JPH1167906A - Formation of interlayer insulating film and semiconductor device using the same - Google Patents

Formation of interlayer insulating film and semiconductor device using the same

Info

Publication number
JPH1167906A
JPH1167906A JP22528097A JP22528097A JPH1167906A JP H1167906 A JPH1167906 A JP H1167906A JP 22528097 A JP22528097 A JP 22528097A JP 22528097 A JP22528097 A JP 22528097A JP H1167906 A JPH1167906 A JP H1167906A
Authority
JP
Japan
Prior art keywords
wiring
film
insulating film
dielectric constant
low dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22528097A
Other languages
Japanese (ja)
Inventor
Toshiaki Hasegawa
利昭 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22528097A priority Critical patent/JPH1167906A/en
Publication of JPH1167906A publication Critical patent/JPH1167906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optimum interlayer insulating film so as to reduce the interwiring capacity and ensure a heat dissipating path, by making low dielectric constant insulating film thinner on a region where the wiring interval is large than that on a region where the wiring interval is small. SOLUTION: On a semiconductor substrate 1, a lower layer insulating film 2 and a line-and-space shaped wiring group 3 having a height H are formed. The wiring group 3 is covered with a low dielectric constant insulating film 4, and an upper layer insulating film 5 is formed to cover the low dielectric constant insulating film 4, preferably, with a planarized surface. The film thickness T of the wiring group 3 is preferably selected within a range of; (1-S)H<=T<=(1-S)H+0.3H, where, T is the thickness of the low dielectric constant insulating film 4 of a region 6 where the wiring interval is small, having an area ratio S, and of a region 7 where the wiring interval is large. Therefore, optimum film thickness distribution of the low dielectric constant insulating film is designed so as to reduce the capacitance between the wirings and ensure a heat dissipating path.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は層間絶縁膜の形成方
法およびこれを用いた半導体装置に関し、さらに詳しく
は、疎密を有するラインアンドスペースパターン状の配
線群上に形成する、低誘電率絶縁体膜を含む層間絶縁膜
の放熱性に特徴を有する層間絶縁膜の形成方法およびこ
れを用いた半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming an interlayer insulating film and a semiconductor device using the same, and more particularly, to a low dielectric constant insulator formed on a line-and-space-patterned wiring group having sparse and dense patterns. The present invention relates to a method for forming an interlayer insulating film having a characteristic in heat dissipation of an interlayer insulating film including the film, and a semiconductor device using the same.

【0002】[0002]

【従来の技術】LSI等の半導体装置の高集積度化が進
展するに伴い、多層配線構造が多用され、同一配線層内
の隣り合う配線間の層間絶縁膜の幅が狭まるとともに、
異なる配線層間の層間絶縁膜の厚さも薄くなっている。
かかる配線間隔の縮小により、配線間容量の上昇による
配線遅延等が問題となりつつある。このため半導体装置
の実動作速度は1/K(Kはスケーリングファクタ)の
スケーリング則に合致しなくなり、高集積化のメリット
を充分に享受することができない。配線間容量の上昇防
止は、高集積度半導体装置の高速動作、低消費電力およ
び低発熱等の諸要請に応えるためには、是非とも解決し
なければならない要素技術の1つである。
2. Description of the Related Art As the degree of integration of semiconductor devices such as LSIs increases, multilayer wiring structures are frequently used, and the width of an interlayer insulating film between adjacent wirings in the same wiring layer is reduced.
The thickness of the interlayer insulating film between different wiring layers is also reduced.
Due to such a reduction in the wiring interval, wiring delay and the like due to an increase in the capacitance between wirings are becoming a problem. Therefore, the actual operation speed of the semiconductor device does not conform to the scaling rule of 1 / K (K is a scaling factor), and the advantage of high integration cannot be fully enjoyed. Preventing an increase in the capacitance between wirings is one of the elemental technologies that must be solved in order to respond to various demands such as high-speed operation, low power consumption, and low heat generation of a highly integrated semiconductor device.

