JPH1172200A - Hydrogen storage alloy housing vessel - Google Patents

Hydrogen storage alloy housing vessel

Info

Publication number
JPH1172200A
JPH1172200A JP9233933A JP23393397A JPH1172200A JP H1172200 A JPH1172200 A JP H1172200A JP 9233933 A JP9233933 A JP 9233933A JP 23393397 A JP23393397 A JP 23393397A JP H1172200 A JPH1172200 A JP H1172200A
Authority
JP
Japan
Prior art keywords
storage alloy
gas
hydrogen storage
heat exchange
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9233933A
Other languages
Japanese (ja)
Inventor
Koichi Nishimura
康一 西村
Shin Fujitani
伸 藤谷
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9233933A priority Critical patent/JPH1172200A/en
Publication of JPH1172200A publication Critical patent/JPH1172200A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PROBLEM TO BE SOLVED: To improve storing/releasing efficiency of hydrogen by enhancing heat exchange efficiency between hydrogen storage alloy and a heating medium pipe, and eliminating the temperature distribution of the whole hydrogen storage alloy. SOLUTION: In a hydrogen storage alloy housing vessel which houses hydrogen storage alloy 14 and in which a heating medium pipe 16 in which a heating medium flows is arranged so as to exchange heat with the hydrogen storage alloy 14, a supply port 20 to which heat exchange gas is supplied and an exhaust port 22 from which the heat exchange gas is exhausted, are arranged in the vessel 12, and a supplying means 24 to supply the heat exchange gas is arranged outside the vessel, and the supplying means 24 is connected to the supply port 20 and the exhaust port 22 of the vessel 12 so that the heat exchange gas can flow, and the heat exchange gas is made to flow inside the vessel 12 by circulating the heat exchange gas between the vessel 12 and the supplying means 24, and heat is exchanged between the heating medium pipe 16 and the hydrogen storage alloy 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金を収
容する容器に関するものであり、具体的には、収容され
た水素吸蔵合金の熱伝導率を高めることのできる水素吸
蔵合金収容容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a container for storing a hydrogen storage alloy, and more particularly, to a hydrogen storage alloy storage container capable of increasing the thermal conductivity of the stored hydrogen storage alloy.

【0002】[0002]

【従来の技術】近年、水素が燃料電池、ヒートポンプ、
水素自動車などのエネルギー源として利用されており、
この水素を貯蔵、輸送する方法として、水素を吸蔵、放
出する水素吸蔵合金の利用が図られている。水素吸蔵合
金(14)は、図7に示すように、粉末又は成形体の状態で
容器(12)に収容される。容器への水素ガスの供給、排出
は、容器に設けられた出入口(10)を介して行なわれる。
2. Description of the Related Art In recent years, hydrogen has been used in fuel cells, heat pumps,
It is used as an energy source for hydrogen vehicles,
As a method of storing and transporting hydrogen, use of a hydrogen storage alloy that stores and releases hydrogen has been attempted. As shown in FIG. 7, the hydrogen storage alloy (14) is contained in a container (12) in the form of a powder or a compact. The supply and discharge of the hydrogen gas to and from the container are performed through an entrance (10) provided in the container.

【0003】ところで、水素吸蔵合金が水素を吸蔵する
反応は発熱反応であり、逆に水素吸蔵合金が水素を放出
する反応は吸熱反応である。従って、水素吸蔵合金に水
素をより多く吸蔵させるには水素吸蔵合金を冷却する必
要があり、吸蔵された水素ガスをより多く放出させるに
は水素吸蔵合金を加熱する必要がある。しかしながら、
水素吸蔵合金は、熱伝導率が低いため、容器を外部から
冷却、加熱しても、容器の中心部にある水素吸蔵合金ま
で十分に熱が伝達しない不都合があった。
A reaction in which a hydrogen storage alloy stores hydrogen is an exothermic reaction, and a reaction in which the hydrogen storage alloy releases hydrogen is an endothermic reaction. Therefore, it is necessary to cool the hydrogen storage alloy in order to cause the hydrogen storage alloy to store more hydrogen, and to heat the hydrogen storage alloy to release more of the stored hydrogen gas. However,
Since the hydrogen storage alloy has a low thermal conductivity, even if the container is cooled and heated from the outside, there is a disadvantage that heat is not sufficiently transmitted to the hydrogen storage alloy at the center of the container.

【0004】そこで、図7に示すように、容器(12)の内
部に熱媒管(16)を配設し、該熱媒管(16)に冷却又は加熱
された熱媒体を流通させて、水素吸蔵合金(14)の冷却又
は加熱を行なう水素吸蔵合金容器や、熱媒管に伝熱フィ
ン(図示せず)を取り付けて、さらなる伝熱効率の向上を
図った容器も知られている。
Therefore, as shown in FIG. 7, a heat medium pipe (16) is provided inside the container (12), and a cooled or heated heat medium is passed through the heat medium pipe (16). There are also known a hydrogen storage alloy container for cooling or heating the hydrogen storage alloy (14), and a container in which a heat transfer fin (not shown) is attached to a heat medium pipe to further improve heat transfer efficiency.

