JPH01239001A - Reactor for hydrogen storage alloy - Google Patents

Reactor for hydrogen storage alloy

Info

Publication number
JPH01239001A
JPH01239001A JP63065481A JP6548188A JPH01239001A JP H01239001 A JPH01239001 A JP H01239001A JP 63065481 A JP63065481 A JP 63065481A JP 6548188 A JP6548188 A JP 6548188A JP H01239001 A JPH01239001 A JP H01239001A
Authority
JP
Japan
Prior art keywords
alloy
tray
tank
reaction tank
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63065481A
Other languages
Japanese (ja)
Inventor
Hitoshi Kubota
久保田 仁士
Satoshi Tomizawa
冨沢 諭
Akira Doi
明 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIKUMA GIKEN KOGYO KK
Original Assignee
CHIKUMA GIKEN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIKUMA GIKEN KOGYO KK filed Critical CHIKUMA GIKEN KOGYO KK
Priority to JP63065481A priority Critical patent/JPH01239001A/en
Publication of JPH01239001A publication Critical patent/JPH01239001A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To provide the title reaction tank so designated that plural trays are installed within a reaction tank and a hydrogen-occlusive alloy is put to each tray, thereby improving the penetrability of H2 gas into the alloy layer and preventing the reaction tank from breaking failure due to the expansive force of the alloy. CONSTITUTION:The objective reaction tank 1 with its section roughly cylindrical, is comprised of the lower and upper tanks 1a and 1b, the tank 1a being fitted with a ring 9, on which a tray 3d made of e.g. aluminum alloy is mounted. The interior of the tray 3d is provided with a coil pie for cold heating 4 to pass a coolant from a tank 12 via the tank 1a, the upper end of said pipe 4 is connected with a second pipe 4 in a tray 4c. Similarly, the tank 1b is also provided with trays 3a-3c and pipes 4, and a hydrogen-occlusive alloy 7 is put into each tray 3. When H2 is introduced from a line 11 into the tank 1 said gas enters, as the arrow B along with the arrow A, the respective trays 3 and penetrates through the surfaces of the alloy layers 6 in the respective trays 3 into their interiors. Thus, the penetrability of the H2 gas into the layers 6 is improved, thereby protecting the wall of the tank 1 from damage due to the expansion of said alloy.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は水素吸蔵合金を内蔵し、水素吸蔵合金が水素
を吸蔵・放出時において発熱や吸熱する特性を利用する
ための水素吸蔵合金用反応槽に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a reaction tank for a hydrogen storage alloy that incorporates a hydrogen storage alloy and utilizes the property of the hydrogen storage alloy to generate heat and absorb heat when absorbing and desorbing hydrogen. It is something.

従来の技術 水素吸蔵合金は適当な條件の下では固体の状態で、多量
の水素を吸蔵し、又吸蔵した水素を放出することが出来
、その際に、発熱又は吸熱反応を起こす特性を有してお
り、この種の合金には実用的にはチタン化鉄(FeTi
) 、ニツケルランタニューム(LaNi5) 、ニッ
ケルマグネシューム(!I1gJi)等がある。
BACKGROUND ART Hydrogen storage alloys can store a large amount of hydrogen in a solid state under appropriate conditions, and can also release the stored hydrogen, and have the property of causing an exothermic or endothermic reaction at that time. In practical use, iron titanide (FeTi) is used for this type of alloy.
), nickel lanthanum (LaNi5), nickel magnesium (!I1gJi), etc.

これらの水素吸蔵合金を反応槽内に収容し、水素の吸蔵
・放出を交互に繰り返し得られた反応熱を、ヒートポン
プや室内の暖冷房用の熱エネルギー源として利用してい
る。
These hydrogen storage alloys are housed in a reaction tank, and the reaction heat obtained by alternately storing and releasing hydrogen is used as a thermal energy source for heat pumps and indoor heating and cooling.

