としてマンガンを含有する
水酸化ニッケル粒子の表面にオキシ水酸化コバルト層を
形成して成るアルカリ蓄電池用正極活物質を製造するに
あたり、前記水酸化ニッケル粒子の表面に水酸化コバル
ト層を形成して複合体粒子を作製し、次いで、前記水酸
化コバルト層を酸化して前記オキシ水酸化コバルト層に
変えるべく、前記複合体粒子を、次亜塩素酸塩又は次亜
臭素酸塩を含有するアルカリ水溶液と混合することを特
徴とする。
In order to achieve the above-mentioned object, a method for producing a cathode active material for an alkaline storage battery according to the present invention (the method of the present invention) comprises the steps of: preparing a surface of nickel hydroxide particles containing manganese as a solid solution element; In producing a positive electrode active material for an alkaline storage battery formed by forming a cobalt oxyhydroxide layer on the surface of the nickel hydroxide particles, a cobalt hydroxide layer is formed on the surface of the nickel hydroxide particles to form composite particles. The composite particles are mixed with an alkaline aqueous solution containing hypochlorite or hypobromite in order to oxidize the cobalt layer to convert it to the cobalt oxyhydroxide layer.

【0010】本発明方法においては、水酸化ニッケル粒
子として、マンガンを固溶元素として含有する水酸化ニ
ッケル粒子を使用する。マンガンを固溶元素として含有
する水酸化ニッケル粒子は、マンガンを固溶元素として
含有しない水酸化ニッケル粒子に比べて酸素過電圧が大
きいので、充電受け入れ性が良い。マンガンを固溶元素
として含有する水酸化ニッケル粒子は、例えば、マンガ
ン塩及びニッケル塩を溶かした水溶液に、アルカリを添
加することにより、共沈物として得ることができる(ア
ルカリ共沈法)。マンガンの固溶量は、使用するマンガ
ン塩の量を加減することにより調整することができる。
水酸化ニッケル粒子としては、マンガンの固溶量が、ニ
ッケルとマンガンとの総量に基づいて、15〜50重量
%のものを使用することが好ましい。マンガンの固溶量
が15重量%未満の場合は、酸素過電圧が充分に増大せ
ず活物質利用率が低下する傾向がある。一方、マンガン
の固溶量が50重量%を越えた場合は、水酸化ニッケル
の充填量の減少の影響が大きくなり、放電容量(電池容
量)が減少する傾向がある。
In the method of the present invention, nickel hydroxide particles containing manganese as a solid solution element are used as the nickel hydroxide particles. Nickel hydroxide particles containing manganese as a solid solution element have a higher oxygen overvoltage than nickel hydroxide particles not containing manganese as a solid solution element, and thus have good charge acceptability. Nickel hydroxide particles containing manganese as a solid solution element can be obtained as a coprecipitate, for example, by adding an alkali to an aqueous solution in which a manganese salt and a nickel salt are dissolved (alkali coprecipitation method). The manganese solid solution amount can be adjusted by adjusting the amount of the manganese salt used.
As the nickel hydroxide particles, those having a solid solution amount of manganese of 15 to 50% by weight based on the total amount of nickel and manganese are preferably used. When the solid solution amount of manganese is less than 15% by weight, the oxygen overpotential does not sufficiently increase and the active material utilization rate tends to decrease. On the other hand, when the solid solution amount of manganese exceeds 50% by weight, the effect of the decrease in the filling amount of nickel hydroxide increases, and the discharge capacity (battery capacity) tends to decrease.

【0011】水酸化ニッケル粒子としては、固溶元素と
して、さらに、コバルト、亜鉛、カルシウム、アルミニ
ウム、イットリウム、イッテルビウム、エルビウム及び
ガドリニウムよりなる群から選ばれた少なくとも1種の
元素Mを含有するものを使用することが好ましい。これ
らの元素Mを含有せしめることにより、充電受け入れ性
のいっそう良い正極活物質が得られる。元素Mの固溶量
は、ニッケルと元素Mとの総量に基づいて、5重量%以
下が好ましい。元素Mの固溶量が5重量%を越えた場合
は、水酸化ニッケルの充填量の減少の影響が大きくな
り、放電容量が減少する。
The nickel hydroxide particles include those containing at least one element M selected from the group consisting of cobalt, zinc, calcium, aluminum, yttrium, ytterbium, erbium and gadolinium as a solid solution element. It is preferred to use. By incorporating these elements M, a positive electrode active material having better charge acceptability can be obtained. The solid solution amount of the element M is preferably 5% by weight or less based on the total amount of nickel and the element M. When the amount of the solid solution of the element M exceeds 5% by weight, the effect of the decrease in the filling amount of nickel hydroxide increases, and the discharge capacity decreases.

【0012】本発明方法においては、水酸化ニッケル粒
子の表面に先ず水酸化コバルト層を形成して複合体粒子
を作製する。
In the method of the present invention, a composite particle is prepared by first forming a cobalt hydroxide layer on the surface of the nickel hydroxide particles.

【0013】水酸化コバルト層を先ず形成することとし
ているのは、水酸化コバルト(β−Co(OH)2 )を
水酸化ニッケル粒子の表面に均一に分散して存在させる
ことにより、次の工程での酸化剤の添加によりオキシ水
酸化コバルト(β−CoOOH)が水酸化ニッケル粒子
の表面に均一に分散して生成するようにするためであ
る。
The first step of forming the cobalt hydroxide layer is that cobalt hydroxide (β-Co (OH) 2 ) is uniformly dispersed on the surface of the nickel hydroxide particles, so that the next step is performed. The reason for this is that the addition of the oxidizing agent causes the cobalt oxyhydroxide (β-CoOOH) to be uniformly dispersed and generated on the surface of the nickel hydroxide particles.

【0014】上記複合体粒子は、例えば、コバルト塩の
水溶液に水酸化ニッケル粉末を投入し、アルカリ水溶液
を添加することにより、沈殿物として得ることができ
る。
The composite particles can be obtained as a precipitate, for example, by adding nickel hydroxide powder to an aqueous solution of a cobalt salt and adding an aqueous alkali solution.

【0015】本発明方法においては、次いで、上記複合
体粒子の表面の水酸化コバルト層を酸化してオキシ水酸
化コバルト層に変えるべく、上記複合体粒子粉末を、次
亜塩素酸ナトリウム(NaClO)、次亜塩素酸カルシ
ウム(Ca(ClO)2 )等の次亜塩素酸塩、又は、次
亜臭素酸ナトリウム(NaBrO)、次亜臭素酸カルシ
ウム(Ca(BrO)2 )等の次亜臭素酸塩を含有する
アルカリ水溶液と混合する。酸化剤として、次亜塩素酸
塩又は次亜臭素酸塩を使用することとしているのは、次
亜塩素酸塩及び次亜臭素酸塩は、K22 8 、Na2
2 8 、(NH4 2 2 8 、H2 2 に比べて酸
化力が弱く、このため水酸化ニッケル粒子の表面にβ−
CoOOHを均一に分散して生成させることができるか
らである。
In the method of the present invention, the composite particle powder is then subjected to sodium hypochlorite (NaClO) so as to oxidize the cobalt hydroxide layer on the surface of the composite particle into a cobalt oxyhydroxide layer. Hypochlorite such as calcium hypochlorite (Ca (ClO) 2 ) or hypobromite such as sodium hypobromite (NaBrO) or calcium hypobromite (Ca (BrO) 2 ) Mix with an aqueous alkaline solution containing a salt. The hypochlorite or hypobromite is used as the oxidizing agent because the hypochlorite and hypobromite are K 2 S 2 O 8 , Na 2
S 2 O 8 , (NH 4 ) 2 S 2 O 8 , has a weaker oxidizing power than H 2 O 2 , so that the surface of the nickel hydroxide particles has β-
This is because CoOOH can be uniformly dispersed and generated.