【0005】[0005]

【発明が解決しようとする課題】特に、水素吸蔵合金を
粉末の状態で容器に収容する場合、成形体の状態で収容
する場合に比べて、水素吸蔵合金どうしの接触状態が悪
い。このため、容器の内部に熱媒管や伝熱フィンを配し
て、水素吸蔵合金の冷却や加熱を行なっても、熱媒管や
伝熱フィンから離れた位置にある水素吸蔵合金粉末まで
は十分に熱が伝達せず、容器内部の水素吸蔵合金に温度
勾配が生じることがあった。容器の内部の水素吸蔵合金
に温度勾配が生じると、水素吸蔵合金から吸蔵/放出さ
れる水素の量に差が生じ、容器の水素貯蔵量や水素放出
量にバラツキが発生したり、水素吸蔵/放出に伴う水素
吸蔵合金の微粉化などの劣化の進行にバラツキが生じ
て、水素吸蔵合金の効率的な利用が図れないことがあっ
た。
In particular, when the hydrogen storage alloy is housed in a powdery state in a container, the contact state between the hydrogen storage alloys is worse than when the hydrogen storage alloy is housed in the form of a compact. For this reason, even if a heat transfer tube or heat transfer fins are arranged inside the container and the hydrogen storage alloy is cooled or heated, the hydrogen storage alloy powder located at a position away from the heat transfer tube or heat transfer fins is not affected. Heat was not sufficiently transferred, and a temperature gradient sometimes occurred in the hydrogen storage alloy inside the container. When a temperature gradient occurs in the hydrogen storage alloy inside the container, a difference occurs in the amount of hydrogen stored / released from the hydrogen storage alloy, and the hydrogen storage amount and the hydrogen release amount of the container vary, and the hydrogen storage / release amount varies. In some cases, the progress of deterioration such as pulverization of the hydrogen storage alloy due to the release varies, and the hydrogen storage alloy cannot be used efficiently.

【0006】水素吸蔵合金間の温度勾配を解消するため
に、熱媒管の本数や、伝熱フィンの数を増やすことが考
えられるが、容器の構造が複雑になるだけでなく、容器
に収容できる水素吸蔵合金の量が少なくなるという問題
があった。
In order to eliminate the temperature gradient between the hydrogen storage alloys, it is conceivable to increase the number of heat medium tubes and the number of heat transfer fins. There has been a problem that the amount of hydrogen storage alloy that can be formed is reduced.

【0007】本発明の目的は、容器に収容された水素吸
蔵合金と熱媒管との熱交換効率を高め、且つ水素吸蔵合
金全体の温度分布をなくすことにより、水素の吸蔵、放
出効率を向上させることのできる水素吸蔵合金収容容器
を提供することである。
An object of the present invention is to increase the efficiency of heat exchange between a hydrogen storage alloy contained in a container and a heat transfer pipe, and to eliminate the temperature distribution of the entire hydrogen storage alloy, thereby improving the hydrogen storage and release efficiency. It is an object of the present invention to provide a hydrogen storage alloy storage container that can be made to work.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、水素ガスの出入口(10)を有する容器(12)
の内部に、水素吸蔵合金(14)を収容し、熱媒体が流通す
る熱媒管(16)を水素吸蔵合金(14)と熱交換可能に配した
水素吸蔵合金収容容器において、容器(12)には、熱交換
用ガスが供給される供給口(20)と、熱交換用ガスが排出
される排出口(22)が設けられ、容器の外部には、熱交換
用ガスを送給する送給手段(24)が配備され、送給手段(2
4)は、容器(12)に設けられた供給口(20)と排出口(22)に
対して、熱交換用ガスが流通可能に接続されている。上
記構成の水素吸蔵合金収容容器(12)において、送給手段
(24)と容器(12)との間で熱交換用ガスを循環させること
により、容器(12)の内部に熱交換用ガスを流通させて、
熱媒管(16)と水素吸蔵合金(14)を熱交換させるようにし
ている。
In order to solve the above problems, the present invention provides a container (12) having a hydrogen gas inlet / outlet (10).
In the inside of the hydrogen storage alloy (14) is stored a hydrogen storage alloy container in which a heat medium pipe (16) through which a heat medium flows so as to be heat-exchangeable with the hydrogen storage alloy (14). The container is provided with a supply port (20) through which the heat exchange gas is supplied and an outlet (22) through which the heat exchange gas is discharged. A feeding means (24) is provided, and a feeding means (2
4) is connected to a supply port (20) and a discharge port (22) provided in the container (12) so that a heat exchange gas can flow therethrough. In the hydrogen storage alloy storage container (12) having the above configuration,
By circulating the heat exchange gas between (24) and the container (12), the heat exchange gas is circulated inside the container (12),
The heat medium tube (16) and the hydrogen storage alloy (14) are heat-exchanged.

【0009】熱交換用ガスとして、水素ガスが望ましい
が、又は水素吸蔵合金と水素ガスの両方に対して不活性
なガスであれば、使用可能である。水素吸蔵合金及び水
素ガスに対して不活性なガスとして、アルゴンガス、ネ
オンガス、窒素ガスなどを挙げることができる。水素ガ
ス以外の熱交換用ガスを使用する場合であって、純度の
高い水素ガスの供給が必要な場合には、水素ガスの出入
口に、水素ガスの通過のみを許容し、熱交換用ガスの通
過を阻止する水素分離手段(60)を配備して、水素ガスの
出入口(10)から熱交換用ガスが流出しないようにするこ
とが望ましい。
As the heat exchange gas, hydrogen gas is desirable, or any gas that is inert to both the hydrogen storage alloy and the hydrogen gas can be used. Examples of the gas inert to the hydrogen storage alloy and the hydrogen gas include an argon gas, a neon gas, and a nitrogen gas. If a heat-exchange gas other than hydrogen gas is used and high-purity hydrogen gas needs to be supplied, only the passage of hydrogen gas is allowed at the entrance and exit of the hydrogen gas. It is desirable to provide a hydrogen separating means (60) for preventing passage, so that the heat exchange gas does not flow out of the hydrogen gas inlet / outlet (10).