従来の水素吸蔵合金用反応槽は、第2図に示すように反
応槽本体21の上部に合金の挿入口19を、内部に水素
吸蔵合金7(以下単に合金7と略称する)を冷熱するた
めの、冷熱媒を循環させる冷熱用コイルパイプ22、冷
熱用コイルパイプ22に冷熱媒を循環するための冷熱媒
輸送ポンプ8及び冷熱媒槽12、更に水素ガスを反応槽
本体21に供給・排出するため互に連通した水素ガスラ
イン11、水素ガス人出口2、水素ガスの吸蔵・放出時
に水素の合金層6中・への浸透性をよくするため外周に
多くの気孔を有する多気孔バイブ23を反応槽本体21
の中心部に垂直に設け、反応槽本体21の内部に粉状又
は粉粒状の合金を充填して形成されている。
As shown in FIG. 2, the conventional reaction tank for hydrogen storage alloy has an alloy insertion port 19 in the upper part of the reaction tank body 21, and a hydrogen storage alloy 7 (hereinafter simply referred to as alloy 7) inside for cooling and heating. A cooling coil pipe 22 for circulating a cooling medium, a cooling medium transport pump 8 and a cooling medium tank 12 for circulating a cooling medium to the cooling coil pipe 22, and supplying and discharging hydrogen gas to and from the reaction tank body 21. Therefore, a hydrogen gas line 11, a hydrogen gas outlet 2, and a multi-porous vibrator 23 having many pores on the outer periphery are provided to improve the permeability of hydrogen into the alloy layer 6 during storage and release of hydrogen gas. Reaction tank body 21
The reactor body 21 is provided vertically at the center of the reactor body 21 and is formed by filling the inside of the reaction vessel body 21 with a powdery or granular alloy.

発明が解決しようとする課題 従来の反応槽は上述の構成となっているので、合金が水
素ガスを吸蔵・放出のサイクルを繰り返す過程で、経時
的に微細化され、微粉化した合金が高価な多気孔バイブ
の通気孔に付着したり、反応槽下部に偏析したり、成は
又合金の膨張力により、合金自体が固化状態となる等に
より、水素ガスの合金層内への浸透性に悪影響を及ぼし
て、合金の水素ガス吸蔵・放出力を低下させるほか、合
金の膨張力が反応槽本体の内壁に直接加えられ反応槽を
損傷する等の欠点を有している。
Problems to be Solved by the Invention Conventional reaction vessels have the above-mentioned configuration, so in the process of repeating the cycle of absorbing and desorbing hydrogen gas, the alloy becomes finer over time, and the finely powdered alloy becomes expensive. Hydrogen gas may adhere to the vent holes of a multi-porous vibe, segregate at the bottom of the reaction tank, or become solidified due to the expansion force of the alloy, adversely affecting the permeability of hydrogen gas into the alloy layer. In addition to reducing the ability of the alloy to absorb and release hydrogen gas, the expansion force of the alloy is directly applied to the inner wall of the reaction vessel body, resulting in damage to the reaction vessel.

この発明は上記の問題点を解決し、冷熱媒による合金層
への伝熱性に優れ、水素ガスの合金層中への浸透性が良
く、かつ、合金の膨張力により反応槽の破損が生じない
水素吸蔵合金用反応槽を提供せんとするものである。
This invention solves the above problems, has excellent heat transfer to the alloy layer by the cooling medium, good permeability of hydrogen gas into the alloy layer, and does not cause damage to the reaction tank due to the expansion force of the alloy. The present invention aims to provide a reaction tank for hydrogen storage alloys.

課題を解決するための手段 この発明は上記の目的を達成するため、その主要な構成
として、反応槽の内部に、複数個のトレイを設け、各ト
レイに水素吸蔵合金を収納するとともに、各トレイ内の
合金層内に、バイブ内を冷熱媒が流通する冷熱用コイル
パイプと、多気孔バイブを設けることなく水素ガスを反
応槽に送出入するようにした水素吸蔵合金用反応49で
あり、又上記冷熱用コイルパイプは、各トレイごとの合
金層内において、コイル径を異にして複数回、コイル状
に巻かれたパイプとしてもよい。
Means for Solving the Problems In order to achieve the above object, the present invention has a main configuration in which a plurality of trays are provided inside a reaction tank, each tray houses a hydrogen storage alloy, and each tray A reaction 49 for a hydrogen storage alloy is provided with a coil pipe for cooling and heating through which a cooling and heating medium flows inside the vibrator, and a hydrogen storage alloy reaction 49 in which hydrogen gas is sent in and out of the reaction tank without providing a multi-porous vibrator. The above-mentioned cooling and heating coil pipe may be a pipe wound into a coil shape a plurality of times with different coil diameters within the alloy layer of each tray.