【0016】アルカリ水溶液としては、30〜70°C
に保持した20〜40重量%水酸化ナトリウム水溶液を
使用することが好ましい。上記の酸化処理を30°Cよ
り低温で行った場合及び20重量%未満の水酸化ナトリ
ウム水溶液を使用して行った場合は、酸化反応が進行し
にくくなるため、一方、上記の酸化処理を70°Cより
高温で行った場合及び40重量%を越える水酸化ナトリ
ウム水溶液を使用して行った場合は、酸化反応が急激に
進行し、その結果、先の工程において水酸化ニッケル粒
子の表面に均一に分散して生成させたコバルト化合物の
一部が脱落し、水酸化ニッケル粒子の表面に生成するβ
−CoOOHの均一分散性が低下するため、いずれの場
合も得られる正極活物質の粒子表面の導電性が低下して
活物質利用率が低下する傾向がある。
The aqueous alkaline solution is 30 to 70 ° C.
It is preferable to use an aqueous solution of 20 to 40% by weight of sodium hydroxide held in water. When the above-mentioned oxidation treatment is performed at a temperature lower than 30 ° C. or when an aqueous solution of sodium hydroxide of less than 20% by weight is used, the oxidation reaction hardly proceeds. When carried out at a temperature higher than 0 ° C. and when using an aqueous solution of sodium hydroxide exceeding 40% by weight, the oxidation reaction proceeds rapidly, and as a result, the surface of the nickel hydroxide particles is uniformly formed in the previous step. Β part of the cobalt compound formed by dispersing in the nickel hydroxide particles
Since the uniform dispersibility of -CoOOH is reduced, the conductivity of the particle surface of the obtained positive electrode active material is reduced in any case, and the active material utilization tends to be reduced.

【0017】マンガンを固溶元素として含有する水酸化
ニッケル粒子に対するオキシ水酸化コバルト層の比率
は、コバルト元素換算で、2〜10重量%とすることが
好ましい。同比率が2重量%未満の場合は、導電剤とし
てのオキシ水酸化コバルト量が少ないために、活物質利
用率が低下する。一方、同比率が10重量%を越えた場
合は、水酸化ニッケルの充填量の減少の影響が大きくな
り、放電容量が減少する。オキシ水酸化コバルト層の比
率は、水酸化コバルト層を形成する先の工程において、
使用するコバルト塩の量を加減することにより調整する
ことができる。
The ratio of the cobalt oxyhydroxide layer to the nickel hydroxide particles containing manganese as a solid solution element is preferably 2 to 10% by weight in terms of cobalt element. When the ratio is less than 2% by weight, the active material utilization rate decreases because the amount of cobalt oxyhydroxide as the conductive agent is small. On the other hand, when the ratio exceeds 10% by weight, the effect of the decrease in the amount of nickel hydroxide charged becomes large, and the discharge capacity decreases. The ratio of the cobalt oxyhydroxide layer is, in the previous step of forming the cobalt hydroxide layer,
It can be adjusted by adjusting the amount of the cobalt salt used.

【0018】本発明方法により作製した正極活物質は粒
子表面の導電性が良い。したがって、これを使用するこ
とにより活物質利用率の高いペースト式ニッケル極を得
ることが可能になる。また、上記ペースト式ニッケル極
を密閉型ニッケル・亜鉛蓄電池の正極として使用するこ
とにより、負極での自己放電が少ない、信頼性の高い密
閉型電池を得ることが可能になる。
The positive electrode active material produced by the method of the present invention has good conductivity on the particle surface. Therefore, by using this, it is possible to obtain a paste-type nickel electrode having a high active material utilization rate. In addition, by using the paste-type nickel electrode as the positive electrode of the sealed nickel-zinc storage battery, it is possible to obtain a highly reliable sealed battery with less self-discharge at the negative electrode.

【0019】[0019]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following Examples, and may be carried out by appropriately changing the scope of the invention without changing its gist. Is possible.

【0020】(実験1)本発明方法により作製した正極
活物質を使用したアルカリ蓄電池と比較方法により作製
した正極活物質を使用したアルカリ蓄電池について、活
物質利用率及び放電容量を調べた。
(Experiment 1) The active material utilization rate and the discharge capacity of an alkaline storage battery using the positive electrode active material manufactured by the method of the present invention and an alkaline storage battery using the positive electrode active material manufactured by the comparative method were examined.

【0021】(実施例1) ステップ1:水酸化ニッケル粒子の作製 硫酸マンガン(MnSO4 )40.4g及び硫酸ニッケ
ル(NiSO4 )154.8gを水に溶かした水溶液5
000mlに、10重量%アンモニア水と10重量%水
酸化ナトリウム水溶液との重量比1:1の混液を滴下し
てpHを10.5±0.5に調整し、pHが一定になっ
た後、1時間攪拌混合した。次いで、沈殿物をろ別し、
水洗し、80°Cで乾燥して、固溶元素としてマンガン
を含有する水酸化ニッケル粒子粉末を作製した。この水
酸化ニッケル粒子のマンガン固溶量を原子吸光法により
調べたところ、ニッケルとマンガンの総量に基づいて2
0重量%であった。
(Example 1) Step 1: Preparation of nickel hydroxide particles An aqueous solution 5 in which 40.4 g of manganese sulfate (MnSO 4 ) and 154.8 g of nickel sulfate (NiSO 4 ) are dissolved in water
A mixture of 10% by weight of aqueous ammonia and a 10% by weight of aqueous sodium hydroxide in a weight ratio of 1: 1 was dropped into 000 ml to adjust the pH to 10.5 ± 0.5, and after the pH became constant, Stir and mix for 1 hour. Then, the precipitate is filtered off,
After washing with water and drying at 80 ° C., nickel hydroxide particles containing manganese as a solid solution element were produced. The amount of manganese dissolved in the nickel hydroxide particles was determined by atomic absorption spectroscopy.
It was 0% by weight.

【0022】ステップ2:複合体粒子の作製 硫酸コバルト(CoSO4 )13.1gを水に溶かした
水溶液1000mlに、ステップ1で作製した水酸化ニ
ッケル粒子粉末100gを投入し、30重量%水酸化ナ
トリウム水溶液を滴下してpHを9±0.5に調整し、
pHが一定になった後、1時間攪拌混合した。次いで、
沈殿物をろ別し、水洗し、80°Cで乾燥して、水酸化
ニッケル粒子の表面に水酸化コバルト層を形成して成る
複合体粒子を作製した。
Step 2: Preparation of Composite Particles To 1000 ml of an aqueous solution of 13.1 g of cobalt sulfate (CoSO 4 ) dissolved in water, 100 g of the nickel hydroxide particle powder prepared in Step 1 is added, and 30% by weight of sodium hydroxide The pH is adjusted to 9 ± 0.5 by dropping the aqueous solution,
After the pH became constant, the mixture was stirred and mixed for 1 hour. Then
The precipitate was separated by filtration, washed with water, and dried at 80 ° C. to produce composite particles having a cobalt hydroxide layer formed on the surface of nickel hydroxide particles.

