JPH1175548A - Cultivation of cell grown seedling - Google Patents

Cultivation of cell grown seedling

Info

Publication number
JPH1175548A
JPH1175548A JP9236947A JP23694797A JPH1175548A JP H1175548 A JPH1175548 A JP H1175548A JP 9236947 A JP9236947 A JP 9236947A JP 23694797 A JP23694797 A JP 23694797A JP H1175548 A JPH1175548 A JP H1175548A
Authority
JP
Japan
Prior art keywords
seedling
cultivation
light
seedlings
peak wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9236947A
Other languages
Japanese (ja)
Inventor
Fumihiro Tanaka
史宏 田中
Hiroyuki Watanabe
博之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP9236947A priority Critical patent/JPH1175548A/en
Publication of JPH1175548A publication Critical patent/JPH1175548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently raise a good seedling having a short hypocotyl without succulent growth and obtain the high-quality seedling by irradiating a cell formed seedling such as a flower and ornamental plant in a seedling raising stage with far infrared rays having the peak wavelength within a prescribed wavelength region and cultivating the seedling in a nearly hermetically sealed system. SOLUTION: A cell grown seedling of a flower and ornamental plant, fruit vegetable and leaf vegetables (e.g. a pansy or a tomato) in a seedling raising stage is irradiated with far infrared rays having the peak wavelength only in the region of 670-750 nm to carry out the cultivation of the cell formed seedling in a nearly hermetically sealed system. A light source is preferably an optical semiconductor and the photon flux density for irradiation is preferably >=10 μmol/m<2> .s on a cultivation surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、人工光を用いる植
物の育苗方法に関する。詳しくは、遠赤色光を用いて、
略密閉系で植物苗を栽培する方法に関する。
[0001] The present invention relates to a method of raising plants using artificial light. Specifically, using far-red light,
The present invention relates to a method for cultivating plant seedlings in a substantially closed system.

【0002】[0002]

【従来の技術】近年の農業では、苗作りと栽培が別の場
所で行われることが多く、苗は育苗専門に行われる様に
なった。育苗産業に求められているのは、経済的で効率
よく、且つ、健康な苗を作ることである。特に、苗半作
という言葉があるように、苗の善し悪しがその後の作物
の生育に大きく影響するため、徒長していない健康な苗
が望まれている。即ち、節間が短く、基部の充実した苗
は定植後の生育がよく、また地上部をしっかり支えてい
るので受光態勢がよく、病気にかかり難い健康な苗とし
て望まれている。
2. Description of the Related Art In recent years, in agriculture, seedling production and cultivation are often performed in different places, and seedlings are now specialized in raising seedlings. What is required of the nursery industry is to produce economical, efficient and healthy seedlings. In particular, as the term “seedling half cropping” implies, the quality of seedlings greatly affects the growth of subsequent crops. In other words, seedlings with short internodes and a solid base are well-grown after planting, and since they firmly support the aerial parts, they are well-received and are desired as healthy seedlings that are less susceptible to diseases.

【0003】植物栽培を効率よく、天候に左右されず安
定して行うために、機械化された設備や、人工光源を用
いて生育環境を人工的に制御した施設栽培が試みられ、
一部実用化されている。人工光源としては、高圧ナトリ
ウムランプ、メタルハライドランプ、蛍光灯、白熱電灯
等が使用されている。また、発光ダイオード或いは半導
体レーザーを光源とすることも提案されている(特開平
4−121117、特開平5−115219号公報)。
In order to perform plant cultivation efficiently and stably irrespective of the weather, attempts have been made to use mechanized equipment and facility cultivation in which the growth environment is artificially controlled using artificial light sources.
Some have been put to practical use. As artificial light sources, high-pressure sodium lamps, metal halide lamps, fluorescent lamps, incandescent lamps and the like are used. It has also been proposed to use a light emitting diode or a semiconductor laser as a light source (Japanese Patent Application Laid-Open Nos. 4-121117 and 5-115219).