【0003】従来より半導体装置の層間絶縁膜に採用さ
れてきた絶縁体膜材料は、SiO2、SiONやSi3
4 等の無機系材料が主体であった。高集積度半導体装
置の配線間容量の低減方法として、例えば特開昭63−
7650号公報に開示されているように、これら一般的
な無機系材料よりも低誘電率の材料による層間絶縁膜の
採用が有効である。この低誘電率材料としては、フッ素
原子を含む酸化シリコン系絶縁膜(以下SiOFと記
す)等の無機系材料と、炭素原子を含む有機系材料が代
表的である。SiOFは、SiO2 を構成するSi−O
−Si結合をF原子により終端することで、その密度が
低下すること、およびSi−F結合やO−F結合の分極
率が小さいこと等により低誘電率が達成される。このS
iOFはその成膜やエッチングのプロセスが従来のSi
2 に類似したものであるので、現用の製造装置でも容
易に採用できる。また無機系材料であるので耐熱性にも
優れる。
[0003] Insulator film materials that have been conventionally used for interlayer insulating films of semiconductor devices include SiO 2 , SiON and Si 3.
Inorganic material N 4 or the like was mainly. As a method of reducing the capacitance between wirings of a highly integrated semiconductor device, for example, Japanese Patent Application Laid-Open
As disclosed in Japanese Patent Application Publication No. 7650, it is effective to use an interlayer insulating film made of a material having a lower dielectric constant than these general inorganic materials. Representative examples of the low dielectric constant material include an inorganic material such as a silicon oxide-based insulating film containing fluorine atoms (hereinafter referred to as SiOF) and an organic material containing carbon atoms. SiOF is Si—O constituting SiO 2.
By terminating the -Si bond with an F atom, a low dielectric constant is achieved due to a decrease in the density and a small polarizability of the Si-F bond and the OF bond. This S
iOF uses a conventional Si
Since it is similar to O 2 , it can be easily adopted even in a current manufacturing apparatus. Also, since it is an inorganic material, it has excellent heat resistance.

【0004】一方の炭素原子を含む有機系材料による低
誘電率絶縁体膜としては、有機SOG(Spin On
Glass)、ポリイミド、ポリパラキシリレン(商
標名パリレン)、ベンゾシクロブテン、ポリナフタレン
等の有機高分子材料が知られている。これらの材料は炭
素原子を含有することでその密度が低減され、また分子
(モノマ)自体の分極率を小さくすることで低誘電率を
達成している。またシロキサン結合、イミド結合あるい
はベンゼン環やナフタレン環を導入することによりある
程度の耐熱性を得ている。さらに炭素原子を含む有機系
材料にさらにフッ素原子を導入することにより、比誘電
率が2.0程度と一層の低誘電率化と耐熱性が得られ
る。かかるフッ素樹脂系の有機系材料としては、パーフ
ルオロ基含有ポリイミドやフッ化ポリアリールエーテ
ル、あるいはフレア(商標名)等がある。これら有機低
誘電率材料は、例えば「日経マイクロデバイス」誌19
95年7月号105〜112頁に紹介されている。
On the other hand, an organic SOG (Spin On) is used as a low dielectric constant insulator film made of an organic material containing carbon atoms.
Organic polymer materials such as glass, polyimide, polyparaxylylene (trade name: parylene), benzocyclobutene, and polynaphthalene are known. The density of these materials is reduced by containing carbon atoms, and a low dielectric constant is achieved by reducing the polarizability of the molecule (monomer) itself. In addition, a certain degree of heat resistance is obtained by introducing a siloxane bond, an imide bond or a benzene ring or a naphthalene ring. Further, by further introducing a fluorine atom into the organic material containing a carbon atom, the dielectric constant can be further reduced to about 2.0 and the heat resistance can be further improved. Examples of such a fluororesin-based organic material include polyimide containing perfluoro group, fluorinated polyarylether, and Flare (trade name). These organic low dielectric constant materials are described, for example, in "Nikkei Microdevice" magazine 19
July 1995, pages 105-112.

【0005】これら比誘電率が3.5程度以下の低誘電
率材料層を、隣り合う配線間はもとより異なるレベルの
配線層間にも適用し、しかも低誘電率材料層をSiO2
(比誘電率4)、SiON(比誘電率4〜6)やSi3
4 (比誘電率6)等の膜質に優れた絶縁体膜により挟
み込む構造の積層絶縁膜を、本願出願人は特開平8−1
62528号公報で開示し、低誘電率と高信頼性を合わ
せ持つ層間絶縁膜を有する半導体装置の可能性を示し
た。かかる半導体装置を図7を参照して示す。図7にそ
の概略断面図を示す半導体装置は、不図示のMOSトラ
ンジスタ等が作りこまれたSi等の半導体基板1上に、
SiO2 等からなる下層絶縁体膜2、Al−1%Si等
からなるラインアンドスペース状の配線群3、この配線
群3を被覆し、平坦な表面を有する低誘電率絶縁体膜
4、およびこの低誘電率絶縁体膜4をさらに被覆するS
iO2 等からなる上層絶縁体膜5が形成された構造を有
する。配線群3は、密な配線間隔領域6と疎な配線間隔
領域7を有するが、この配線間隔の疎密によらず低誘電
率絶縁体膜4の膜厚は一定であり、その表面は平坦化さ
れている。
[0005] These ratios dielectric constant low dielectric constant material layer below about 3.5, the inter-adjacent wires applied to well different levels of wiring layers, moreover SiO 2 of low dielectric constant material layer
(Dielectric constant 4), SiON (dielectric constant 4 to 6), Si 3
The applicant of the present invention has disclosed a laminated insulating film sandwiched between insulator films having excellent film quality such as N 4 (relative dielectric constant 6) in Japanese Patent Application Laid-Open No. Hei 8-1.
No. 62528 discloses the possibility of a semiconductor device having an interlayer insulating film having both low dielectric constant and high reliability. Such a semiconductor device is shown with reference to FIG. A semiconductor device whose schematic cross-sectional view is shown in FIG. 7 is provided on a semiconductor substrate 1 of Si or the like in which a MOS transistor or the like (not shown) is formed.
A lower insulating film 2 made of SiO 2 or the like, a line-and-space wiring group 3 made of Al-1% Si or the like, a low-dielectric-constant insulating film 4 covering the wiring group 3 and having a flat surface; S that further covers this low dielectric constant insulator film 4
It has a structure in which an upper insulating film 5 made of iO 2 or the like is formed. The wiring group 3 has a dense wiring spacing area 6 and a sparse wiring spacing area 7, but the low dielectric constant insulator film 4 has a constant thickness regardless of the wiring spacing, and its surface is flattened. Have been.