作  用 上記の構成としたので水素ガスを反応槽内に導入すると
、水素ガスは各トレイに収納された合金層表面から合金
層内部に浸透し、合金は反応して発熱しながら水素ガス
を吸蔵する。
Operation With the above configuration, when hydrogen gas is introduced into the reaction tank, the hydrogen gas penetrates into the interior of the alloy layer from the surface of the alloy layer stored in each tray, and the alloy reacts and generates heat while absorbing hydrogen gas. do.

この時合金層内の冷熱用コイルパイプに外部から冷媒を
送入すると、冷媒は各トレイに収納された合金層内を循
環して前記合金の反応熱を万遍無く奪って、槽外へ搬出
される。
At this time, when a refrigerant is introduced from the outside into the cooling coil pipe in the alloy layer, the refrigerant circulates within the alloy layer stored in each tray, evenly taking away the reaction heat of the alloy, and carrying it out of the tank. be done.

又水素を吸蔵した合金から水素を放出する時は冷熱用コ
イルパイプに合金加熱のための熱媒を送り、合金を万遍
燦<熱することにより、水素ガスは合金の中から放出さ
れ各トレイ上面から反応槽内を上昇し、水素ガス人出口
を経て反応槽外に放出される。
In addition, when releasing hydrogen from an alloy that has stored hydrogen, a heating medium is sent to the cooling coil pipe to heat the alloy, and by heating the alloy, hydrogen gas is released from the alloy and released into each tray. The hydrogen gas rises inside the reaction tank from the top and is released outside the reaction tank through the hydrogen gas outlet.

又冷熱用コイルパイプを各トレイの合金層内において、
コイル径を異にして複数回、コイル状に旋回させ、合金
層内を万逼無く通るようにすることにより、冷熱媒によ
る合金層内の合金の冷却・加熱効率が向上する。
In addition, the coil pipe for cooling and heating is placed inside the alloy layer of each tray.
By turning the coil multiple times in a coil shape with different coil diameters so that the coil can pass through the alloy layer without fail, the efficiency of cooling and heating the alloy in the alloy layer by the cooling/heating medium is improved.

実施例 この発明の実施例を図面により説明すると、第1図に示
すようにこの反応槽1は下部本体槽1aと上部本体槽1
bより成る断面が略円筒形を呈する槽で形成されており
、下部本体4i1aには合金7を収納するトレイ3dを
安定して据えるためのリング9が取付けられている。
Embodiment An embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, this reaction tank 1 has a lower main body tank 1a and an upper main body tank 1.
The lower main body 4i1a is provided with a ring 9 for stably mounting the tray 3d containing the alloy 7.

リング9に据えられるトレイ3dは伝熱性の良い肉薄の
アルミニウム合金より成り、その外径は下部本体槽1a
及び上部本体槽1bの内径に対して隙間16を保つよう
に設定されており、その形状は合金層6の厚に対してそ
の上部表面積が大きくなるように偏平な形をしている。
The tray 3d placed in the ring 9 is made of a thin aluminum alloy with good heat conductivity, and its outer diameter is the same as the lower body tank 1a.
A gap 16 is maintained with respect to the inner diameter of the upper body tank 1b, and the shape is flat so that the upper surface area is larger than the thickness of the alloy layer 6.

トレイ3dの内部には下部本体槽1aを貫通して冷熱媒
輸送ポンプ8に連結する冷熱用コイルパイプ4(以下単
にコイルパイプ4と称す)が設けられ、そのコイルパイ
プ4は互に径を異にした大小のコイル状に交互に巻かれ
トレイ3dの内部を複数回、旋回して下端部は冷熱媒輸
送ポンプ8に、上端部は上部本体槽1bの下端に設けら
れたトレイ3cのコイルパイプ4に連結されている。
Inside the tray 3d, a cooling coil pipe 4 (hereinafter simply referred to as a coil pipe 4) is provided which penetrates the lower main body tank 1a and is connected to the cooling/heating medium transport pump 8.The coil pipes 4 have different diameters. The coil pipes of the tray 3c are alternately wound into large and small coils and rotated several times inside the tray 3d, and the lower end is connected to the cooling/heating medium transport pump 8, and the upper end is connected to the coil pipe of the tray 3c provided at the lower end of the upper main body tank 1b. It is connected to 4.