【0010】[0010]

【作用及び効果】水素吸蔵合金収容容器(12)の内部は、
熱媒体の流通する熱媒管(16)によって加熱又は冷却され
る。従来は、熱媒管(16)の近傍にある水素吸蔵合金だけ
が、熱媒管の加熱又は冷却を受けていたが、本発明で
は、容器(12)の内部に熱交換用ガスを流通させるように
したから、熱媒管(16)と水素吸蔵合金全体の熱交換効率
が高められ、水素吸蔵合金(14)に温度分布が殆んど生ず
ることなく、その全体が加熱又は冷却される。具体的に
は、熱媒管(16)に加熱された熱媒体を流通させた場合、
熱媒管(16)から放出される熱が、熱交換用ガスによって
伝達され、容器内部に収容された水素吸蔵合金の全体が
ほぼ均一に昇温する。逆に、熱媒管(16)に冷却された熱
媒体を流通させた場合、水素吸蔵合金(14)の熱が熱交換
用ガスによって吸収され、熱媒管(16)との間で熱交換さ
れて、水素吸蔵合金全体がほぼ均一に冷却される。
[Operation and effect] The inside of the hydrogen storage alloy storage container (12)
It is heated or cooled by the heat medium pipe (16) through which the heat medium flows. Conventionally, only the hydrogen storage alloy in the vicinity of the heat medium pipe (16) has been subjected to heating or cooling of the heat medium pipe, but in the present invention, the heat exchange gas is circulated inside the container (12). By doing so, the heat exchange efficiency of the heat medium pipe (16) and the entire hydrogen storage alloy is improved, and the entire hydrogen storage alloy (14) is heated or cooled almost without any temperature distribution. Specifically, when a heated heat medium is allowed to flow through the heat medium pipe (16),
The heat released from the heat medium pipe (16) is transmitted by the heat exchange gas, and the temperature of the entire hydrogen storage alloy contained in the container rises substantially uniformly. Conversely, when a cooled heat medium flows through the heat medium pipe (16), the heat of the hydrogen storage alloy (14) is absorbed by the heat exchange gas, and heat exchange with the heat medium pipe (16) occurs. As a result, the entire hydrogen storage alloy is cooled substantially uniformly.

【0011】本発明によれば、容器内の水素吸蔵合金に
温度勾配が生じないから、水素吸蔵合金の水素吸蔵、放
出量も全体としてほぼ一定しており、また、水素吸蔵合
金の劣化の進行もほぼ同じになる。従って、効率的な水
素吸蔵合金の利用を図ることができる。
According to the present invention, since the temperature gradient does not occur in the hydrogen storage alloy in the container, the amount of hydrogen storage and release of the hydrogen storage alloy is substantially constant as a whole, and the deterioration of the hydrogen storage alloy progresses. Will be almost the same. Therefore, efficient use of the hydrogen storage alloy can be achieved.

【0012】[0012]

【発明の実施の形態】図1は、本発明の水素吸蔵合金収
容容器(12)の断面図であり、図2は、図1の線α−αに
沿う矢視断面図である。容器(12)の一方の端部には水素
ガスの出入口(10)が設けられており、燃料電池などの装
置に接続可能となっている。容器(12)の内部には、水素
吸蔵合金(14)が収容されると共に、1又は複数の熱媒管
(16)が水素吸蔵合金と熱交換可能に配備される。熱媒管
(16)の両端は、容器(12)の外部へ延びており、熱媒管(1
6)の内部を流通する熱媒体の加熱及び/又は冷却手段
(図示せず)に連繋されている。熱媒管(16)を流通する熱
媒体の温度は、収容される水素吸蔵合金の種類によって
異なるが、水素吸蔵の場合は、約5〜35℃、水素放出
の場合は、約50〜85℃とすることが望ましい。
FIG. 1 is a sectional view of a hydrogen storage alloy container (12) of the present invention, and FIG. 2 is a sectional view taken along the line α-α in FIG. An inlet / outlet (10) for hydrogen gas is provided at one end of the container (12), and can be connected to a device such as a fuel cell. Inside the container (12), a hydrogen storage alloy (14) is housed, and one or more heat transfer tubes
(16) is provided so as to be able to exchange heat with the hydrogen storage alloy. Heat transfer tube
Both ends of (16) extend to the outside of the container (12), and heat medium tubes (1
6) Heating and / or cooling means for the heat medium flowing inside
(Not shown). The temperature of the heat medium flowing through the heat medium pipe (16) varies depending on the type of the hydrogen storage alloy to be accommodated, but is about 5 to 35 ° C. for hydrogen storage and about 50 to 85 ° C. for hydrogen release. It is desirable that