【0023】ステップ3:正極活物質の作製 30重量%水酸化ナトリウム水溶液1000mlに、1
2重量%次亜塩素酸ナトリウム水溶液62gを投入し、
50°Cに加熱した後、ステップ2で作製した複合体粉
末100gを投入し、1時間攪拌混合し、ろ過し、ろ物
を水洗し、80°Cで乾燥して、水酸化ニッケル粒子の
表面にオキシ水酸化コバルト層を形成して成る正極活物
質を作製した。この正極活物質のマンガン固溶量を原子
吸光法により調べたところ、ニッケルとマンガンの総量
に基づいて20重量%であった。また、水酸化ニッケル
粒子に対するオキシ水酸化コバルト層のコバルト原子換
算での比率を原子吸光法により調べたところ、5重量%
であった。
Step 3: Preparation of Positive Electrode Active Material
62 g of a 2% by weight aqueous solution of sodium hypochlorite is added,
After heating to 50 ° C., 100 g of the composite powder prepared in Step 2 was added, and the mixture was stirred and mixed for 1 hour, filtered, washed with water, and dried at 80 ° C. to obtain a surface of nickel hydroxide particles. A positive electrode active material was formed by forming a cobalt oxyhydroxide layer on the substrate. When the manganese solid solution amount of this positive electrode active material was examined by an atomic absorption method, it was 20% by weight based on the total amount of nickel and manganese. When the ratio of the cobalt oxyhydroxide layer to the nickel hydroxide particles in terms of cobalt atoms was determined by an atomic absorption method, the ratio was 5% by weight.
Met.

【0024】〔非焼結式ニッケル極の作製〕上記の正極
活物質100gとペースト化剤としての1重量%メチル
セルロース水溶液40gとを混練してペーストを調製
し、このペーストを発泡ニッケル(多孔度95%、平均
孔径200μm)からなる多孔性基板に充填し、乾燥
し、加圧成形して、縦40mm、横65mm、厚み0.
6mmの本発明電極を作製した。
[Preparation of Non-Sintered Nickel Electrode] A paste was prepared by kneading 100 g of the above-mentioned positive electrode active material and 40 g of a 1% by weight aqueous solution of methylcellulose as a pasting agent. %, Average pore size of 200 μm), dried, pressed and molded to a height of 40 mm, a width of 65 mm and a thickness of 0.1 mm.
A 6 mm electrode of the present invention was produced.

【0025】〔密閉型ニッケル・亜鉛蓄電池の作製〕酸
化亜鉛と金属亜鉛と酸化インジウムとの重量比率40:
20:1の混合物250gと、ペースト化剤としての6
0重量%PTFE(ポリテトラフルオロエチレン)水分
散液15gとを混合してペーストを調製し、このペース
トを厚さ0.1mmの真鍮製のパンチングメタルに貼り
あわせ、圧延した後、60°Cで乾燥して、縦42m
m、横100mm、厚み0.6mmの亜鉛極を作製し
た。次いで、上記の本発明電極(正極)、上記の亜鉛極
(負極)、ポリアミド不織布(セパレータ)、30重量
%水酸化カリウム水溶液(アルカリ電解液)、金属製の
電池缶、金属製の電池蓋などを用いて、AAサイズの密
閉型ニッケル・亜鉛蓄電池(電池容量:約1000mA
h)A1(本発明電池)を作製した。なお、負極と正極
の容量比を4:1とした。
[Production of sealed nickel-zinc storage battery] A weight ratio of zinc oxide, metallic zinc and indium oxide of 40:
250 g of a 20: 1 mixture with 6 as a pasting agent
A paste was prepared by mixing 15 g of an aqueous dispersion of 0% by weight of PTFE (polytetrafluoroethylene), and the paste was attached to a 0.1 mm-thick brass punching metal, rolled, and then heated at 60 ° C. Dry, length 42m
A zinc electrode having a length of 100 mm, a width of 100 mm and a thickness of 0.6 mm was prepared. Then, the above-mentioned electrode of the present invention (positive electrode), the above-mentioned zinc electrode (negative electrode), polyamide nonwoven fabric (separator), 30% by weight potassium hydroxide aqueous solution (alkaline electrolyte), metal battery can, metal battery lid, etc. AA-size sealed nickel-zinc storage battery (battery capacity: about 1000 mA)
h) A1 (battery of the present invention) was prepared. The capacity ratio between the negative electrode and the positive electrode was set to 4: 1.

【0026】(実施例2)ステップ3において、酸化剤
として12重量%次亜塩素酸ナトリウム水溶液62gに
代えて、5重量%次亜臭素酸ナトリウム水溶液を23.
4g使用したこと以外は実施例1と同様にして、正極の
みが本発明電池A1と異なる密閉型ニッケル・亜鉛蓄電
池A2(本発明電池)を作製した。
Example 2 In step 3, a 5% by weight aqueous solution of sodium hypobromite was used instead of 62 g of a 12% by weight aqueous solution of sodium hypochlorite as an oxidizing agent.
A sealed nickel-zinc storage battery A2 (battery of the present invention) was prepared in the same manner as in Example 1 except that 4 g of the battery was used, and only the positive electrode was different from the battery A1 of the present invention.

【0027】(比較例1)ステップ3を行わず、ステッ
プ2で作製した複合体粒子をそのまま非焼結式ニッケル
極の作製において正極活物質として使用したこと以外は
実施例1と同様にして、正極のみが本発明電池A1と異
なる密閉型ニッケル・亜鉛蓄電池X(比較電池)を作製
した。
Comparative Example 1 The procedure of Example 1 was repeated, except that Step 3 was not performed, and the composite particles produced in Step 2 were used as a positive electrode active material in producing a non-sintered nickel electrode. A sealed nickel-zinc storage battery X (comparative battery) in which only the positive electrode was different from the battery A1 of the present invention was produced.

【0028】(比較例2)ステップ3において、酸化剤
として12重量%次亜塩素酸ナトリウム水溶液62gに
代えて、K2 2 8 を2.7g使用したこと以外は実
施例1と同様にして、正極のみが本発明電池A1と異な
る密閉型ニッケル・亜鉛蓄電池Y1(比較電池)を作製
した。
Comparative Example 2 In the same manner as in Example 1 except that 2.7 g of K 2 S 2 O 8 was used in Step 3 instead of 62 g of a 12% by weight aqueous solution of sodium hypochlorite as an oxidizing agent. Thus, a sealed nickel-zinc storage battery Y1 (comparative battery) in which only the positive electrode was different from the battery A1 of the present invention was produced.