【0004】育苗段階の光照射についても同様の光源が
使用されているが、これらは、日射量が不足した場合に
光合成のための光エネルギーを補うことが目的であり、
その光照射スペクトルは赤、青または緑色光を主に構成
されている。人工光源を用いる施設栽培において、植物
の生育と照射する光の波長の関係に関しては研究が成さ
れており、赤色光は主として光合成に、青色光は主とし
て屈光性に、また、遠赤色光は主として花芽形成に関与
しているとされている。さらに遠赤色光については、あ
る種の植物に対して発芽抑制作用や茎の伸張作用を持っ
ていることが知られている。而して、本発明者等は先
に、光合成には利用されないといわれる遠赤色光を育苗
時の特定期間補光することにより、徒長を防止し、胚軸
の伸張抑制し健苗を育成する方法を提案した(特開平9
−149729号)。
[0004] Similar light sources are used for light irradiation at the seedling raising stage, but these are intended to supplement light energy for photosynthesis when solar radiation is insufficient.
The light irradiation spectrum is mainly composed of red, blue or green light. In facility cultivation using artificial light sources, research has been conducted on the relationship between the growth of plants and the wavelength of light to be irradiated, and red light is mainly used for photosynthesis, blue light is mainly phototropic, and far red light is used for It is mainly involved in flower bud formation. Further, it is known that far-red light has a germination inhibitory action and a stem elongation action on certain plants. Thus, the present inventors first supplement the far-red light, which is said to be not used for photosynthesis, with light for a specific period at the time of raising a seedling, thereby preventing growth and suppressing the growth of the hypocotyl to grow a healthy seedling. Proposed a method (Japanese Unexamined Patent Publication No.
No. 149729).

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる遠赤色
光を用いより効率的に育苗を行い、徒長しない健康な苗
即ち、節間が短く基部の充実した苗を育苗する方法を提
供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention provides a method for raising seedlings more efficiently using such far-red light and raising healthy seedlings that do not evolve, that is, seedlings with short internodes and a solid base. It is intended for.

【0006】[0006]

【課題を解決するための手段】本発明者等はセル成形苗
をほぼ密閉系で育苗する場合、光合成には有効ではな
く、むしろ茎や葉柄を伸ばす作用を持ち、更に発芽を抑
える作用があるといわれている遠赤色光を育苗期間の大
部分の間照射して栽培することにより、徒長を防止し、
茎(胚軸)の伸張を抑制した健康な苗を効率よく生産し
得ることを知り本発明を達成した。即ち本発明の要旨
は、育苗段階の花卉、果菜及び葉菜類のセル成形苗に、
略密閉系にて670〜750nmにのみピーク波長を持
つ遠赤色光を照射して栽培することを特徴とするセル成
形苗の栽培方法に存する。
Means for Solving the Problems The present inventors are not effective in photosynthesis when growing cell-molded seedlings in a substantially closed system, but rather have the effect of extending stems and petioles and the effect of suppressing germination. By irradiating far-red light, which is said to be cultivated during most of the nursery period, cultivation is prevented,
The present inventor has found that a healthy seedling in which the elongation of the stem (hypocotyl) is suppressed can be efficiently produced, and the present invention has been achieved. That is, the gist of the present invention is a flowering plant of the seedling raising stage, a cell-shaped seedling of fruit and vegetables,
The present invention is directed to a method for cultivating cell-formed seedlings, which comprises irradiating far-red light having a peak wavelength only at 670 to 750 nm in a substantially closed system and cultivating the cells.

【0007】本発明方法が適用される、セル成形苗は、
セルと呼ばれる、プラスチック等により形成された小さ
な鉢が連なった連鉢(セル成形トレイ)に、通常、機械
により播種し、セル内で発芽、育苗し、そのまま出荷さ
れる苗である。本発明方法においては、植物の栽培方法
は特に限定されるものではなく、例えば培地を充填した
セル成形トレイに種子を播種し、播種後または発芽した
直後から、例えば育苗箱等の略密閉系にて670〜75
0nm、好ましくは670〜700nmのみにピーク波
長を持つ遠赤色光を照射して栽培する。栽培中は、光
量、日長、温度、湿度、場合によっては炭酸ガス濃度な
どを調節する。灌水及び液肥の施肥は底面灌水方式が望
ましい。当該波長を照射しての栽培は、苗の育成期間の
大部分で行うことができる。照射する光量子束密度は、
栽培面状で10μmol/m2 ・s以上必要である。
[0007] The cell-forming seedling to which the method of the present invention is applied,
The seedlings are usually sowed by a machine in a series of small pots (cell forming trays) called cells, which are formed of plastic or the like, and germinated and raised in the cells, and then shipped as they are. In the method of the present invention, the cultivation method of the plant is not particularly limited, for example, sowing the seeds in a cell forming tray filled with a medium, immediately after sowing or immediately after germination, for example, in a substantially closed system such as a nursery box 670-75
The cultivation is performed by irradiating far-red light having a peak wavelength only at 0 nm, preferably 670 to 700 nm. During cultivation, the amount of light, day length, temperature, humidity, and in some cases, the concentration of carbon dioxide are adjusted. Bottom watering is preferred for watering and liquid fertilization. Cultivation by irradiating the wavelength can be performed during most of the growing period of the seedling. The photon flux density for irradiation is
10 μmol / m 2 · s or more is required in the cultivation surface state.