上部本体槽1bには下部本体槽1aと同様にトレイ3a
、3b、3c及びコイルパイプ4が設けられており、上
記各トレイ内のコイルパイプ4は互に連結され上部本体
4g1b内を旋回しながら貫通して槽外に導かれ、冷熱
媒受入槽15に接続されている。
The upper body tank 1b has a tray 3a as well as the lower body tank 1a.
, 3b, 3c, and coil pipes 4 are provided, and the coil pipes 4 in each tray are connected to each other, pass through the upper body 4g1b while rotating, are guided outside the tank, and are guided to the outside of the tank 15. It is connected.

又上部本体槽1bの土壁を貫通して水素ガスライン11
に接続されている水素ガス人出口2が設けられ、その内
部には微細化した合金粉末が水素ガスライン11への混
入を防止するフィルタ10が取付けられている。
In addition, a hydrogen gas line 11 is inserted through the earthen wall of the upper main tank 1b.
A hydrogen gas outlet 2 is provided, and a filter 10 is installed inside the hydrogen gas outlet 2 to prevent fine alloy powder from entering the hydrogen gas line 11.

又、トレイ3a、3b、3c、3d (以下車に各トレ
イ3と略称す)には合金7が各トレイ3の内容積の80
%近く収納されており、直上部のトレイとの間にはそれ
ぞれ空隙17が、本体反応槽1の側壁との間には空隙1
6が設けられ、下部本体槽1aと上部本体4Hbとはボ
ルト・ナラl−5により固定され内部気密が保たれてい
るほか、下部本体4g 1 aから出たコイルパイプ4
は前記冷熱媒輸送ポンプ8を介して冷熱媒4g12に連
通されている。
In addition, the alloy 7 is in the trays 3a, 3b, 3c, and 3d (hereinafter referred to as each tray 3 in the car) in an amount equal to 80% of the internal volume of each tray 3.
There is a gap of 17 between the tray directly above and a gap of 1 between the side wall of the main reaction tank 1.
6 is provided, and the lower body tank 1a and the upper body 4Hb are fixed with bolts and nuts 1-5 to maintain internal airtightness, and a coil pipe 4 extending from the lower body 4g1a is provided.
is communicated with the cold/heat medium 4g12 via the cold/heat medium transport pump 8.

上記の構成としたので、今、水素ガスライン11から水
素ガス人出口2のフィルタ10を通して反応槽内に水素
ガスを導入すると、水素カスは反応槽の最上段のトレイ
3aに収納された合金層表面から矢印Aで示すように合
金層6の内部に浸透するとともに、矢印Bで示すように
反応槽中央に設けられたファネル14を通って、各トレ
イ3b、3c、3d内に進入し、各トレイ3に収納され
た各合金層6の表面から合金層6の内部に浸透する。
With the above configuration, when hydrogen gas is introduced into the reaction tank from the hydrogen gas line 11 through the filter 10 of the hydrogen gas outlet 2, hydrogen scum is removed from the alloy layer stored in the tray 3a at the top of the reaction tank. It penetrates into the interior of the alloy layer 6 from the surface as shown by arrow A, and also enters into each tray 3b, 3c, 3d through a funnel 14 provided at the center of the reaction tank as shown by arrow B. It penetrates into the inside of each alloy layer 6 from the surface of each alloy layer 6 housed in the tray 3.