【0006】[0006]

【発明が解決しようとする課題】しかしながらこれら低
誘電率絶縁体膜の熱伝導率は、通常0.1〜0.3W/
mKであり、通常の層間絶縁膜材料のシリコン酸化膜の
1.5〜10W/mKや配線材料となる金属の20〜4
00W/mKと比較して極端に小さく、半導体装置内の
層間絶縁膜を経由する熱放散に重大な影響を与える。低
誘電率絶縁体膜の熱伝導率が小さい理由は、その密度が
シリコン酸化膜等に比べて小さいこと、分子間の相互作
用が小さいこと等による原理的なものと考えられる。デ
ザインルールの微細化にともない、半導体装置の単位面
積あたりの発生熱量は増加する傾向にあり、一方では低
熱伝導率の低誘電率材料を層間絶縁膜に用いることに起
因して、発生した多量の熱を放熱する経路はむしろ弱体
化しているのが実情である。とりわけクロック周波数の
高いMPU(Micro Processing Unit)や、0.25μm
以下の微細なデザインルールの半導体装置等においてこ
の問題は顕在化している。
However, the thermal conductivity of these low dielectric constant insulator films is usually 0.1 to 0.3 W /
mK, which is 1.5 to 10 W / mK for a silicon oxide film as a normal interlayer insulating film material and 20 to 4 W / mK for a metal to be a wiring material.
It is extremely small compared to 00 W / mK, and has a significant effect on heat dissipation via an interlayer insulating film in a semiconductor device. The reason why the thermal conductivity of the low dielectric constant insulator film is low is considered to be in principle due to the fact that its density is lower than that of a silicon oxide film or the like, and the interaction between molecules is small. With the miniaturization of design rules, the amount of heat generated per unit area of a semiconductor device tends to increase.On the other hand, a large amount of heat generated due to the use of a low dielectric constant material having a low thermal conductivity for an interlayer insulating film is used. It is the fact that the heat dissipation path is rather weakened. Especially, MPU (Micro Processing Unit) with high clock frequency, 0.25μm
This problem has become apparent in semiconductor devices having the following fine design rules.

【0007】本願はこのような状況に鑑み提案するもの
であり、低誘電率絶縁体膜を層間絶縁膜の一部として用
いた層間絶縁膜の形成方法において、層間絶縁膜を経由
する熱放散効率の高い層間絶縁膜の形成方法を提供する
ことである。また本願の他の課題は、かかる層間絶縁膜
の形成方法を含んで形成される半導体装置において、デ
バイス実動作時の温度上昇が低減され、またこれにより
デバイスの寿命や信頼性が向上した高集積度の半導体装
置を提供することである。
The present invention is proposed in view of such a situation. In a method of forming an interlayer insulating film using a low dielectric constant insulator film as a part of the interlayer insulating film, the heat dissipation efficiency via the interlayer insulating film is improved. To provide a method of forming an interlayer insulating film having a high density. Another object of the present invention is to provide a semiconductor device formed by including such a method of forming an interlayer insulating film, in which the temperature rise during the actual operation of the device is reduced, and thereby the life and reliability of the device are improved. An object of the present invention is to provide a semiconductor device.