【0008】このような光の光源としては、所望の遠赤
色光を発光し得るもので有れば特に限定されるものでは
なく、光半導体、特に発光ダイオード(LED)、半導
体レーザー、蛍光灯などが挙げられる。特に発光ダイオ
ードは、発光スペクトルがシャープで、特定のピーク波
長の光を得やすく、育苗に有用な波長の光のみを照射す
ることができる。また、熱線を殆んど照射しないので、
植物に近接して照射することができるため、光の利用効
率に優れると共に、栽培空間を小さくすることができる
ので育苗箱内の温度管理が容易で、特に冷却に要する費
用を節約することができる等の利点を有し好ましい。播
種されたセル成形トレイはほぼ密閉系の栽培装置内で、
発光波長が670〜750nm、好ましくは670〜7
00nmにピーク波長を有する人工光を照射して栽培さ
れる。
[0008] The light source of such light is not particularly limited as long as it can emit desired far-red light, and optical semiconductors, in particular, light emitting diodes (LEDs), semiconductor lasers, fluorescent lamps and the like can be used. Is mentioned. In particular, a light emitting diode has a sharp emission spectrum, easily obtains light having a specific peak wavelength, and can irradiate only light having a wavelength useful for raising seedlings. Also, since it hardly irradiates heat rays,
Since the irradiation can be performed in close proximity to the plant, the efficiency of light utilization is excellent, and the cultivation space can be reduced, so that the temperature in the nursery box can be easily controlled, and the cost required for cooling can be reduced. It is preferable because it has advantages such as the following. The seeded cell forming tray is almost in a closed cultivation device,
The emission wavelength is 670-750 nm, preferably 670-7
Cultivated by irradiating artificial light having a peak wavelength at 00 nm.

【0009】本発明は略密閉系にて実施されるので、温
度、湿度等の栽培環境を高度に制御することが可能であ
る。従って通常温室で行われている育苗と異なり、季節
や天候による育苗期間の変動、また生育速度を調節する
ためのさまざまな環境調節処理からの解放を期待でき
る。さらに系内の環境調節が容易であるために、その植
物の最適条件(光、温度、湿度、炭酸ガス濃度など)に
設定することが容易にでき、生育速度促進を図ることも
できる。
Since the present invention is implemented in a substantially closed system, it is possible to control the cultivation environment such as temperature and humidity at a high level. Therefore, unlike the seedling raising usually performed in a greenhouse, it can be expected that the seedling raising period fluctuates due to the season and the weather, and that the seedling is released from various environmental control treatments for controlling the growth rate. Further, since the environment in the system is easily adjusted, it is easy to set the optimum conditions (light, temperature, humidity, carbon dioxide concentration, etc.) of the plant, and to promote the growth rate.

【0010】本発明方法が適用される植物は遠赤色光照
射下でも発芽する植物、例えば、パンジー、プリムラ、
ベコニア、トルコキキョウ及びブロッコリー等のスミレ
科、サクラソウ科、シュウカイドウ科、リンドウ科及び
アブラナ科の植物については発芽する前から光照射処理
を行ってもよく、遠赤色又は赤外光下で発芽しない植
物、例えば、トマト、レタス等のナス科、キク科の植物
に対しては、発芽後から光照射処理を行う。本発明方法
に依れば、発光波長が670から750nmの遠赤色光
のみで、苗を栽培し、胚軸の短い、即ち徒長していない
健康な苗を育てることができるが、植物の種類によって
は、白色光等を補光しても良い。
Plants to which the method of the present invention is applied are plants that germinate even under irradiation with far-red light, such as pansies, primula,
Vegetables such as beconia, eustoma and broccoli, primroses, sycamoreaceae, gentian and cruciferous plants may be subjected to light irradiation treatment before germination, and plants that do not germinate under far-red or infrared light For example, plants of solanaceae and asteraceae such as tomato and lettuce are subjected to light irradiation treatment after germination. According to the method of the present invention, seedlings can be cultivated and healthy seedlings having short hypocotyls, that is, unstrained, can be grown only with far-red light having an emission wavelength of 670 to 750 nm. May supplement white light or the like.