【0013】容器(12)の壁部には、熱交換用ガスが供給
される供給口(20)と、熱交換用ガスが排出される排出口
(22)が設けられている。供給口(20)と排出口(22)は、配
管(50)(52)により、後述の熱交換用ガス送給手段(24)に
夫々接続される。熱交換用ガスの排出口(22)には、水素
吸蔵合金粉末や微粉化した水素吸蔵合金が送給手段(24)
へ流出しないように、ガスのみの通過を許容するフィル
ター(40)を設けることが望ましい。なお、フィルター(4
0)として、孔径が約1〜5μm程度のステンレス鋼や銅
などの金属を焼結したものを用いることができる。熱交
換用ガスを介した水素吸蔵合金(14)と熱媒管(16)との熱
交換効率をより向上させるには、熱交換用ガスを容器(1
2)の端から端まで十分に流通させる必要がある。このた
め、熱交換用ガスの供給口(20)を容器(12)の一方の端部
近傍に設け、排出口(22)を逆側の端部近傍に設けること
が望ましい。なお、図1中に点線で示すように、供給口
(20)と排出口(22)に夫々熱媒管(16)と平行に筒状に形成
されたフィルター(31)(31)を取り付け、熱交換用ガスが
熱媒管(16)に対して直交する方向に循環するようにする
と、熱交換効率をさらに高めることができる。
A supply port (20) through which heat exchange gas is supplied and a discharge port through which heat exchange gas is discharged are provided on the wall of the container (12).
(22) is provided. The supply port (20) and the discharge port (22) are connected to a gas exchange means (24) for heat exchange described later by pipes (50) and (52). The hydrogen storage alloy powder or the finely divided hydrogen storage alloy is supplied to the heat exchange gas discharge port (22) by the feeding means (24).
It is desirable to provide a filter (40) that allows the passage of only gas so that the gas does not flow out. The filter (4
As (0), a sintered product of a metal such as stainless steel or copper having a pore diameter of about 1 to 5 μm can be used. In order to further improve the heat exchange efficiency between the hydrogen storage alloy (14) and the heat medium pipe (16) via the heat exchange gas, the heat exchange gas must be supplied to the container (1).
It is necessary to circulate it sufficiently from end to end of 2). For this reason, it is desirable to provide the heat exchange gas supply port (20) near one end of the container (12) and the discharge port (22) near the opposite end. In addition, as shown by a dotted line in FIG.
Attach filters (31) and (31) formed in a cylindrical shape in parallel with the heat medium pipe (16) to the (20) and the discharge port (22), respectively, and heat exchange gas is supplied to the heat medium pipe (16). By circulating in the orthogonal direction, the heat exchange efficiency can be further increased.

【0014】容器(12)の外部には、容器中に熱交換用ガ
スを流通させる熱交換用ガス送給手段(24)が配備され
る。送給手段(24)の上流側は、前記容器(12)の熱交換用
ガス排出口(22)と接続され、送給手段(24)の下流側は、
前記容器(12)の熱交換用ガス供給口(20)と接続される。
熱交換用ガス送給手段(24)として、公知のポンプ機構を
採用することができる。
A heat exchange gas supply means (24) for distributing the heat exchange gas through the container is provided outside the container (12). The upstream side of the feeding means (24) is connected to the heat exchange gas outlet (22) of the container (12), and the downstream side of the feeding means (24) is
It is connected to the heat exchange gas supply port (20) of the container (12).
A known pump mechanism can be adopted as the heat exchange gas supply means (24).

【0015】水素吸蔵合金収容容器(12)に、熱交換用ガ
スを充填する。熱交換用ガスとして水素ガスを用いる場
合は、特に熱交換用としての水素ガスを充填する必要は
なく、上記熱交換用ガス送給手段(24)を作動させると、
容器内の水素ガスの一部が容器(12)と送給手段(24)を循
環する。熱交換用ガスとして、アルゴンガス、ネオンガ
ス、窒素ガスなどの水素吸蔵合金と水素ガスの両方に不
活性なガスを用いる場合であって、且つ純度の高い水素
ガスの供給が必要な場合は、容器から水素ガスの出入口
(10)を通って熱交換用ガスが流出しないように、水素ガ
スの出入口(10)に水素ガスの通過のみを許容するパラジ
ウムの薄膜や中空糸モジュールなどを利用した水素分離
膜などの水素分離手段(60)を配備する。なお、熱交換用
ガスの充填は、送給手段(24)と容器(12)を接続する配管
(50)や配管(52)に弁機構(図示せず)を設け、該弁機構を
介して行なえばよい。水素分離手段(60)を配備すること
により、熱交換ガスの流出を防止できるだけでなく、他
の不純物ガスの容器(12)への混入も防止できる。
The hydrogen storage alloy container (12) is filled with a heat exchange gas. When using hydrogen gas as the heat exchange gas, it is not particularly necessary to fill hydrogen gas for heat exchange, and when the heat exchange gas supply means (24) is operated,
Part of the hydrogen gas in the container circulates through the container (12) and the feeding means (24). In the case where an inert gas is used as both a hydrogen storage alloy such as an argon gas, a neon gas, and a nitrogen gas as a heat exchange gas and a hydrogen gas, and a supply of a high-purity hydrogen gas is required, a container is used. Hydrogen gas entrance and exit from
Hydrogen separation such as a hydrogen separation membrane using a palladium thin film or a hollow fiber module that allows only the passage of hydrogen gas to the entrance and exit of hydrogen gas (10) so that the heat exchange gas does not flow out through (10) Deploy means (60). Note that the gas for heat exchange is filled with a pipe connecting the feeding means (24) and the container (12).
A valve mechanism (not shown) may be provided in (50) and the pipe (52), and the operation may be performed via the valve mechanism. By providing the hydrogen separation means (60), not only the outflow of the heat exchange gas can be prevented, but also the entry of other impurity gases into the container (12) can be prevented.