この時冷熱媒輸送ポンプ8から冷熱媒槽12内の冷熱媒
13を冷却しく冷却装置の図示省略)コイルパイプ4に
送入すると、送入された冷媒13はトレイ3dから順次
トレイ3C,トレイ3b、トレイ3aと各トレイ3内に
収納された合金層6の中のコイルパイプ4内を通り、前
記各トレイ3の合金層6内を循環しつ\合金7の水素ガ
スの吸蔵に伴ない発生した反応熱を方晶無く奪って、反
応槽1の上部から槽外の冷熱媒受入槽15に導かれる。
At this time, when the refrigerant 13 in the refrigerant tank 12 is sent from the refrigerant transport pump 8 to the coil pipe 4 (cooling device not shown), the refrigerant 13 is sequentially transferred from the tray 3d to the tray 3C and the tray 3b. , passes through the tray 3a and the coil pipe 4 in the alloy layer 6 housed in each tray 3, circulates in the alloy layer 6 of each tray 3, and is generated as hydrogen gas is absorbed by the alloy 7. The generated reaction heat is removed without any square crystals and is led from the upper part of the reaction tank 1 to the cooling medium receiving tank 15 outside the tank.

又水素を吸蔵した合金7から水素を放出する際は冷熱媒
輸送ポンプ8からコイルパイプ4に合金7を加熱するた
め冷熱媒13を所定の温度に加熱して(加熱装置の図示
省略)送り、各トレイ内の合金7を方晶無く熱すること
により、各トレイ3内の合金7に吸蔵されていた水素は
水素ガスとなって放出され、合金層6の表面から各トレ
イ3の上部空間部17及び反応槽1中央部のファネル1
4を通り、水素ガス人出口2を経て水素ガスライン11
に放出される。
In addition, when releasing hydrogen from the alloy 7 that has absorbed hydrogen, the cold/heat medium 13 is heated to a predetermined temperature (heating device not shown) and sent from the cold/heat medium transport pump 8 to the coil pipe 4 in order to heat the alloy 7. By heating the alloy 7 in each tray without square crystals, the hydrogen stored in the alloy 7 in each tray 3 becomes hydrogen gas and is released from the surface of the alloy layer 6 into the upper space of each tray 3. 17 and funnel 1 in the center of reaction tank 1
4, hydrogen gas line 11 via hydrogen gas exit 2
is released.

この様にして水素の吸蔵・放出のサイクルを繰返す過程
で合金7は次第に微細化され、15〜20%程度の体積
膨張を起し、膨張した合金層6は各トレイ3の外周部に
圧力を加えるが、各トレイ3はアルミ合金の薄板で形成
され、伸縮性があり、破損することなく膨張するととも
に、各トレイ3と反応槽】の内壁との間には空隙16が
設けられているので、合金層6の膨張に伴う圧力が反応
槽1の内壁に加えられることかなく、上部本体槽】bや
下部本体槽】aを損傷することかない。
In the process of repeating the cycle of storing and desorbing hydrogen in this way, the alloy 7 gradually becomes finer and expands in volume by about 15 to 20%, and the expanded alloy layer 6 applies pressure to the outer periphery of each tray 3. In addition, each tray 3 is made of a thin plate of aluminum alloy, has elasticity and expands without being damaged, and a gap 16 is provided between each tray 3 and the inner wall of the reaction tank. , the pressure accompanying the expansion of the alloy layer 6 is not applied to the inner wall of the reaction tank 1, and the upper main body tank [b] and the lower main body tank [a] are not damaged.

従って反応槽1の下部本体4fi1aと上部本体491
bの強度的構造は水素ガスライン11から送出入される
水素ガスの圧力に耐えられれば十分であり、その肉厚を
薄くすることが出来°C1熱容量の小さい、即ち玲え易
く、熱し易い反応槽とすることが可能となる。
Therefore, the lower body 4fi1a and the upper body 491 of the reaction tank 1
The strong structure of b is sufficient as long as it can withstand the pressure of hydrogen gas sent in and out from the hydrogen gas line 11, and its wall thickness can be made thin. It becomes possible to use it as a tank.