【0011】[0011]

【実施例】以下、本発明を実施例により、更に具体的に
説明するが、本発明はその要旨を超えない限り、以下の
実施例に制約されるものではない。 実施例1 パンジー(品種:デルタピュアイエロー)種子を培地を
充填したセル成形トレイ(8×8セル)に播種し、直ち
に密閉栽培装置内の異なる波長の光照射下に置き、温度
20℃、湿度60%、日長12時間の条件で栽培した。
なお、1/2濃度の大塚液肥A処方をセル成形トレイ底
面から吸水させた。それぞれの照射光のピーク波長は、
450、525、580、630、660、680、7
00、740及び800nmとし、光源は全て発光ダイ
オードを使用した。対照区として白色蛍光灯区を設け、
播種から30日間栽培した後、苗の胚軸長を測定し、白
色蛍光灯区に対する相対値(%)を求めた。光量子束密
度は各区とも25μmol/m2 ・sとした。その結
果、表−1に示したように680、700及び740n
mの波長の光で栽培した区で最も胚軸が短かった。逆に
525nmの波長の光を照射した区が最も胚軸が長く、
即ち徒長程度が大きかった。さらに栽培終了後、68
0、700及び740nmの波長の光で栽培した苗を屋
外の圃場に定植し栽培したが、枯れや生育不良は見られ
ず、正常に生長した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist. Example 1 Pansy (variety: Delta Pure Yellow) seeds were sown on a cell forming tray (8 × 8 cells) filled with a culture medium, immediately placed under light irradiation of a different wavelength in a closed cultivation apparatus, at a temperature of 20 ° C. and humidity. It was cultivated under conditions of 60% and a day length of 12 hours.
In addition, Otsuka liquid manure A prescription of 1/2 concentration was made to absorb water from the cell molding tray bottom. The peak wavelength of each irradiation light is
450, 525, 580, 630, 660, 680, 7
The light sources were 00, 740 and 800 nm, and all light sources used were light emitting diodes. Establish a white fluorescent light section as a control section,
After cultivation for 30 days after sowing, the hypocotyl length of the seedling was measured, and the relative value (%) to the white fluorescent light section was determined. The photon flux density was 25 μmol / m 2 · s in each section. As a result, as shown in Table 1, 680, 700 and 740n
The hypocotyl was the shortest in the section cultivated with light having a wavelength of m. Conversely, the section irradiated with light of 525 nm wavelength has the longest hypocotyl,
In other words, the size of a professor was large. After further cultivation, 68
Seedlings cultivated with light having wavelengths of 0, 700 and 740 nm were planted and cultivated in an outdoor field, and showed normal growth without any withering or poor growth.

【0012】[0012]

【表1】 [Table 1]

【0013】実施例2 トマト(品種:桃太郎)について実施例1と同様の試験
を行った。但し光照射処理は、播種後、白色蛍光灯下で
3日間発芽期間を設けた後に行った。栽培日数は播種か
ら17日間とした。その結果、表−2に示したように6
80、700及び740nmの波長の光で栽培した区で
最も胚軸が短かった。逆に525nmの波長の光を照射
した区が最も胚軸が長く、即ち徒長程度が大きかった。
さらに栽培終了後、680、700及び740nmの波
長の光で栽培した苗を屋外の圃場に定植し栽培したが、
枯れや生育不良は見られず、正常に生長した。
Example 2 The same test as in Example 1 was conducted for tomato (cultivar: Momotaro). However, the light irradiation treatment was performed after the seeding and after providing a germination period under a white fluorescent lamp for 3 days. The cultivation days were 17 days from sowing. As a result, as shown in Table 2, 6
Hypocotyls were the shortest in the sections cultivated with light having wavelengths of 80, 700 and 740 nm. Conversely, the section irradiated with light having a wavelength of 525 nm had the longest hypocotyl, that is, the length of the hypocotyl was large.
After the cultivation was completed, seedlings cultivated with light having wavelengths of 680, 700 and 740 nm were planted and cultivated in an outdoor field.
There was no withering or poor growth, and the plants grew normally.