【0016】水素吸蔵時には、熱媒管(16)に冷却された
熱媒体を流通させると共に、熱交換用ガス送給手段(24)
を作動させて、容器内に熱交換用ガスを循環させる。こ
れにより、熱媒管(16)と水素吸蔵合金(14)との熱交換を
効率よく行なうことができ、また、容器内の水素吸蔵合
金の温度のバラツキを抑えることができる。逆に、水素
放出時には、熱媒管(16)に加熱された熱媒体を流通させ
ると共に、熱交換用ガス送給手段(24)を作動させて、容
器内に熱交換用ガスを循環させる。これにより、熱媒管
(16)と水素吸蔵合金(14)との熱交換を効率よく行なうこ
とができ、また、容器内の水素吸蔵合金の温度のバラツ
キを抑えることができる。
At the time of hydrogen storage, the cooled heat medium is allowed to flow through the heat medium pipe (16) and the heat exchange gas supply means (24)
Is operated to circulate the gas for heat exchange in the container. Thereby, the heat exchange between the heat medium pipe (16) and the hydrogen storage alloy (14) can be performed efficiently, and the temperature variation of the hydrogen storage alloy in the container can be suppressed. Conversely, at the time of releasing hydrogen, the heated heat medium is allowed to flow through the heat medium pipe (16), and the heat exchange gas supply means (24) is operated to circulate the heat exchange gas in the container. This allows the heating medium tube
The heat exchange between the hydrogen storage alloy (16) and the hydrogen storage alloy (14) can be performed efficiently, and the temperature variation of the hydrogen storage alloy in the container can be suppressed.

【0017】熱交換は、熱媒管(16)と水素吸蔵合金(14)
との間で、熱交換用ガスを介して行なわれるから、熱交
換用ガスそのものは加熱、冷却するが必要はない。
The heat exchange is performed by using a heat medium pipe (16) and a hydrogen storage alloy (14).
The heat exchange gas itself is heated and cooled, but it is not necessary to heat and cool the heat exchange gas.

【0018】上記構成の水素吸蔵合金収容容器(12)に収
容される水素吸蔵合金(14)は、粉末、成形体の何れの形
態で容器に収容してもよいが、水素吸蔵合金を粉末の形
態で容器に収容すると、熱交換用ガスが粉末間を流通し
て、熱交換用ガスと粉末との熱交換が促進されるため、
成形体の場合に比べて、容器内部の水素吸蔵合金の温度
をより均一に制御することができる。
The hydrogen storage alloy (14) stored in the hydrogen storage alloy storage container (12) having the above structure may be stored in the container in any form of powder or compact. When stored in a container in a form, the heat exchange gas flows between the powders, and heat exchange between the heat exchange gas and the powder is promoted,
The temperature of the hydrogen storage alloy in the container can be controlled more uniformly than in the case of a molded body.

【0019】[0019]

【実施例】アルゴンガスを熱交換用ガスとして用いた本
発明の水素吸蔵合金収容容器(図1参照)と、熱交換用ガ
スを循環させない従来の水素吸蔵合金収容容器(図7参
照)を作製し、水素吸蔵時の水素吸蔵合金の温度分布
と、容器の水素貯蔵量を測定した。水素吸蔵合金(14)を
収容する容器(12)として、長さ800mm(内寸法)、内
径200mm、肉厚10mmのステンレス鋼製の円筒容
器を用いた。図1及び図7に示すように、容器(12)の一
方の端部の中央には、水素ガスの出入口(10)を設け、水
素ガス出入口(10)から容器(12)の内部に向けて、水素吸
蔵合金の粉末の通過を阻止する筒状のフィルター(30)(3
2)を取り付けた。また、本発明の容器(12)の水素ガスの
出入り口(10)には、熱交換ガスの流出を防止する水素分
離手段(60)を取り付けた。また、水素ガス出入口(10)と
平行して、外径10mmのU字状に屈曲した3本の熱媒
管(16)を配設した(図2参照)。熱媒管(16)は、夫々熱媒
体の供給機構(図示せず)に連繋し、所望温度の熱媒体を
流通可能としている。
EXAMPLE A hydrogen storage alloy storage container of the present invention using argon gas as a heat exchange gas (see FIG. 1) and a conventional hydrogen storage alloy storage container not circulating the heat exchange gas (see FIG. 7) were produced. Then, the temperature distribution of the hydrogen storage alloy during hydrogen storage and the amount of hydrogen stored in the container were measured. As a container (12) for storing the hydrogen storage alloy (14), a stainless steel cylindrical container having a length of 800 mm (inner dimension), an inner diameter of 200 mm, and a wall thickness of 10 mm was used. As shown in FIGS. 1 and 7, a hydrogen gas inlet / outlet (10) is provided at the center of one end of the container (12), and the hydrogen gas inlet / outlet (10) is directed toward the inside of the container (12). , A cylindrical filter (30) (3
2) was attached. Further, a hydrogen separating means (60) for preventing the heat exchange gas from flowing out was attached to the inlet / outlet (10) of the hydrogen gas in the container (12) of the present invention. In addition, three heating medium tubes (16) bent in a U-shape with an outer diameter of 10 mm were arranged in parallel with the hydrogen gas inlet / outlet (10) (see FIG. 2). The heat medium pipes (16) are connected to a heat medium supply mechanism (not shown), respectively, so that a heat medium at a desired temperature can be circulated.

【0020】本発明の水素吸蔵合金収容容器(12)には、
図1に示すように、水素ガス出入口(10)に近い筒部分に
熱交換用ガスの供給口(20)、水素ガス出入口(10)から離
れた筒部分に熱交換用ガスの排出口(22)を設けた。容器
(12)の外部には、熱交換用ガス送給手段(24)を配備し、
該送給手段(24)の下流側、上流側は、配管(50)(52)を用
いて、夫々熱交換用ガスの供給口(20)、排出口(22)に用
いて接続した。
The hydrogen storage alloy container (12) of the present invention includes:
As shown in FIG. 1, a heat exchange gas supply port (20) is provided in a tube portion near the hydrogen gas inlet / outlet (10), and a heat exchange gas discharge port (22) is provided in a tube portion remote from the hydrogen gas port (10). ). container
Outside of (12), a gas exchange means (24) for heat exchange is provided,
The downstream side and the upstream side of the feeding means (24) were connected to the supply port (20) and the discharge port (22) of the heat exchange gas by using pipes (50) and (52), respectively.