【0029】(比較例3)ステップ1において、硫酸マ
ンガンを使用せず、且つステップ3において、12重量
%次亜塩素酸ナトリウム水溶液62gに代えて、K2
2 8 を2.7g使用したこと以外は実施例1と同様に
して、正極のみが本発明電池A1と異なる密閉型ニッケ
ル・亜鉛蓄電池Y2(比較電池)を作製した。
(Comparative Example 3) In step 1, manganese sulfate was not used, and in step 3, instead of 62 g of a 12% by weight aqueous solution of sodium hypochlorite, K 2 S was used.
A sealed nickel-zinc storage battery Y2 (comparative battery) having a positive electrode different from that of the battery A1 of the present invention was produced in the same manner as in Example 1 except that 2.7 g of 2 O 8 was used.

【0030】(比較例4)固溶元素としてマンガンを2
0重量%含有する水酸化ニッケル粒子粉末と、粒径1μ
m、比表面積70cm2 /gの一酸化コバルト粉末と
を、比重1.25の水酸化カリウム水溶液中にて、重量
比94.5:5.5で混合した後、ろ過し、水洗し、ろ
物を2重量%CMC水溶液と混合してペーストを調製
し、このペーストを発泡ニッケルからなる多孔性基板の
孔内に充填し、乾燥し、加圧成形して、電極を作製し
た。次いで、この電極を、比重1.25の水酸化カリウ
ム水溶液に浸漬し、K2 2 8 0.4gを添加し、さ
らにK2 2 8 を酸素ガスが発生するまで追加で添加
して、一酸化コバルトをオキシ水酸化ニッケルに変えた
後、水洗し、乾燥して、比較電極を作製した。次いで、
この比較電極を正極として使用して、正極のみが本発明
電池A1と異なる密閉型ニッケル・亜鉛蓄電池Z1(比
較電池)を作製した。
(Comparative Example 4) Manganese as a solid solution element
Nickel hydroxide particle powder containing 0% by weight and a particle diameter of 1 μm
m, and a specific surface area of 70 cm 2 / g of cobalt monoxide powder were mixed at a weight ratio of 94.5: 5.5 in an aqueous potassium hydroxide solution having a specific gravity of 1.25, followed by filtration, washing with water, and filtration. The product was mixed with a 2% by weight aqueous solution of CMC to prepare a paste, and the paste was filled in the pores of a porous substrate made of foamed nickel, dried, and pressed to form an electrode. Next, this electrode was immersed in an aqueous solution of potassium hydroxide having a specific gravity of 1.25, 0.4 g of K 2 S 2 O 8 was added, and K 2 S 2 O 8 was further added until oxygen gas was generated. Then, after changing cobalt monoxide to nickel oxyhydroxide, it was washed with water and dried to prepare a comparative electrode. Then
Using this comparative electrode as a positive electrode, a sealed nickel-zinc storage battery Z1 (comparative battery) in which only the positive electrode was different from the battery A1 of the present invention was produced.

【0031】(比較例5)固溶元素としてマンガンを2
0重量%含有する水酸化ニッケル粒子粉末に代えて、マ
ンガンを含有しない水酸化ニッケル粒子粉末を使用した
こと以外は比較例4と同様にして、正極のみが本発明電
池A1と異なる密閉型ニッケル・亜鉛蓄電池Z2(比較
電池)を作製した。
(Comparative Example 5) Manganese as a solid solution element
In the same manner as in Comparative Example 4 except that the nickel hydroxide particle powder containing no manganese was used instead of the nickel hydroxide particle powder containing 0% by weight, a sealed nickel alloy having only the positive electrode different from the battery A1 of the present invention was used. A zinc storage battery Z2 (comparative battery) was produced.

【0032】〈活物質利用率及び放電容量〉各電池につ
いて、25°Cにて100mAで12時間充電した後、
25°Cにて1Aで1.0Vまで放電する工程を1サイ
クルとする充放電を10サイクル行い、各電池の正極
(ペースト式ニッケル極)の10サイクル目の活物質利
用率及び10サイクル目の放電容量を調べた。活物質利
用率は下式に基づき算出した。なお、以下の実験におけ
る活物質利用率も下式に基づき算出した値である。
<Active Material Utilization and Discharge Capacity> After charging each battery at 25 ° C. and 100 mA for 12 hours,
10 cycles of charging / discharging were performed in which the step of discharging to 1.0 V at 1 A at 25 ° C. was 1 cycle, and the active material utilization rate at the 10th cycle of the positive electrode (paste nickel electrode) of each battery and the 10th cycle The discharge capacity was examined. The active material utilization was calculated based on the following equation. The active material utilization in the following experiments is also a value calculated based on the following equation.

【0033】活物質利用率(%)={放電容量(mA
h)/〔使用した水酸化ニッケル量(g)×288(m
Ah/g)〕}×100
Active material utilization rate (%) = {discharge capacity (mA)
h) / [amount of nickel hydroxide used (g) × 288 (m
Ah / g)]} × 100

【0034】結果を表1に示す。但し、表1中の10サ
イクル目の活物質利用率及び10サイクル目の放電容量
は、それぞれ本発明電池A1の10サイクル目の活物質
利用率及び10サイクル目の放電容量を100としたと
きの指数である。
Table 1 shows the results. However, the active material utilization rate at the 10th cycle and the discharge capacity at the 10th cycle in Table 1 are assuming that the active material utilization rate at the 10th cycle and the discharge capacity at the 10th cycle of the battery A1 of the present invention are 100, respectively. It is an index.

【0035】[0035]

【表1】 [Table 1]

【0036】表1より、本発明方法によれば、比較方法
に比べて、活物質利用率の高い正極活物質が得られるこ
とが分かる。比較電池Xで、液漏れが生じたのは、負極
で亜鉛が自己放電して、水素ガスが多量に発生したため
である。
Table 1 shows that the method of the present invention can provide a positive electrode active material having a higher active material utilization rate than the comparative method. In the comparative battery X, the liquid leakage occurred because zinc was self-discharged at the negative electrode, and a large amount of hydrogen gas was generated.

【0037】(実験2)水酸化ニッケル粒子中のマンガ
ンの固溶量の好適な範囲を調べた。
(Experiment 2) A suitable range of the amount of manganese dissolved in the nickel hydroxide particles was examined.

【0038】ステップ1における硫酸マンガンの使用量
を、20.2g、30.3g、101g又は121gと
したこと以外は実施例1と同様にして、順に、密閉型ニ
ッケル・亜鉛蓄電池A3、A4、A5及びA6を作製し
た。水酸化ニッケル粒子のマンガン固溶量を原子吸光法
により調べたところ、ニッケルとマンガンの総量に基づ
いて、順に、10重量%、15重量%、50重量%及び
60重量%であった。
In the same manner as in Example 1 except that the amount of manganese sulfate used in Step 1 was 20.2 g, 30.3 g, 101 g, or 121 g, the sealed nickel-zinc storage batteries A3, A4, A5 And A6. When the manganese solid solution amount of the nickel hydroxide particles was examined by an atomic absorption method, they were 10% by weight, 15% by weight, 50% by weight and 60% by weight based on the total amount of nickel and manganese.