更に合金7が複数個の偏平な形をした各トレイ3ごとに
、トレイ内容積の80%、程度の収納率で分割・収納さ
れているため、吸蔵・放出のサイクルの繰り返しにより
微細化し、それに起因して合金7の偏析や固化現象の発
生ずるのを著しく減少することができて、水素ガスの合
金層6内への侵透性か劣るのを防止し、水素の吸蔵・放
出速度を増加し、吸蔵・放出のサイクルか効率的に行わ
れる。
Furthermore, since the alloy 7 is divided and stored in each of the plurality of flat trays 3 at a storage rate of about 80% of the tray internal volume, it becomes finer by repeating the cycle of occlusion and release, and then As a result, the occurrence of segregation and solidification of the alloy 7 can be significantly reduced, preventing hydrogen gas from deteriorating in its permeability into the alloy layer 6, and increasing the hydrogen absorption and release rate. However, the cycle of storage and release is carried out efficiently.

又更に、反応槽1内を貫通し、互に径を異にした大小の
コイル状に交互に巻かれたコイルパイプ4か各トレーr
3ごとに、その合金層6内を、複数回、旋回しながら通
り抜けるようにしたので、コイルパイプ4内に送入され
た冷熱媒による水素合金層6の合金7の冷却及び加熱速
度5を向上させ、吸蔵・放出のサイクルが一層効率的に
行われる。
Furthermore, a coil pipe 4 or each tray r passes through the reaction tank 1 and is wound alternately into coils of different sizes and diameters.
3, the hydrogen alloy layer 6 passes through the alloy layer 6 multiple times while turning, thereby improving the cooling and heating rate 5 of the alloy 7 in the hydrogen alloy layer 6 by the cooling medium fed into the coil pipe 4. This allows the occlusion/desorption cycle to occur more efficiently.

発明の効果 この発明は上述のような構成とし、とくに反応槽の内部
に複数個のトレイを設け、各トレイに水素吸蔵合金を収
納し、多気孔バイブを設けず水素ガスが各トレイの合金
層の表面から合金層内に浸透するようにしたので、合金
が経時的に微細化され、微細化された合金が多気孔バイ
ブに付着したり、反応槽下部に偏析したり、合金の膨張
力による合金の固化等の現象がなくなり、水素ガスの合
金層への浸透性が著しく向上するほか、合金の膨張力に
より反応槽壁を損傷することがなくなり、反応槽の強度
構造を軽度化することが出来る。
Effects of the Invention This invention has the above-mentioned structure, and in particular, a plurality of trays are provided inside the reaction tank, each tray houses a hydrogen storage alloy, and the hydrogen gas is absorbed into the alloy layer of each tray without providing a multi-porous vibrator. Since the alloy penetrates into the alloy layer from the surface, the alloy becomes finer over time, and the finer alloy may adhere to the multi-porous vibe, segregate at the bottom of the reaction tank, or cause damage due to the expansion force of the alloy. Phenomena such as solidification of the alloy are eliminated, and the permeability of hydrogen gas into the alloy layer is significantly improved.In addition, the expansion force of the alloy no longer damages the reaction tank wall, and the strength structure of the reaction tank can be reduced. I can do it.

又、冷熱用バイブを、各トレイの水素吸蔵合金層内にお
いて、コイル径を異にして複数回、コイル状に巻かれた
コイルパイプとすることにより、冷熱媒が各トレイごと
にその合金層内を5遍なく旋回しながら通り抜けるので
、コイルパイプ内を流通する冷熱媒による合金の冷却及
び加熱速度が向上し、水素ガスの吸蔵・放出のサイクル
をより効率的に行うことがでとる。
In addition, by making the cooling/heating vibrator a coil pipe that is wound into a coil shape multiple times with different coil diameters within the hydrogen storage alloy layer of each tray, the cooling/heating medium is distributed within the alloy layer of each tray. The cooling and heating speed of the alloy by the cooling/heating medium flowing through the coil pipe is improved, and the cycle of absorbing and desorbing hydrogen gas is performed more efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の縦断面図、第2図は従来の反
応槽の縦断面図である。 3a、b、c、d・・・トレイ 4・・・・・・・・・・・・冷熱用コイルパイプロ・・
・・・・・・・・・・水素吸蔵合金層7・・・・・・・
・・・・・水素合金 層  理  人   弁理士  斎  藤     侑
外1名
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a conventional reaction tank. 3a, b, c, d...Tray 4...Cooling pipe coil...
......Hydrogen storage alloy layer 7...
...Hydrogen alloy layer Attorney: Yugai Saifuji (1 person)

Claims (1)