【0021】容器(12)には、水素吸蔵合金(14)を粉末の
状態で収容し、本発明の容器には、熱交換用ガスとし
て、アルゴンガスを充填した。
The container (12) contained the hydrogen storage alloy (14) in the form of a powder, and the container of the present invention was filled with argon gas as a heat exchange gas.

【0022】温度分布の測定条件を記す。 ・熱媒体の温度: 25 ℃ ・熱媒体の流量: 3 l/min ・水素ガスの供給量: 0.25 Nl/min なお、容器内は、2Nl/minの流量の熱交換用ガス
を循環させた。
The conditions for measuring the temperature distribution are described below.・ Temperature of heat medium: 25 ° C. ・ Flow rate of heat medium: 3 l / min ・ Supply amount of hydrogen gas: 0.25 Nl / min In the container, heat exchange gas at a flow rate of 2 Nl / min is circulated Was.

【0023】容器内の水素吸蔵合金(14)の温度分布の測
定は、図2に示すように、熱媒管から10mm、20m
m、30mm離れた3地点(A、B、C)で行なった。結
果を図3及び図4に示す。また、温度の測定と同時に、
容器に貯蔵される水素ガスの量を夫々測定した。結果を
図5に示す。
The temperature distribution of the hydrogen storage alloy (14) in the container was measured as shown in FIG.
The measurement was performed at three points (A, B, and C) separated by m and 30 mm. The results are shown in FIGS. Also, at the same time as measuring the temperature,
The amount of hydrogen gas stored in the container was measured respectively. FIG. 5 shows the results.

【0024】図3を参照すると、本発明容器は、何れの
測定地点もほぼ同じ温度であり、水素吸蔵合金に温度の
バラツキがないことがわかる。また、図5を参照する
と、水素貯蔵量も従来の容器に比べて多くなっており、
容器内部の水素吸蔵合金がほぼ均一に冷却されて、水素
吸蔵合金の利用効率が全体として向上していることがわ
かる。一方、図4を参照すると、従来の容器は、時間の
経過と共に、各測定地点の水素吸蔵合金の温度に差が生
じている。特に、熱媒管の近傍の測定地点Aの温度は、
熱媒管により冷却されて、低い温度であるのに対し、熱
媒管から離れた位置にある測定地点Cは、冷却されず、
温度上昇していることがわかる。冷却を受けない測定地
点Cの水素吸蔵合金は、十分な水素の吸蔵を行なえず、
水素吸蔵合金の利用効率が低下しており、全体として水
素ガスの貯蔵量が少なくなることが、図5から推察され
る。
Referring to FIG. 3, it can be seen that the container of the present invention has almost the same temperature at all measurement points, and there is no temperature variation in the hydrogen storage alloy. Referring to FIG. 5, the hydrogen storage amount is larger than that of the conventional container.
It can be seen that the hydrogen storage alloy inside the container is cooled almost uniformly, and the utilization efficiency of the hydrogen storage alloy is improved as a whole. On the other hand, with reference to FIG. 4, in the conventional container, the temperature of the hydrogen storage alloy at each measurement point varies with the passage of time. In particular, the temperature at the measurement point A near the heat transfer pipe is
While being cooled by the heat medium pipe and having a low temperature, the measurement point C at a position away from the heat medium pipe is not cooled,
It can be seen that the temperature has risen. The hydrogen storage alloy at measurement point C, which is not cooled, cannot store enough hydrogen,
It is inferred from FIG. 5 that the utilization efficiency of the hydrogen storage alloy is reduced, and the storage amount of hydrogen gas is reduced as a whole.

【0025】つぎに、本発明の水素吸蔵合金収容容器(1
2)について、送給手段(24)から供給される熱交換用ガス
の流量を変化させた場合の水素吸蔵合金層の有効熱伝導
率の変化を測定した。熱交換用ガスとしてアルゴンガス
と水素ガスを用いた。結果を図6に示す。図6を参照す
ると、何れの熱交換用ガスについても、熱交換用ガスの
流量を多くするにつれて、熱伝導率も向上していること
がわかる。なお、アルゴンガスと水素ガスを比較する
と、水素ガスの方が、熱伝導率にすぐれることがわか
る。なお、熱交換用ガスとして、水素ガスを用いる場合
にも、水素ガス出入口(10)に水素分離手段(60)を配置す
れば、他の不純物ガスの混入を防止でき最適である。
Next, the hydrogen storage alloy storage container (1
Regarding 2), the change in the effective thermal conductivity of the hydrogen storage alloy layer when the flow rate of the heat exchange gas supplied from the supply means (24) was changed was measured. Argon gas and hydrogen gas were used as heat exchange gases. FIG. 6 shows the results. Referring to FIG. 6, it can be seen that the thermal conductivity of any of the heat exchange gases increases as the flow rate of the heat exchange gas increases. In addition, comparing the argon gas and the hydrogen gas, it is understood that the hydrogen gas has better thermal conductivity. Note that, even when hydrogen gas is used as the heat exchange gas, arranging the hydrogen separating means (60) at the hydrogen gas inlet / outlet (10) can prevent mixing of other impurity gases, which is optimal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素吸蔵合金収容容器の断面図であ
る。
FIG. 1 is a sectional view of a hydrogen storage alloy storage container according to the present invention.