【0039】各電池について、実験1で行ったものと同
じ条件の充放電を10サイクル行い、各電池の正極の1
0サイクル目の活物質利用率及び10サイクル目の放電
容量を調べた。結果を表2に示す。表2には、本発明電
池A1についての結果も表1より転記して示してある。
For each battery, 10 cycles of charge / discharge under the same conditions as those performed in Experiment 1 were performed, and 1
The active material utilization rate at the 0th cycle and the discharge capacity at the 10th cycle were examined. Table 2 shows the results. In Table 2, the results for the battery A1 of the present invention are also transcribed from Table 1.

【0040】[0040]

【表2】 [Table 2]

【0041】表2に示すように、活物質利用率はマンガ
ン固溶量が多くなるほど高くなるが、放電容量はマンガ
ン固溶量が少な過ぎる場合及び多過ぎる場合のいずれの
場合も減少する。マンガン固溶量が少な過ぎる場合に放
電容量が減少するのは、活物質利用率が低いためであ
り、一方マンガン固溶量が多過ぎる場合に放電容量が減
少するのは、水酸化ニッケルの充填量の減少の影響が大
きいからである。表2より、マンガンの固溶量が、ニッ
ケルとマンガンとの総量に基づいて、15〜50重量%
の水酸化ニッケル粒子を使用することが好ましいことが
分かる。
As shown in Table 2, the active material utilization rate increases as the manganese solid solution amount increases, but the discharge capacity decreases when the manganese solid solution amount is too small or too large. When the manganese solid solution amount is too small, the discharge capacity decreases because the utilization rate of the active material is low. On the other hand, when the manganese solid solution amount is too large, the discharge capacity decreases because of the nickel hydroxide filling. This is because the effect of the decrease in the amount is large. From Table 2, the solid solution amount of manganese is 15 to 50% by weight based on the total amount of nickel and manganese.
It is understood that it is preferable to use nickel hydroxide particles.

【0042】(実験3)酸化処理に使用するアルカリ水
溶液の好適な濃度範囲を調べた。
(Experiment 3) A suitable concentration range of the aqueous alkali solution used for the oxidation treatment was examined.

【0043】ステップ3において、30重量%水酸化ナ
トリウム水溶液に代えて、15重量%、20重量%、4
0重量%又は45重量%の水酸化ナトリウム水溶液を使
用したこと以外は実施例1と同様にして、順に、密閉型
ニッケル・亜鉛蓄電池A7、A8、A9及びA10を作
製した。
In step 3, 15% by weight, 20% by weight, 4%
Sealed nickel-zinc batteries A7, A8, A9 and A10 were produced in the same manner as in Example 1 except that an aqueous solution of 0% by weight or 45% by weight of sodium hydroxide was used.

【0044】各電池について、実験1で行ったものと同
じ条件の充放電を10サイクル行い、各電池の正極の1
0サイクル目の活物質利用率及び10サイクル目の放電
容量を調べた。結果を表3に示す。表3には、本発明電
池A1についての結果も表1より転記して示してある。
For each battery, 10 cycles of charging and discharging under the same conditions as those performed in Experiment 1 were performed, and the positive electrode 1
The active material utilization rate at the 0th cycle and the discharge capacity at the 10th cycle were examined. Table 3 shows the results. Table 3 also shows the results of the battery A1 of the present invention, transcribed from Table 1.

【0045】[0045]

【表3】 [Table 3]

【0046】表3より、酸化処理のアルカリ水溶液とし
て水酸化ナトリウム水溶液を使用する場合は、20〜4
0重量%水酸化ナトリウム水溶液を使用することが好ま
しいことが分かる。
As shown in Table 3, when an aqueous solution of sodium hydroxide is used as the aqueous alkali solution for the oxidation treatment, 20 to 4
It can be seen that it is preferable to use a 0% by weight aqueous sodium hydroxide solution.

【0047】(実験4)酸化処理に使用するアルカリ水
溶液の好適な温度範囲を調べた。
(Experiment 4) A suitable temperature range of the aqueous alkali solution used for the oxidation treatment was examined.

【0048】ステップ3における酸化処理時の30重量
%水酸化ナトリウム水溶液の温度を、50°Cに代え
て、25°C、30°C、70°C又は75°Cとした
こと以外は実施例1と同様にして、順に、密閉型ニッケ
ル・亜鉛蓄電池A11、A12、A13及びA14を作
製した。
Example 3 except that the temperature of the 30% by weight aqueous sodium hydroxide solution during the oxidation treatment in Step 3 was changed to 25 ° C., 30 ° C., 70 ° C. or 75 ° C. instead of 50 ° C. In the same manner as in Example 1, sealed nickel-zinc storage batteries A11, A12, A13, and A14 were produced in this order.

【0049】各電池について、実験1で行ったものと同
じ条件の充放電を10サイクル行い、各電池の正極の1
0サイクル目の活物質利用率を調べた。結果を表4に示
す。表4には、本発明電池A1についての結果も表1よ
り転記して示してある。
For each battery, 10 cycles of charging and discharging under the same conditions as those performed in Experiment 1 were performed, and the positive electrode 1
The active material utilization rate at the 0th cycle was examined. Table 4 shows the results. In Table 4, the results for the battery A1 of the present invention are also transcribed from Table 1.

【0050】[0050]

【表4】 [Table 4]

【0051】表4より、酸化処理のアルカリ水溶液とし
て水酸化ナトリウム水溶液を使用する場合は、30〜7
0°Cに保持した水酸化ナトリウム水溶液を使用するこ
とが好ましいことが分かる。
As shown in Table 4, when an aqueous solution of sodium hydroxide is used as the aqueous alkali solution for the oxidation treatment, 30 to 7
It can be seen that it is preferable to use an aqueous solution of sodium hydroxide maintained at 0 ° C.

【0052】実験3及び4の結果より、酸化処理のアル
カリ水溶液として水酸化ナトリウム水溶液を使用する場
合は、30〜70°Cに保持した20〜40重量%水酸
化ナトリウム水溶液を使用することが好ましいことが分
かる。
From the results of Experiments 3 and 4, when using an aqueous sodium hydroxide solution as the alkaline aqueous solution for the oxidation treatment, it is preferable to use a 20 to 40% by weight aqueous sodium hydroxide solution maintained at 30 to 70 ° C. You can see that.

【0053】(実験5)水酸化ニッケル粒子に対するオ
キシ水酸化コバルト層の比率の好適な範囲を調べた。
(Experiment 5) A suitable range of the ratio of the cobalt oxyhydroxide layer to the nickel hydroxide particles was examined.

【0054】ステップ2における硫酸コバルトの使用量
を、2.6g、5.2g、26.4g又は39.3gと
したこと以外は実施例1と同様にして、順に、密閉型ニ
ッケル・亜鉛蓄電池A15、A16、A17及びA18
を作製した。水酸化ニッケル粒子に対するオキシ水酸化
コバルト層のコバルト原子換算での比率を原子吸光法に
より調べたところ、順に、1重量%、2重量%、10重
量%及び15重量%であった。
The procedure of Example 1 was repeated, except that the amount of cobalt sulfate used in Step 2 was changed to 2.6 g, 5.2 g, 26.4 g or 39.3 g. , A16, A17 and A18
Was prepared. When the ratio of the cobalt oxyhydroxide layer to the nickel hydroxide particles in terms of cobalt atoms was examined by an atomic absorption method, they were 1% by weight, 2% by weight, 10% by weight and 15% by weight, respectively.