【0008】[0008]

【課題を解決するための手段】上述した課題を達成する
ため、本願の請求項1の層間絶縁膜の形成方法は、疎な
配線間隔領域と、密な配線間隔領域とが混在するライン
アンドスペース状の配線群を有し、これら配線群を被覆
する低誘電率絶縁体膜を含む層間絶縁膜を有する半導体
装置であって、疎な配線間隔領域上の低誘電率絶縁体膜
の膜厚は、密な配線間隔領域上の低誘電率絶縁体膜の膜
厚よりも薄いことを特徴とする。このとき、疎な配線間
隔領域上の前記低誘電率絶縁体膜の膜厚をTとすると、
Tの値は下記式を満たすことが望ましい。 (1−S)H ≦ T ≦ (1−S)H+0.3H (ただし上記式中、Hは密な配線間隔領域の配線の高さ
を、Sは密な配線間隔領域の配線の面積率をそれぞれ表
す。)
In order to achieve the above-mentioned object, a method for forming an interlayer insulating film according to claim 1 of the present application is directed to a line-and-space in which a sparse wiring space region and a dense wiring space region are mixed. A semiconductor device having an interlayer insulating film including a low-dielectric-constant insulating film covering these wiring groups, the thickness of the low-dielectric-constant insulating film on a sparse wiring-interval region being: Characterized in that it is thinner than the low dielectric constant insulator film on the dense wiring space region. At this time, when the thickness of the low dielectric constant insulator film on the sparse wiring space region is T,
It is desirable that the value of T satisfies the following equation. (1−S) H ≦ T ≦ (1−S) H + 0.3H (where H is the height of the wiring in the dense wiring interval region, and S is the area ratio of the wiring in the dense wiring interval region. Respectively.)

【0009】本願の請求項3の半導体装置は、疎な配線
間隔領域と、密な配線間隔領域とが混在するラインアン
ドスペース状の配線群を有し、少なくとも密な配線間隔
領域を被覆する低誘電率絶縁体膜を含んでこれら配線群
を被覆する層間絶縁膜を有する半導体装置であって、疎
な配線間隔領域上の層間絶縁膜の熱伝導率は、密な配線
間隔領域上の低誘電率絶縁体膜の熱伝導率よりも大であ
ることを特徴とする。このとき、疎な配線間隔領域上の
層間絶縁膜の材料は、シリコン酸化膜、フッ化シリコン
酸化膜、シリコン酸化窒化膜、シリコン窒化膜、ダイア
モンドライクカーボン膜およびフッ化ダイアモンドライ
クカーボン膜のうちのいずれか少なくとも1種であるこ
とが望ましい。ただし、密な配線間隔領域上の低誘電率
絶縁体膜としてフッ化シリコン酸化膜(SiOF)を採
用し、疎な配線間隔領域上の層間絶縁膜の材料としても
フッ化シリコン酸化膜を採用する場合には、疎な配線間
隔領域上のフッ化シリコン酸化膜中のフッ素含有量は、
密な配線間隔領域上のフッ化シリコン酸化膜中のフッ素
含有量よりも小さいこととする。
According to a third aspect of the present invention, there is provided a semiconductor device having a line-and-space wiring group in which a sparse wiring space region and a dense wiring space region are mixed, and at least a low wiring space region covering the dense wiring space region. A semiconductor device having an interlayer insulating film covering these wiring groups including a dielectric constant insulating film, wherein the thermal conductivity of the interlayer insulating film on the sparse wiring space region is low dielectric constant on the dense wiring space region. The thermal conductivity of the high-permittivity insulator film. At this time, the material of the interlayer insulating film on the sparse wiring interval region is a silicon oxide film, a silicon fluoride oxide film, a silicon oxynitride film, a silicon nitride film, a diamond-like carbon film, and a fluorinated diamond-like carbon film. Desirably, at least one of them is used. However, a silicon fluoride oxide film (SiOF) is used as a low dielectric constant insulator film over a dense wiring space region, and a silicon fluoride oxide film is also used as a material of an interlayer insulating film over a sparse wiring space region. In this case, the fluorine content in the silicon fluoride oxide film on the sparse wiring space region is
It is assumed that it is smaller than the fluorine content in the silicon fluoride oxide film on the dense wiring space region.