【図2】図1を、線α−αに沿って断面し、矢印方向に
視た断面図である。
FIG. 2 is a cross-sectional view of FIG. 1 taken along a line α-α and viewed in a direction of an arrow.

【図3】本発明容器の水素吸蔵合金の温度分布を示すグ
ラフである。
FIG. 3 is a graph showing a temperature distribution of a hydrogen storage alloy of the container of the present invention.

【図4】従来容器の水素吸蔵合金の温度分布を示すグラ
フである。
FIG. 4 is a graph showing a temperature distribution of a hydrogen storage alloy in a conventional container.

【図5】本発明容器と従来容器の水素貯蔵量を示すグラ
フである。
FIG. 5 is a graph showing the hydrogen storage amounts of the container of the present invention and the conventional container.

【図6】熱交換用ガスとして、アルゴンガスと水素ガス
を用いたときの熱伝導率を示すグラフである。
FIG. 6 is a graph showing the thermal conductivity when an argon gas and a hydrogen gas are used as heat exchange gases.

【図7】従来の水素吸蔵合金収容容器の断面図である。FIG. 7 is a sectional view of a conventional hydrogen storage alloy storage container.

【符号の説明】[Explanation of symbols]

(12) 水素吸蔵合金収容容器 (14) 水素吸蔵合金 (16) 熱媒管 (20) 熱交換用ガス供給口 (22) 熱交換用ガス排出口 (24) 熱交換用ガス送給手段 (12) Hydrogen storage alloy storage container (14) Hydrogen storage alloy (16) Heat transfer tube (20) Heat exchange gas supply port (22) Heat exchange gas outlet (24) Heat exchange gas supply means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素ガスの出入口(10)を有する容器(12)
の内部に、水素吸蔵合金(14)を収容し、熱媒体が流通す
る熱媒管(16)を水素吸蔵合金と熱交換可能に配した水素
吸蔵合金収容容器において、 容器(12)には、熱交換用ガスが供給される供給口(20)
と、熱交換用ガスが排出される排出口(22)が設けられ、
容器(12)の外部には、熱交換用ガスを送給する送給手段
(24)が配備され、送給手段(24)は、容器(12)に設けられ
た供給口(20)と排出口(22)に対して熱交換用ガスが流通
可能に接続されており、 水素の吸蔵及び/又は放出の際に、容器(12)と送給手段
(24)との間で熱交換用ガスを循環させることにより、熱
交換用ガスを容器(12)の内部に流通させて、熱媒管(16)
と水素吸蔵合金(14)を熱交換させるようにしていること
を特徴とする水素吸蔵合金収容容器。
1. A container (12) having a hydrogen gas inlet / outlet (10).
In a hydrogen storage alloy storage container in which a hydrogen storage alloy (14) is stored, and a heat medium pipe (16) through which a heat medium flows is arranged so as to be able to exchange heat with the hydrogen storage alloy, the container (12) includes: Supply port to which heat exchange gas is supplied (20)
And an outlet (22) through which the heat exchange gas is discharged,
Feeding means for feeding heat exchange gas outside the container (12)
(24) is provided, the feeding means (24) is connected to a supply port (20) and a discharge port (22) provided in the container (12) so that a heat exchange gas can flow therethrough, The container (12) and the delivery means when storing and / or releasing hydrogen
By circulating the gas for heat exchange with (24), the gas for heat exchange is circulated inside the container (12), and the heat medium pipe (16)
And a hydrogen storage alloy (14) for heat exchange with the hydrogen storage alloy (14).
【請求項2】 熱交換用ガスは、水素ガスである請求項
1に記載の水素吸蔵合金収容容器。
2. The container according to claim 1, wherein the heat exchange gas is hydrogen gas.
【請求項3】 熱交換用ガスは、水素吸蔵合金と水素ガ
スに対して不活性なガスである請求項1に記載の水素吸
蔵合金収容容器。
3. The hydrogen storage alloy container according to claim 1, wherein the heat exchange gas is a hydrogen storage alloy and a gas inert to the hydrogen gas.
【請求項4】 水素ガスの出入口(10)には、水素ガスの
通過を許容し、熱交換用ガスの通過を阻止する水素分離
手段(60)が配備されることを特徴とする請求項1乃至請
求項3の何れかに記載の水素吸蔵合金収容容器。
4. A hydrogen separation means (60) for allowing passage of hydrogen gas and preventing passage of heat exchange gas is provided at the inlet / outlet (10) of hydrogen gas. The hydrogen storage alloy storage container according to any one of claims 3 to 3.
JP9233933A 1997-08-29 1997-08-29 Hydrogen storage alloy housing vessel Withdrawn JPH1172200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9233933A JPH1172200A (en) 1997-08-29 1997-08-29 Hydrogen storage alloy housing vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9233933A JPH1172200A (en) 1997-08-29 1997-08-29 Hydrogen storage alloy housing vessel

Publications (1)

Publication Number Publication Date
JPH1172200A true JPH1172200A (en) 1999-03-16

Family

ID=16962895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9233933A Withdrawn JPH1172200A (en) 1997-08-29 1997-08-29 Hydrogen storage alloy housing vessel

Country Status (1)