【0055】各電池について、実験1で行ったものと同
じ条件の充放電を10サイクル行い、各電池の正極の1
0サイクル目の活物質利用率及び10サイクル目の放電
容量を調べた。結果を表5に示す。表5には、本発明電
池A1についての結果も表1より転記して示してある。
For each battery, 10 cycles of charge / discharge under the same conditions as those performed in Experiment 1 were performed, and the positive electrode 1
The active material utilization rate at the 0th cycle and the discharge capacity at the 10th cycle were examined. Table 5 shows the results. In Table 5, the results for the battery A1 of the present invention are also transcribed from Table 1.

【0056】[0056]

【表5】 [Table 5]

【0057】表5より、水酸化ニッケル粒子に対してオ
キシ水酸化コバルト層をコバルト原子換算で2〜10重
量%形成することが好ましいことが分かる。
Table 5 shows that the cobalt oxyhydroxide layer is preferably formed in an amount of 2 to 10% by weight in terms of cobalt atoms with respect to the nickel hydroxide particles.

【0058】(実験6)固溶元素として、マンガン以外
に、コバルト、亜鉛、カルシウム、アルミニウム、イッ
トリウム、イッテルビウム、エルビウム及びガドリニウ
ムよりなる群から選ばれた少なくとも1種の元素Mを含
有する水酸化ニッケル粒子を使用して、密閉型ニッケル
・亜鉛蓄電池を作製し、各電池の正極の活物質利用率及
び放電容量を調べた。
(Experiment 6) Nickel hydroxide containing, as a solid solution element, at least one element M selected from the group consisting of cobalt, zinc, calcium, aluminum, yttrium, ytterbium, erbium and gadolinium, in addition to manganese. Using the particles, sealed nickel-zinc storage batteries were fabricated, and the active material utilization and discharge capacity of the positive electrode of each battery were examined.

【0059】ステップ1において、硫酸マンガン(Mn
SO4 )40.4g及び硫酸ニッケル(NiSO4 )1
54.8gとともに、硫酸コバルト(CoSO4 )1.
55g、硫酸亜鉛(ZnSO4 )1.46g、硝酸カル
シウム(Ca(NO32 )2.41g、硫酸アルミニ
ウム(Al2 (SO4 3 ) 3.74g、硫酸イットリ
ウム(Y2 (SO4 3 ) 1.55g、硫酸イッテルビ
ウム(Yb2 (SO43 ) 1.08g、硫酸エルビウ
ム(Er2 (SO4 3 ) 1.10g、硫酸ガドリニウ
ム(Gd2 (SO4 3 ) 1.13g、又は、硫酸亜鉛
(ZnSO4 )1.46g及び硫酸コバルト1.55g
を、水に溶かした水溶液を使用したこと以外は実施例1
と同様にして、順に、密閉型ニッケル・亜鉛蓄電池B1
〜B9を作製した。各電池に使用した水酸化ニッケル粒
子の元素Mの固溶量を調べたところ、電池B1〜B8に
ついては、ニッケルと元素Mとの総量に基づいて、1重
量%であり、また電池B9については、ニッケルと元素
Mとの総量に基づいて、2重量%(亜鉛1重量%、コバ
ルト1重量%)であった。コバルト、亜鉛及びカルシウ
ムの固溶量は原子吸光法により、またアルミニウム、イ
ットリウム、イッテルビウム、エルビウム及びガドリニ
ウムの固溶量は発光分析法(ICP)により、それぞれ
求めた。
In step 1, manganese sulfate (Mn)
SO 4 ) 40.4 g and nickel sulfate (NiSO 4 ) 1
With 54.8 g of cobalt sulfate (CoSO 4 ) 1.
55 g, zinc sulfate (ZnSO 4 ) 1.46 g, calcium nitrate (Ca (NO 3 ) 2 ) 2.41 g, aluminum sulfate (Al 2 (SO 4 ) 3 ) 3.74 g, yttrium sulfate (Y 2 (SO 4 )) 3 ) 1.55 g, ytterbium sulfate (Yb 2 (SO 4 ) 3 ) 1.08 g, erbium sulfate (Er 2 (SO 4 ) 3 ) 1.10 g, gadolinium sulfate (Gd 2 (SO 4 ) 3 ) 1.13 g Or 1.46 g of zinc sulfate (ZnSO 4 ) and 1.55 g of cobalt sulfate
Example 1 except that an aqueous solution dissolved in water was used.
In the same manner as described above, the sealed nickel-zinc storage battery B1
To B9. When the solid solution amount of the element M in the nickel hydroxide particles used for each battery was examined, it was 1% by weight for the batteries B1 to B8 based on the total amount of nickel and the element M, and for the battery B9. , 2% by weight (1% by weight of zinc, 1% by weight of cobalt) based on the total amount of nickel and element M. The solid solution amounts of cobalt, zinc and calcium were determined by atomic absorption spectrometry, and the solid solution amounts of aluminum, yttrium, ytterbium, erbium and gadolinium were determined by emission spectrometry (ICP).

【0060】各電池について、実験1で行ったものと同
じ条件の充放電を10サイクル行い、各電池の正極の1
0サイクル目の活物質利用率及び10サイクル目の放電
容量を調べた。結果を表6に示す。表6には、本発明電
池A1についての結果も表1より転記して示してある。
For each battery, 10 cycles of charge / discharge under the same conditions as those performed in Experiment 1 were performed, and the positive electrode 1
The active material utilization rate at the 0th cycle and the discharge capacity at the 10th cycle were examined. Table 6 shows the results. In Table 6, the results for the battery A1 of the present invention are also transcribed from Table 1.

【0061】[0061]

【表6】 [Table 6]

【0062】表6より、水酸化ニッケル粒子として、マ
ンガン以外に、特定の元素Mを固溶元素としてさらに含
有する水酸化ニッケル粒子を使用することが好ましいこ
とが分かる。
Table 6 shows that it is preferable to use, as the nickel hydroxide particles, nickel hydroxide particles further containing a specific element M as a solid solution element in addition to manganese.

【0063】(実験7)水酸化ニッケル粒子中の元素M
の好適な固溶量を調べた。
(Experiment 7) Element M in nickel hydroxide particles
Was examined for a suitable solid solution amount.

【0064】ステップ1において、硫酸マンガン(Mn
SO4 )40.4g及び硫酸ニッケル(NiSO4 )1
54.8gとともに、硫酸亜鉛を0.37g、0.73
g、7.3g又は10.95gを、水に溶かした水溶液
を使用したこと以外は実施例1と同様にして、順に、密
閉型ニッケル・亜鉛蓄電池C1〜C4を作製した。各電
池に使用した水酸化ニッケル粒子中の亜鉛の固溶量を原
子吸光法により調べたところ、ニッケルと元素Mとの総
量に基づいて、順に、0.25重量%、0.5重量%、
5重量%及び7.5重量%であった。
In step 1, manganese sulfate (Mn)
SO 4 ) 40.4 g and nickel sulfate (NiSO 4 ) 1
With 54.8 g, 0.37 g of zinc sulfate, 0.73 g
g, 7.3 g or 10.95 g of the sealed nickel-zinc storage batteries C1 to C4 were produced in the same manner as in Example 1 except that an aqueous solution in which water was dissolved was used. The amount of zinc dissolved in the nickel hydroxide particles used in each battery was examined by atomic absorption spectrometry. Based on the total amount of nickel and the element M, 0.25% by weight, 0.5% by weight,
5% and 7.5% by weight.