【0010】つぎに本願の請求項5または6の層間絶縁
膜の形成方法は、被処理基板上に、疎な配線間隔領域
と、密な配線間隔領域とが混在するラインアンドスペー
ス状の配線群を形成する工程、これら配線群を被覆する
低誘電率絶縁体膜を含む層間絶縁膜を形成する工程を有
する層間絶縁膜の形成方法であって、この低誘電率絶縁
体膜を、これら配線群を被覆するごとくスピンコーティ
ング法、またはコンフォーマルCVD法により形成する
とともに、疎な配線間隔領域上の低誘電率絶縁体膜の膜
厚を、密な配線間隔領域上の低誘電率絶縁体膜の膜厚よ
りも薄く形成することを特徴とする。このとき、疎な配
線間隔領域上の前記低誘電率絶縁体膜の膜厚をTとする
と、Tの値は下記式を満たすことが望ましい。 (1−S)H ≦ T ≦ (1−S)H+0.3H (ただし上記式中、Hは密な配線間隔領域の配線の高さ
を、Sは密な配線間隔領域の配線の面積率をそれぞれ表
す。)
Next, a method of forming an interlayer insulating film according to a fifth or sixth aspect of the present invention is directed to a line-and-space wiring group in which a sparse wiring space region and a dense wiring space region are mixed on a substrate to be processed. Forming an interlayer insulating film including a low-dielectric-constant insulator film covering the wiring group, the method comprising forming the low-dielectric-constant insulating film into the wiring group. Is formed by a spin coating method or a conformal CVD method so as to cover the low dielectric constant insulator film on the sparse wiring interval region. It is characterized by being formed thinner than the film thickness. At this time, assuming that the thickness of the low dielectric constant insulator film on the sparse wiring interval region is T, it is desirable that the value of T satisfies the following expression. (1−S) H ≦ T ≦ (1−S) H + 0.3H (where H is the height of the wiring in the dense wiring interval region, and S is the area ratio of the wiring in the dense wiring interval region. Respectively.)

【0011】さらに本願の本願の請求項8の層間絶縁膜
の形成方法は、被処理基板上に、疎な配線間隔領域と、
密な配線間隔領域とが混在するラインアンドスペース状
の配線群を形成する工程、これら配線群を被覆する低誘
電率絶縁体膜を含む層間絶縁膜を形成する工程を有する
層間絶縁膜の形成方法であって、まず低誘電率絶縁体膜
を、前記配線群を被覆するごとく形成する工程、この
後、疎な配線間隔領域上に形成された前記低誘電率絶縁
体膜を除去する工程、この疎な配線間隔領域上に、先の
低誘電率絶縁体膜より大きな熱伝導率を有する層間絶縁
膜を形成する工程、を有することを特徴とする。このと
き、疎な配線間隔領域上の層間絶縁膜の材料は、シリコ
ン酸化膜、フッ化シリコン酸化膜、シリコン酸化窒化
膜、シリコン窒化膜、ダイアモンドライクカーボン膜お
よびフッ化ダイアモンドライクカーボン膜のうちのいず
れか少なくとも1種であることが望ましい。ただし、密
な配線間隔領域上の低誘電率絶縁体膜としてフッ化シリ
コン酸化膜(SiOF)を採用し、疎な配線間隔領域上
の層間絶縁膜の材料としてもフッ化シリコン酸化膜を採
用する場合には、疎な配線間隔領域上のフッ化シリコン
酸化膜中のフッ素含有量は、密な配線間隔領域上のフッ
化シリコン酸化膜中のフッ素含有量よりも小さいことと
する。
Further, the method for forming an interlayer insulating film according to claim 8 of the present application provides a method for forming a sparse wiring interval region on a substrate to be processed.
A method for forming an interlayer insulating film including a step of forming a line-and-space wiring group in which dense wiring spacing regions are mixed, and a step of forming an interlayer insulating film including a low dielectric constant insulator film covering these wiring groups First, a step of forming a low dielectric constant insulator film so as to cover the wiring group, and thereafter, a step of removing the low dielectric constant insulator film formed on a sparse wiring interval region, Forming an interlayer insulating film having a higher thermal conductivity than the low-dielectric-constant insulator film on the sparse wiring space region. At this time, the material of the interlayer insulating film on the sparse wiring interval region is a silicon oxide film, a silicon fluoride oxide film, a silicon oxynitride film, a silicon nitride film, a diamond-like carbon film, and a fluorinated diamond-like carbon film. Desirably, at least one of them is used. However, a silicon fluoride oxide film (SiOF) is used as a low dielectric constant insulator film over a dense wiring space region, and a silicon fluoride oxide film is also used as a material of an interlayer insulating film over a sparse wiring space region. In this case, it is assumed that the fluorine content in the silicon fluoride oxide film on the sparse wiring space region is smaller than the fluorine content in the silicon fluoride oxide film on the dense wiring space region.

【0012】次に作用の説明に移る。本発明の半導体装
置のポイントは、低誘電率絶縁体膜を含む層間絶縁膜を
経由する、良好な放熱経路を確保した層間絶縁膜構造を
採用した点にある。一般に、配線間容量が問題となる密
な配線間隔領域に比較して、疎な配線間隔領域の層間絶
縁膜は低誘電率である必要性が小さい。したがって、従
来同じ厚さで配線群上に形成し、これらを被覆していた
低誘電率絶縁体膜のうち、疎な配線間隔領域上の低誘電
率絶縁体膜の膜厚を薄くすることにより、この部分での
放熱効果を良好なものとすることができる。
Next, the operation will be described. The point of the semiconductor device of the present invention is that an interlayer insulating film structure which secures a good heat dissipation path through an interlayer insulating film including a low dielectric constant insulator film is adopted. Generally, it is less necessary for the interlayer insulating film in the sparse wiring space region to have a low dielectric constant than in the dense wiring space region where the capacitance between wirings is a problem. Therefore, by reducing the thickness of the low-dielectric-constant insulator film on the sparse wiring-interval region among the low-dielectric-constant insulator films that were conventionally formed on the wiring group with the same thickness and covered them. The heat radiation effect at this portion can be improved.