【0014】[0014]

【表2】 [Table 2]

【0015】実施例3 パンジー種子を培地を充填したセル成形トレイ(8×8
セル)に播種し、直ちに密閉栽培装置内の異なる光量子
束密度の光照射下に置き、温度20℃、湿度60%、日
長12時間の条件で栽培した。光源は680nmにピー
ク波長を持つ発光ダイオードを使用し、それぞれの照射
光の光量子束密度は、5、10、25、50、100及
び150μmol/m2 ・sとした。播種から30日間
栽培し、苗の胚軸長を測定し、標準偏差を求めた。
Example 3 A cell forming tray (8 × 8) filled with pansy seeds and a medium
And cultivated under conditions of a temperature of 20 ° C., a humidity of 60% and a photoperiod of 12 hours. The light source used was a light emitting diode having a peak wavelength at 680 nm, and the photon flux density of each irradiation light was 5, 10, 25, 50, 100, and 150 μmol / m 2 · s. The seedlings were cultivated for 30 days after sowing, the hypocotyl length of the seedling was measured, and the standard deviation was determined.

【0016】その結果、表−3に示したように、光量子
束密度が増加するに従って胚軸長が短くなり、100μ
mol/m2 ・s以上では変化が見られなかった。一
方、5μmol/m2 ・sでは胚軸の伸長程度が大き
く、即ち苗が徒長した。さらに栽培終了後の苗を屋外の
圃場に定植して栽培し、生育を観察した。5μmol/
2 ・sの光照射で栽培した苗は徒長しており、いくつ
かの苗は倒伏し生育不良が見られたが、その他の苗につ
いては枯れや生育不良は見られず、正常に生長した。
As a result, as shown in Table 3, as the photon flux density increases, the hypocotyl length decreases, and
No change was observed at mol / m 2 · s or more. On the other hand, at 5 μmol / m 2 · s, the degree of elongation of the hypocotyl was large, that is, the seedlings became longer. Further, the seedlings after the completion of the cultivation were planted and cultivated in an outdoor field, and the growth was observed. 5 μmol /
Seedlings cultivated by m 2 · s light irradiation were taller, some seedlings fell down and showed poor growth, but other seedlings did not wither or grow poorly and grew normally. .

【0017】[0017]

【表3】 [Table 3]

【0018】実施例4 トマト(品種:桃太郎)について実施例3と同様の試験
を行った。但し光照射処理は、播種後、白色蛍光灯下で
3日間発芽期間を設けた後に行った。栽培日数は播種か
ら17日間とした。その結果、表−4に示したように、
光量子束密度が増加するに従って胚軸長が短くなった。
一方、5μmol/m2 ・sでは胚軸の伸長程度が大き
く、即ち苗が徒長した。さらに栽培終了後の苗を屋外の
圃場に定植して栽培し、生育を観察した。5μmol/
2 ・sの光照射で栽培した苗は徒長しており、いくつ
かの苗は倒伏し生育不良が見られたが、その他の苗につ
いては枯れや生育不良は見られず、正常に生長した。
Example 4 The same test as in Example 3 was conducted for tomato (cultivar: Momotaro). However, the light irradiation treatment was performed after the seeding and after providing a germination period under a white fluorescent lamp for 3 days. The cultivation days were 17 days from sowing. As a result, as shown in Table-4,
Hypocotyl length decreased with increasing photon flux density.
On the other hand, at 5 μmol / m 2 · s, the degree of elongation of the hypocotyl was large, that is, the seedlings became longer. Further, the seedlings after the completion of the cultivation were planted and cultivated in an outdoor field, and the growth was observed. 5 μmol /
Seedlings cultivated by m 2 · s light irradiation were taller, some seedlings fell down and showed poor growth, but other seedlings did not wither or grow poorly and grew normally. .

【0019】[0019]

【表4】 [Table 4]

【0020】[0020]