【0065】各電池について、実験1で行ったものと同
じ条件の充放電を10サイクル行い、各電池の正極の1
0サイクル目の活物質利用率及び10サイクル目の放電
容量を調べた。結果を表7に示す。表7には、電池B2
についての結果も表6より転記して示してある。
For each battery, 10 cycles of charge / discharge under the same conditions as those performed in Experiment 1 were performed, and the positive electrode 1
The active material utilization rate at the 0th cycle and the discharge capacity at the 10th cycle were examined. Table 7 shows the results. Table 7 shows that the battery B2
Are also transcribed from Table 6 and shown.

【0066】[0066]

【表7】 [Table 7]

【0067】表7より、亜鉛の固溶量としては、5重量
%以下が好ましいことが分かる。他の元素Mの固溶量に
ついても、概ね5重量%以下が好ましいことを確認し
た。
From Table 7, it can be seen that the solid solution amount of zinc is preferably 5% by weight or less. It was also confirmed that the solid solution amount of the other element M was preferably about 5% by weight or less.

【0068】[0068]

【発明の効果】本発明方法によれば、粒子表面の導電性
が極めて良い正極活物質を作製することができる。ま
た、本発明方法により作製した正極活物質を使用するこ
とにより、活物質利用率の極めて高いペースト式ニッケ
ル極を作製することができる。さらに、本発明方法によ
り作製した正極活物質を、亜鉛極を負極とする密閉型ニ
ッケル・亜鉛蓄電池の正極活物質として使用することに
より、負極での水素ガスの発生が少ない、信頼性の高い
密閉型電池を作製することができる。
According to the method of the present invention, it is possible to prepare a positive electrode active material having extremely good conductivity on the particle surface. Further, by using the positive electrode active material produced by the method of the present invention, a paste-type nickel electrode having an extremely high active material utilization rate can be produced. Furthermore, by using the positive electrode active material produced by the method of the present invention as a positive electrode active material of a sealed nickel-zinc storage battery having a zinc electrode as a negative electrode, generation of hydrogen gas at the negative electrode is small, and a highly reliable sealed Type battery can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢野 睦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 伊藤 靖彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H003 AA02 BA01 BA02 BA03 BA07 BB02 BB04 BC01 BC05 BD01 BD04 5H016 AA02 BB02 BB05 BB06 BB09 EE05 5H028 AA02 BB01 BB03 BB04 BB05 BB06 CC17 EE01 EE05 EE06 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mutsumi Yano 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Yasuhiko Ito 2-chome, Keihanhondori, Moriguchi-shi, Osaka No.5 Sanyo Electric Co., Ltd. F-term (reference) 5H003 AA02 BA01 BA02 BA03 BA07 BB02 BB04 BC01 BC05 BD01 BD04 5H016 AA02 BB02 BB05 BB06 BB09 EE05 5H028 AA02 BB01 BB03 BB04 BB05 BB06 CC17 EE01 EE05 EE06

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】固溶元素としてマンガンを含有する水酸化
ニッケル粒子の表面にオキシ水酸化コバルト層を形成し
て成るアルカリ蓄電池用正極活物質を製造するにあた
り、前記水酸化ニッケル粒子の表面に水酸化コバルト層
を形成して複合体粒子を作製し、次いで、前記水酸化コ
バルト層を酸化して前記オキシ水酸化コバルト層に変え
るべく、前記複合体粒子を、次亜塩素酸塩又は次亜臭素
酸塩を含有するアルカリ水溶液と混合することを特徴と
するアルカリ蓄電池用正極活物質の製法。
1. A method for producing a positive electrode active material for an alkaline storage battery, comprising forming a cobalt oxyhydroxide layer on the surface of nickel hydroxide particles containing manganese as a solid solution element, wherein the surface of the nickel hydroxide particles is water. To form a cobalt oxide layer to produce composite particles, and then oxidize the cobalt hydroxide layer to convert it to the cobalt oxyhydroxide layer, the composite particles are treated with hypochlorite or hypobromite. A method for producing a positive electrode active material for an alkaline storage battery, which is mixed with an aqueous alkali solution containing an acid salt.
【請求項2】前記水酸化ニッケル粒子として、固溶元素
としてマンガンをニッケルとマンガンとの総量に基づい
て15〜50重量%含有する水酸化ニッケル粒子を使用
する請求項1記載のアルカリ蓄電池用正極活物質の製
法。
2. The positive electrode for an alkaline storage battery according to claim 1, wherein the nickel hydroxide particles comprise nickel hydroxide particles containing manganese as a solid solution element in an amount of 15 to 50% by weight based on the total amount of nickel and manganese. Active material manufacturing method.
【請求項3】前記アルカリ水溶液として、30〜70°
Cに保持した20〜40重量%水酸化ナトリウム水溶液
を使用する請求項1記載のアルカリ蓄電池用正極活物質
の製法。
3. The method according to claim 1, wherein the aqueous alkaline solution is 30 to 70 °.
The method for producing a positive electrode active material for an alkaline storage battery according to claim 1, wherein a 20 to 40% by weight aqueous sodium hydroxide solution held at C is used.
【請求項4】前記水酸化ニッケル粒子に対して前記オキ
シ水酸化コバルト層を、コバルト元素換算で、2〜10
重量%形成する請求項1記載のアルカリ蓄電池用正極活
物質の製法。
4. A method according to claim 1, wherein said cobalt oxyhydroxide layer is applied to said nickel hydroxide particles in an amount of 2 to 10 in terms of cobalt element.
The method for producing a positive electrode active material for an alkaline storage battery according to claim 1, wherein the positive electrode active material is formed in a percentage by weight.
【請求項5】前記水酸化ニッケル粒子として、固溶元素
として、さらに、コバルト、亜鉛、カルシウム、アルミ
ニウム、イットリウム、イッテルビウム、エルビウム及
びガドリニウムよりなる群から選ばれた少なくとも1種
の元素Mを、ニッケルと元素Mとの総量に基づいて、5
重量%以下含有する水酸化ニッケル粒子を使用する請求
項1記載のアルカリ蓄電池用正極活物質の製法。
5. The nickel hydroxide particles further comprise, as a solid solution element, at least one element M selected from the group consisting of cobalt, zinc, calcium, aluminum, yttrium, ytterbium, erbium and gadolinium. 5 based on the total amount of
2. The method for producing a positive electrode active material for an alkaline storage battery according to claim 1, wherein nickel hydroxide particles having a content of not more than 10% by weight are used.
【請求項6】請求項1〜5のいずれかに記載の製法によ
り製造したアルカリ蓄電池用正極活物質。
6. A positive electrode active material for an alkaline storage battery produced by the method according to claim 1.
【請求項7】請求項6記載のアルカリ蓄電池用正極活物
質を備えるアルカリ蓄電池用ペースト式ニッケル極。
7. A paste-type nickel electrode for an alkaline storage battery, comprising the positive electrode active material for an alkaline storage battery according to claim 6.
【請求項8】請求項7記載のアルカリ蓄電池用ペースト
式ニッケル極を備える密閉型ニッケル・亜鉛蓄電池。
8. A sealed nickel-zinc storage battery comprising the paste-type nickel electrode for an alkaline storage battery according to claim 7.
JP36962599A 1999-12-27 1999-12-27 Positive electrode active material for alkaline storage battery and manufacturing method therefor Pending JP2001185138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36962599A JP2001185138A (en) 1999-12-27 1999-12-27 Positive electrode active material for alkaline storage battery and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36962599A JP2001185138A (en) 1999-12-27 1999-12-27 Positive electrode active material for alkaline storage battery and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2001185138A true JP2001185138A (en) 2001-07-06