【0013】かかる層間絶縁膜構造を実現するために
は、コンフォーマルCVD法、すなわち下地の形状に倣
った表面形状が得られるCVD法、あるいはスピンコー
ティング法を採用して低誘電率絶縁体膜を形成し、成膜
する膜厚を密な配線間隔領域の配線間を埋め込んでやや
余裕がある程度の薄いものとする。これらの成膜方法に
よれば、形成する膜厚が薄い場合には、配線間隔の狭い
スペース部分は低誘電率絶縁体膜により埋め込まれて膜
厚が確保されるが、配線間隔の広いスペース部分には薄
い膜厚でしか形成されない。かかる層間絶縁膜構造は、
低誘電率絶縁体膜を形成後、さらに疎な配線間隔領域の
低誘電率絶縁体膜をエッチバックしてその膜厚を減じて
もよい。
In order to realize such an interlayer insulating film structure, a low dielectric constant insulating film is formed by adopting a conformal CVD method, that is, a CVD method capable of obtaining a surface shape following the shape of a base, or a spin coating method. The film thickness to be formed and formed is buried between the wirings in the dense wiring space region so that a margin is made somewhat thin. According to these film forming methods, when the film thickness to be formed is small, the space portion with a narrow wiring interval is filled with a low dielectric constant insulator film to secure the film thickness, but the space portion with a large wiring interval is secured. Is formed only with a small film thickness. Such an interlayer insulating film structure has
After the formation of the low dielectric constant insulator film, the thickness of the low dielectric constant insulator film may be reduced by etching back the low dielectric constant insulator film in a more sparse wiring space region.

【0014】ところで、密な配線間隔領域の配線間のス
ペースは、低誘電率絶縁体膜により完全に埋め込まれる
ことが望ましい。この部分が低誘電率絶縁体膜により丁
度埋めこまれた場合、疎な配線間隔領域の広いスペース
に形成される低誘電率絶縁体膜の膜厚Tは、 T = (1−S)H となる。ただし、上式においてHは密な配線間隔領域の
配線の高さ、Sは密な配線間隔領域の配線の面積率であ
る。さらに、配線間容量の十分な低減効果を得るために
は、密な配線間隔領域の配線上に、さらにこの配線高の
20%(0.2H)程度の厚さの低誘電率絶縁体膜が形
成されていることが望ましい。この上乗せ部分の低誘電
率絶縁体膜の厚さは、そのまま疎な配線間隔領域の広い
スペース部分の低誘電率絶縁体膜の膜厚Tに上乗せされ
る。この値が30%(0.3H)を超えると配線間容量
の低減効果が飽和する上に、熱放散経路が閉ざされる形
となる他、後工程でビアコンタクトを形成する場合には
そのアスペクト比が大きくなるので好ましくない。した
がって、疎な配線間隔領域の広いスペース部分の低誘電
率絶縁体膜の膜厚Tは、下記式の範囲内であることが望
ましい。 (1−S)H ≦ T ≦ (1−S)H+0.3H
It is desirable that the space between the wirings in the dense wiring space region is completely buried with a low dielectric constant insulator film. When this part is just buried with the low dielectric constant insulator film, the film thickness T of the low dielectric constant insulator film formed in a wide space of the sparse wiring interval region is as follows: T = (1-S) H Become. Here, in the above equation, H is the height of the wiring in the dense wiring interval area, and S is the area ratio of the wiring in the dense wiring interval area. Furthermore, in order to obtain a sufficient effect of reducing the capacitance between wirings, a low dielectric constant insulator film having a thickness of about 20% (0.2 H) of the wiring height is further formed on the wirings in the dense wiring space area. Preferably, it is formed. The thickness of the low-dielectric-constant insulator film in the additional portion is added to the film thickness T of the low-dielectric-constant insulator film in a wide space portion of the sparse wiring space as it is. If this value exceeds 30% (0.3H), the effect of reducing the capacitance between wirings is saturated, and the heat dissipation path is closed. In addition, when a via contact is formed in a later step, its aspect ratio is reduced. Undesirably increases. Therefore, it is desirable that the film thickness T of the low dielectric constant insulator film in the wide space portion of the sparse wiring interval region falls within the range of the following expression. (1-S) H ≦ T ≦ (1-S) H + 0.3H