【特許請求の範囲】 1、反応槽の内部に粉状又は粒状の水素吸蔵合金を収容
して成る水素吸蔵合金層内にパイプ内を冷熱媒が流通す
る冷熱用コイルパイプと、水素ガスの送出入用部材を設
けた水素吸蔵合金用反応槽において、該反応槽の内部に
複数個のトレイを設け、各トレイに水素吸蔵合金を収納
したことを特徴とする水素吸蔵合金用反応槽。 2、冷熱用コイルパイプが各トレイの水素吸蔵合金層内
において、コイル径を異にして複数回、コイル状に巻か
れていることを特徴とする請求項1記載の水素吸蔵合金
用反応槽。
[Scope of Claims] 1. A cooling coil pipe in which a cooling medium flows through the pipe in a hydrogen storage alloy layer formed by accommodating a powdered or granular hydrogen storage alloy inside a reaction tank, and hydrogen gas delivery. 1. A reaction tank for a hydrogen storage alloy which is provided with a necessary member, characterized in that a plurality of trays are provided inside the reaction tank, and each tray houses a hydrogen storage alloy. 2. The reaction tank for a hydrogen storage alloy according to claim 1, wherein the cooling and heating coil pipe is wound into a coil shape a plurality of times with different coil diameters within the hydrogen storage alloy layer of each tray.
JP63065481A 1988-03-18 1988-03-18 Reactor for hydrogen storage alloy Pending JPH01239001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63065481A JPH01239001A (en) 1988-03-18 1988-03-18 Reactor for hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63065481A JPH01239001A (en) 1988-03-18 1988-03-18 Reactor for hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JPH01239001A true JPH01239001A (en) 1989-09-25

Family

ID=13288331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63065481A Pending JPH01239001A (en) 1988-03-18 1988-03-18 Reactor for hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH01239001A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008055735A1 (en) * 2006-11-06 2008-05-15 Robert Bosch Gmbh Fluid accumulator comprising a heat exchanger
WO2018062115A1 (en) * 2016-09-28 2018-04-05 株式会社クリーンプラネット Heat generating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008055735A1 (en) * 2006-11-06 2008-05-15 Robert Bosch Gmbh Fluid accumulator comprising a heat exchanger
WO2018062115A1 (en) * 2016-09-28 2018-04-05 株式会社クリーンプラネット Heat generating system
JPWO2018062115A1 (en) * 2016-09-28 2018-09-27 株式会社クリーンプラネット Fever system

Similar Documents

Publication Publication Date Title
JP4914918B2 (en) Hydrogen reservoir and method for filling hydrogen reservoir
EP0015106B1 (en) Absorption-desorption system
KR20120104182A (en) Tank for storing and withdrawing hydrogen and/or heat
US20060144238A1 (en) Hydrogen storage apparatus
JP2009144901A (en) Hydrogen storage system for fuel cell powered vehicle
GB2574673A (en) Hydrogen storage device and method of producing a hydrogen storage device
JP2004108570A (en) Hydrogen storage container
WO2021014134A2 (en) Hydrogen storage device
US20220349527A1 (en) Hydrogen storage device
KR101875633B1 (en) Solid state hydrogen storage device and solid state hydrogen storage system
JP2017538905A (en) Metal hydride hydrogen storage tank with multiple stacked tiers
WO2021014135A2 (en) Hydrogen storage device
US4756163A (en) Containers for storing and/or transporting fluids
JP2007327534A (en) Hydrogen storage container and hydrogen occlusion/release device
JPH01239001A (en) Reactor for hydrogen storage alloy
JP2007315546A (en) Hydrogen storage vessel and hydrogen absorption and desorption device
KR102420124B1 (en) Hydrogen storage device
JP2008045648A (en) High pressure hydrogen storage container
JP2007218317A (en) Cryogenic liquid/gas hydrogen storage tank
JP2001289397A (en) Hydrogen storage alloy storing container
JP2002295798A (en) Hydrogen transport vessel
JP2000249425A (en) Reaction vessel of alloy for hydrogen storage
JP3032998B2 (en) Hydrogen storage alloy holding container
JPH0214600B2 (en)
JPS59152202A (en) Storage method of hydrogen