Family

ID=18494913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36962599A Pending JP2001185138A (en) 1999-12-27 1999-12-27 Positive electrode active material for alkaline storage battery and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2001185138A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117842A (en) * 2000-10-06 2002-04-19 Yuasa Corp Positive electrode active material for alkaline storage battery and its manufacturing method, positive electrode for alkaline storage battery and alkaline storage battery
JP2002198046A (en) * 2000-12-25 2002-07-12 Yuasa Corp Positive electrode active material for alkaline storage battery, its manufacturing method and alkaline storage battery using same
WO2003103080A1 (en) 2002-05-31 2003-12-11 東芝電池株式会社 Sealed nickel-zinc primary cell
EP1182719A3 (en) * 2000-08-08 2006-08-02 Sanyo Electric Co., Ltd. Manufacturing method of positive active material for alkaline storage battery, nickel electrode using the same material and alkaline storage battery using the same nickel electrode
WO2012144391A1 (en) * 2011-04-18 2012-10-26 プライムアースEvエナジー 株式会社 Alkaline storage battery cathode, method for producing alkaline storage battery cathode, alkaline storage battery, method for producing alkaline storage battery, cathode active material for alkaline storage battery, method for producing cathode active material for alkaline storage battery
JP2012226899A (en) * 2011-04-18 2012-11-15 Primearth Ev Energy Co Ltd Alkaline storage battery positive electrode, alkaline storage battery positive electrode manufacturing method, alkaline storage battery, and alkaline storage battery manufacturing method
JP2017143039A (en) * 2016-02-12 2017-08-17 Fdk株式会社 Positive electrode active material for alkaline secondary battery, and alkaline secondary battery including the positive electrode active material
US20200109462A1 (en) * 2017-06-14 2020-04-09 Nmr 360 Inc Method for the production of cobalt and associated oxides from various feed materials
WO2020230204A1 (en) * 2019-05-10 2020-11-19 昭和電工マテリアルズ株式会社 Nickel zinc battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1182719A3 (en) * 2000-08-08 2006-08-02 Sanyo Electric Co., Ltd. Manufacturing method of positive active material for alkaline storage battery, nickel electrode using the same material and alkaline storage battery using the same nickel electrode
JP2002117842A (en) * 2000-10-06 2002-04-19 Yuasa Corp Positive electrode active material for alkaline storage battery and its manufacturing method, positive electrode for alkaline storage battery and alkaline storage battery
JP4556315B2 (en) * 2000-10-06 2010-10-06 株式会社Gsユアサ Alkaline storage battery
JP2002198046A (en) * 2000-12-25 2002-07-12 Yuasa Corp Positive electrode active material for alkaline storage battery, its manufacturing method and alkaline storage battery using same
WO2003103080A1 (en) 2002-05-31 2003-12-11 東芝電池株式会社 Sealed nickel-zinc primary cell
EP1519434A1 (en) * 2002-05-31 2005-03-30 Toshiba Battery Co., Ltd. Sealed nickel-zinc primary cell
EP1519434A4 (en) * 2002-05-31 2008-07-02 Toshiba Battery Sealed nickel-zinc primary cell
US7763383B2 (en) 2002-05-31 2010-07-27 Toshiba Battery Co., Ltd. Sealed nickel-zinc primary cell
WO2012144391A1 (en) * 2011-04-18 2012-10-26 プライムアースEvエナジー 株式会社 Alkaline storage battery cathode, method for producing alkaline storage battery cathode, alkaline storage battery, method for producing alkaline storage battery, cathode active material for alkaline storage battery, method for producing cathode active material for alkaline storage battery
JP2012226899A (en) * 2011-04-18 2012-11-15 Primearth Ev Energy Co Ltd Alkaline storage battery positive electrode, alkaline storage battery positive electrode manufacturing method, alkaline storage battery, and alkaline storage battery manufacturing method
CN103477471A (en) * 2011-04-18 2013-12-25 朴力美电动车辆活力株式会社 Alkaline storage battery anode, method for producing alkaline storage battery anode, alkaline storage battery, method for producing alkaline storage battery, anode active material for alkaline storage battery, method for producing anode active material for alkaline storage battery
JP2017143039A (en) * 2016-02-12 2017-08-17 Fdk株式会社 Positive electrode active material for alkaline secondary battery, and alkaline secondary battery including the positive electrode active material
CN107086296A (en) * 2016-02-12 2017-08-22 Fdk株式会社 The positive active material of alkaline secondary cell and the alkaline secondary cell containing the positive active material
US11228027B2 (en) 2016-02-12 2022-01-18 Fdk Corporation Positive electrode active material for alkaline secondary battery and alkaline secondary battery including the positive electrode active material
US20200109462A1 (en) * 2017-06-14 2020-04-09 Nmr 360 Inc Method for the production of cobalt and associated oxides from various feed materials
WO2020230204A1 (en) * 2019-05-10 2020-11-19 昭和電工マテリアルズ株式会社 Nickel zinc battery
JPWO2020230204A1 (en) * 2019-05-10 2021-12-23 昭和電工マテリアルズ株式会社 Nickel-zinc battery

Similar Documents

Publication Publication Date Title
JP3191751B2 (en) Alkaline storage battery and surface treatment method for positive electrode active material thereof
JP3232990B2 (en) Alkaline storage battery and method for manufacturing the same
US6620549B2 (en) Alkaline storage battery
JPWO2002071527A1 (en) Manufacturing method of nickel metal hydride battery
JPWO2005045958A1 (en) Method for producing alkaline battery and positive electrode material for alkaline battery
JP2001185138A (en) Positive electrode active material for alkaline storage battery and manufacturing method therefor
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery
JPH1074512A (en) Nickel hydrogen secondary battery and positive electrode thereof
JP3433050B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2002056844A (en) Method of manufacturing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP4017302B2 (en) Alkaline storage battery and method for manufacturing the same
JP3469766B2 (en) Non-sintered nickel electrodes and batteries for sealed alkaline storage batteries
JP3433049B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
JP3263601B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP5309479B2 (en) Alkaline storage battery
JP2003077468A (en) Manufacturing method of nickel electrode material
JP4212129B2 (en) Nickel electrode for alkaline storage battery and method for producing the same
JP3433043B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPS5832744B2 (en) Manufacturing method of cadmium cathode for sealed alkaline storage battery
JP3229801B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same
JPH10214619A (en) Manufacture of unsintered nickel electrode for alkaline storage battery
JPH09147904A (en) Paste type nickel electrode for alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417