【0015】さらに、密な配線間隔領域の層間絶縁膜は
低誘電率絶縁体膜で構成し、疎な配線間隔領域の層間絶
縁膜は、この低誘電率絶縁体膜の熱伝導率よりも大きな
熱伝導率を有する層間絶縁膜で構成すれば、この部分で
の放熱経路は一段と良好なものとなり、放熱効果が高ま
る。かかる層間絶縁膜構造は、配線群上に低誘電率絶縁
体膜を成膜後、疎な配線間隔領域の低誘電率絶縁体膜の
膜厚方向の全部あるいは一部をエッチング等で除去し、
ここにSiO2 やダイアモンドライクカーボン等の熱伝
導率の大きな絶縁体膜を成膜することにより形成するこ
とができる。
Further, the interlayer insulating film in the dense wiring space region is formed of a low dielectric constant insulating film, and the interlayer insulating film in the sparse wiring space region is larger than the thermal conductivity of the low dielectric constant insulating film. If it is made of an interlayer insulating film having thermal conductivity, the heat radiating path in this portion is further improved, and the heat radiating effect is enhanced. In such an interlayer insulating film structure, after a low dielectric constant insulator film is formed on a wiring group, all or part of the low dielectric constant insulator film in a sparse wiring interval region in the thickness direction is removed by etching or the like,
Here, it can be formed by forming an insulator film having high thermal conductivity such as SiO 2 or diamond-like carbon.

【0016】[0016]

【発明の実施の形態】以下、本発明の層間絶縁膜の形成
方法およびこれを用いた半導体装置の実施の形態例につ
き、図面を参照しながら説明する。まず本発明の層間絶
縁膜の形成方法を含んで形成された半導体装置を、図1
〜図3に示す概略断面図を参照して説明する。図1〜図
3においては、従来の半導体装置の説明に供した図7中
の構成要素に準じる構成要件には同一の参照符号を付す
ものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a method for forming an interlayer insulating film of the present invention and a semiconductor device using the same will be described with reference to the drawings. First, a semiconductor device formed by including the method for forming an interlayer insulating film of the present invention is described with reference to FIG.
This will be described with reference to schematic sectional views shown in FIGS. 1 to 3, the same reference numerals are given to the constituent elements corresponding to the constituent elements in FIG. 7 used for description of the conventional semiconductor device.

【0017】図1に本願の請求項1に係る半導体装置の
概略断面図を示す。すなわち、不図示のMOSトランジ
スタやBipolarトランジスタ等が作りこまれたS
i等の半導体基板1上に、SiO2 等からなる下層絶縁
体膜2、Al−1%Si等からなり、その高さがHであ
るラインアンドスペース状の配線群3、この配線群3を
被覆する低誘電率絶縁体膜4、およびこの低誘電率絶縁
体膜4をさらに被覆し、望ましくはその表面が平坦化さ
れているSiO2 等からなる上層絶縁体膜5が形成され
た構造を有する。配線群3は、配線の面積率がSである
密な配線間隔領域6と、疎な配線間隔領域7を有する。
図1の半導体装置の特徴部分は、疎な配線間隔領域7の
低誘電率絶縁体膜4の膜厚Tが、密な配線間隔領域6の
低誘電率絶縁体膜4の膜厚より薄いことである。この疎
な配線間隔領域7の低誘電率絶縁体膜4の膜厚Tは、 (1−S)H ≦ T ≦ (1−S)H+0.3H の範囲で選ばれることが望ましい。
FIG. 1 is a schematic sectional view of a semiconductor device according to claim 1 of the present application. That is, a MOS transistor (not shown), a Bipolar transistor, etc.
a lower insulating film 2 made of SiO 2 or the like, a line-and-space-shaped wiring group 3 made of Al-1% Si or the like and having a height H, A structure in which a low dielectric constant insulator film 4 to be coated and an upper insulating film 5 made of SiO 2 or the like, which further covers the low dielectric constant insulator film 4 and whose surface is desirably flattened, is formed. Have. The wiring group 3 has a dense wiring interval area 6 where the area ratio of the wiring is S, and a sparse wiring interval area 7.
A feature of the semiconductor device of FIG. 1 is that the thickness T of the low dielectric constant insulator film 4 in the sparse wiring interval region 7 is smaller than the thickness of the low dielectric constant insulator film 4 in the dense wiring interval region 6. It is. It is desirable that the thickness T of the low dielectric constant insulator film 4 in the sparse wiring interval region 7 be selected in the range of (1−S) H ≦ T ≦ (1−S) H + 0.3H.