Country Link
JP (1) JPH1172200A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10041131A1 (en) * 2000-08-21 2002-03-21 Geesthacht Gkss Forschung Hydrogen storage unit containing metal hydride includes system of fluid-filled tubes transferring heat reversibly between hydride and transition region
EP1338554A1 (en) * 2002-02-26 2003-08-27 Gkss-Forschungszentrum Geesthacht Gmbh Apparatus for storing hydrogen in a storage medium and releasing it
JP2005156315A (en) * 2003-11-25 2005-06-16 Univ Waseda Thermal conductivity measuring device, system, and method
JP2006097785A (en) * 2004-09-29 2006-04-13 Toyota Industries Corp Hydrogen storage tank and cap
CN102401233A (en) * 2011-10-20 2012-04-04 林德工程(杭州)有限公司 Hydrogen storing tank based on metal hydrogen storage principle
US20140311348A1 (en) * 2011-07-04 2014-10-23 Yuli Kivovich Baichtok Housing-tubular module of hydride thermal sorption hydrogen separator-compressor
JP2017534819A (en) * 2014-11-11 2017-11-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Storage container including molded body of porous body
WO2018062115A1 (en) * 2016-09-28 2018-04-05 株式会社クリーンプラネット Heat generating system
WO2021100784A1 (en) * 2019-11-19 2021-05-27 株式会社クリーンプラネット Heat generation device, heat utilization system and film-like heat generation element
WO2021187284A1 (en) * 2020-03-16 2021-09-23 三浦工業株式会社 Boiler
WO2021187286A1 (en) * 2020-03-16 2021-09-23 三浦工業株式会社 Boiler

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10041131A1 (en) * 2000-08-21 2002-03-21 Geesthacht Gkss Forschung Hydrogen storage unit containing metal hydride includes system of fluid-filled tubes transferring heat reversibly between hydride and transition region
EP1338554A1 (en) * 2002-02-26 2003-08-27 Gkss-Forschungszentrum Geesthacht Gmbh Apparatus for storing hydrogen in a storage medium and releasing it
JP2005156315A (en) * 2003-11-25 2005-06-16 Univ Waseda Thermal conductivity measuring device, system, and method
JP2006097785A (en) * 2004-09-29 2006-04-13 Toyota Industries Corp Hydrogen storage tank and cap
US20140311348A1 (en) * 2011-07-04 2014-10-23 Yuli Kivovich Baichtok Housing-tubular module of hydride thermal sorption hydrogen separator-compressor
CN102401233A (en) * 2011-10-20 2012-04-04 林德工程(杭州)有限公司 Hydrogen storing tank based on metal hydrogen storage principle
JP2017534819A (en) * 2014-11-11 2017-11-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Storage container including molded body of porous body
JPWO2018062115A1 (en) * 2016-09-28 2018-09-27 株式会社クリーンプラネット Fever system
WO2018062115A1 (en) * 2016-09-28 2018-04-05 株式会社クリーンプラネット Heat generating system
CN109716040A (en) * 2016-09-28 2019-05-03 绿净星球股份有限公司 Heat-generating system
EP3521730A4 (en) * 2016-09-28 2020-05-20 Clean Planet Inc. Heat generating system
CN109716040B (en) * 2016-09-28 2021-02-05 绿净星球股份有限公司 Heating system
TWI731172B (en) * 2016-09-28 2021-06-21 日商綠淨星球股份有限公司 Heating system
AU2021257972B2 (en) * 2016-09-28 2023-09-21 Clean Planet Inc. Heat generating system
WO2021100784A1 (en) * 2019-11-19 2021-05-27 株式会社クリーンプラネット Heat generation device, heat utilization system and film-like heat generation element
WO2021187284A1 (en) * 2020-03-16 2021-09-23 三浦工業株式会社 Boiler
WO2021187286A1 (en) * 2020-03-16 2021-09-23 三浦工業株式会社 Boiler
US11326772B2 (en) 2020-03-16 2022-05-10 Miura Co., Ltd. Boiler with a heat generation body that stores hydrogen

Similar Documents

Publication Publication Date Title
JP4705251B2 (en) MH tank
US7604673B2 (en) Annular fuel processor and methods
US20170341483A1 (en) Battery temperature control device and battery temperature control system
US6182717B1 (en) Process for filling hydrogen into a hydrogen storage tank in automobile
JPH1172200A (en) Hydrogen storage alloy housing vessel
WO2005057119A1 (en) Phase-change heat exchanger
US6378601B1 (en) Hydrogen cooled hydrogen storage unit having a high packing density of storage alloy and encapsulation
KR101046952B1 (en) Tritium storage and metering and rapid transfer device and tritium storage, metering and rapid transfer method
JP2002295798A (en) Hydrogen transport vessel
CN220062608U (en) Cooling device, graphitization furnace and battery production system
US7056609B2 (en) System and method for starting a fuel cell stack assembly at sub-freezing temperature
CN114352924B (en) Diffusion type hydrogen storage bottle
CN115468110B (en) Solid-state hydrogen storage and release device with uniform thermal field and hydrogen storage and release method
JP3626371B2 (en) Hydrogen supply device for fuel cell
KR20110088854A (en) Compact tritium storage vessel for recovering storing and delivering of tritium in nuclear fusion facilities
JPS62161095A (en) High-temperature getter vessel
JP5233094B2 (en) Hydrogen generation system, fuel cell system and fuel cell vehicle
JPS6271840A (en) Oxygen analyzer
JPS61202091A (en) Utilizing device for metallic hydrogen compound
JPH06157001A (en) Method for rapid absorption and desorption of hydrogen and apparatus therefor
JPS61171999A (en) Metal hydride container
JP2020133696A (en) Hydrogen storage container
JPS61285357A (en) Heat pump device
JPH01239001A (en) Reactor for hydrogen storage alloy
FR2831333A1 (en) Equipment for supplying gas to fuel cell from reformer, comprises series of heat exchangers, gas/water reaction stages and selective oxidation stage with contra flow of reformat and supply mixture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102