【発明の効果】本発明は上記したように、植物の育苗段
階において、略密閉系にて670〜750nmにのみピ
ーク波長を持つ遠赤色光を用いて栽培することにより、
胚軸が短く徒長していない健苗を効率よく育成すること
ができ、安定的、効率的に高品質の苗生産を可能とする
ことができる。
According to the present invention, as described above, in the seedling raising stage of a plant, cultivation is carried out in a substantially closed system using far-red light having a peak wavelength only at 670 to 750 nm.
Healthy seedlings having a short hypocotyl and not prolonged can be efficiently raised, and high-quality seedlings can be stably and efficiently produced.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 育苗段階の花卉、果菜及び葉菜類のセル
成形苗に、670〜750nmにのみピーク波長を持つ
遠赤色光を照射して、略密閉系にて栽培することを特徴
とするセル成形苗の栽培方法。
1. A cell forming method comprising irradiating far-red light having a peak wavelength only at 670 to 750 nm to cell forming seedlings of flowers, fruits and vegetables at the stage of raising seedlings, and cultivating the cells in a substantially closed system. Seedling cultivation method.
【請求項2】 照射する光量子束密度が栽培面上で10
μmol/m2 ・s以上であることを特徴とする請求項
1記載の栽培方法。
2. The photon flux density to be irradiated is 10 on the cultivation surface.
The cultivation method according to claim 1, wherein the cultivation method is at least μmol / m 2 · s.
【請求項3】 光源が光半導体であることを特徴とする
請求項1又は2記載の栽培方法。
3. The cultivation method according to claim 1, wherein the light source is an optical semiconductor.
【請求項4】 植物がパンジーまたはトマトであること
を特徴とする請求項1乃至3の何れかに記載の栽培方
法。
4. The cultivation method according to claim 1, wherein the plant is pansy or tomato.
JP9236947A 1997-09-02 1997-09-02 Cultivation of cell grown seedling Pending JPH1175548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9236947A JPH1175548A (en) 1997-09-02 1997-09-02 Cultivation of cell grown seedling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9236947A JPH1175548A (en) 1997-09-02 1997-09-02 Cultivation of cell grown seedling

Publications (1)

Publication Number Publication Date
JPH1175548A true JPH1175548A (en) 1999-03-23

Family

ID=17008120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9236947A Pending JPH1175548A (en) 1997-09-02 1997-09-02 Cultivation of cell grown seedling

Country Status (1)

Country Link
JP (1) JPH1175548A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104472149A (en) * 2014-11-15 2015-04-01 云南省农业科学院经济作物研究所 Small strong oilseed rape seedling wide and narrow row single-plant row-planting method
CN112423580A (en) * 2018-07-13 2021-02-26 三菱化学农业梦想株式会社 Cultivation device and cultivation method for seedlings of solanaceae plants

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104472149A (en) * 2014-11-15 2015-04-01 云南省农业科学院经济作物研究所 Small strong oilseed rape seedling wide and narrow row single-plant row-planting method
CN112423580A (en) * 2018-07-13 2021-02-26 三菱化学农业梦想株式会社 Cultivation device and cultivation method for seedlings of solanaceae plants
CN112423580B (en) * 2018-07-13 2023-05-12 三菱化学水解决方案株式会社 Cultivation device and cultivation method for seedlings of Solanaceae plants

Similar Documents

Publication Publication Date Title
JP5723898B2 (en) Fruit and vegetable cultivation method
JP2022516767A (en) Light source for indoor plants
WO2022048302A1 (en) Method for accelerating vegetative growth to reproductive growth of leafy vegetables
JP5102190B2 (en) Plant cultivation method
JP2022518259A (en) Light irradiation method that promotes plant growth, plant lamps and their applications
US20200260651A1 (en) Method for cultivating plant seedling by artificial light
WO2015163217A1 (en) Plant cultivation method
JP2001054320A (en) Method for culturing plant
JP2018121590A (en) Seedling growth method using artificial light
JP4015251B2 (en) Rice cultivation method
CN114847029A (en) Luminous environment regulation and control method for reducing melon melting rate of indoor cultivated cucumber
JP2021145605A (en) Method for high-density cultivation of plants
JP6005787B2 (en) Fruit and vegetable cultivation method
JP2001258389A (en) Method for cultivating plant
WO2022102328A1 (en) Tomato plant, tomato fruit, and method for cultivating tomato plant
KR101926384B1 (en) Method for hydroponics of nicotina benthamiana
JPH1175548A (en) Cultivation of cell grown seedling
JP2006158262A (en) Cultivation method for plant
JP2018143203A (en) Method for controlling form of matricaria recutita l
JPH10313683A (en) Grafting cell forming seedling low temperature storing method controllable in gas composition under weak light radiation
US10849278B2 (en) Plant cultivation method
KR20210156449A (en) Method for culturing cucumber scion and rootstock in plant factory using artificial lights
JP4159485B2 (en) Method for inducing flower buds of cruciferous plants
JP2021119746A (en) Method for culturing vegetable
KR20210042612A (en) Method for improving germination rate and quality of Upright Ladybell seedling using artificial culture medium