【0018】図2および3は本願の請求項3に係る半導
体装置の概略断面図である。図2および3の半導体装置
が先の図1に示した半導体装置と異なる点は、疎な配線
間隔領域7の低誘電率絶縁体膜4の膜厚方向の全部また
は一部が除去され、その部分には高熱伝導率絶縁体膜8
が形成されている点である。この場合にも、高熱伝導率
絶縁体膜8の表面、あるいは上層絶縁体膜5と高熱伝導
率絶縁体膜8との表面は平坦化されていることが望まし
い。
FIGS. 2 and 3 are schematic sectional views of a semiconductor device according to claim 3 of the present application. The semiconductor device of FIGS. 2 and 3 is different from the semiconductor device shown in FIG. 1 in that the whole or a part of the low-dielectric-constant insulator film 4 in the sparse wiring interval region 7 in the thickness direction is removed. High thermal conductivity insulator film 8 in part
Is formed. Also in this case, it is desirable that the surface of the high thermal conductivity insulator film 8 or the surfaces of the upper insulator film 5 and the high thermal conductivity insulator film 8 be flattened.

【0019】いずれの半導体装置においても、低誘電率
絶縁体膜4の材料としてはベンゾシクロブテンポリマ
(Benzocyclobutene Polyme
r,BCB、比誘電率約2.6)、有機SOG(Spi
n On Glass、比誘電率約3〜3.5)、ポリ
アリールエーテルやポリイミド(比誘電率約3〜3.
5)等の耐熱性樹脂、フッ化ポリイミド(比誘電率約
2.7)、フレア(Flear、商標名)、フッ化パリ
レン(AF−4、商標名、比誘電率約2.4)、サイト
ップ(商標名、比誘電率2.1)、フッ化ポリアリール
エーテル(比誘電率2.6)、テフロン(商標名、比誘
電率2.1〜1.9)、フッ化アモルファスカーボン等
のフロロカーボン樹脂、シリカゲル(Xerogel)
等の微小な気泡を含有したシリコン酸化膜、SiOF
(比誘電率3.7〜3.2)等、比誘電率が3.2程度
以下のものが選ばれる。
In any of the semiconductor devices, the material of the low dielectric constant insulator film 4 is benzocyclobutene polymer (Benzocyclobutene Polymer).
r, BCB, relative permittivity of about 2.6), organic SOG (Spi
n On Glass, relative permittivity of about 3-3.5), polyarylether or polyimide (relative permittivity of about 3-3.0).
5) etc., fluorinated polyimide (relative permittivity of about 2.7), flare (Fear, trade name), parylene fluoride (AF-4, trade name, relative permittivity of about 2.4), size Top (trade name, relative permittivity 2.1), fluorinated polyarylether (relative permittivity 2.6), Teflon (trade name, relative permittivity 2.1 to 1.9), fluorinated amorphous carbon, etc. Fluorocarbon resin, silica gel (Xerogel)
Silicon oxide film containing fine bubbles such as SiOF
(Relative permittivity of 3.7 to 3.2) and the like having a relative permittivity of about 3.2 or less are selected.

【0020】また高熱伝導率絶縁体膜8の材料として
は、シリコン酸化膜、フッ化シリコン酸化膜、シリコン
酸化窒化膜、シリコン窒化膜、ダイアモンドライクカー
ボン膜およびフッ化ダイアモンドライクカーボン膜等が
選ばれる。
The material of the high thermal conductivity insulator film 8 is selected from a silicon oxide film, a silicon fluoride oxide film, a silicon oxynitride film, a silicon nitride film, a diamond-like carbon film, a diamond-like carbon film and the like. .

【0021】図1ないし図3に示す半導体装置の層間絶
縁膜構造は、複数層の配線群を有する多層配線構造の半
導体装置の層間絶縁膜にも適用することができる。
The interlayer insulating film structure of the semiconductor device shown in FIGS. 1 to 3 can also be applied to an interlayer insulating film of a semiconductor device having a multilayer wiring structure having a plurality of wiring groups.

【0022】[0022]

【実施例】以下、本発明の層間絶縁膜の形成方法および
これを用いた半導体装置の好適な実施例につき、図面を
参照してさらに詳しく説明する。なお本発明はこれら実
施例になんら限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a method for forming an interlayer insulating film of the present invention and a semiconductor device using the same will be described in more detail with reference to the drawings. The present invention is not limited to these examples.

【0023】実施例1 本実施例は、低誘電率絶縁体膜の材料としてベンゾシク
ロブテンポリマを採用し、これをスピンコーティング法
で形成して層間絶縁膜を形成した例であり、この工程を
図4(a)〜(c)を参照して説明する。
Embodiment 1 This embodiment is an example in which a benzocyclobutene polymer is used as a material of a low dielectric constant insulator film and is formed by a spin coating method to form an interlayer insulating film. This will be described with reference to FIGS.

【0024】まず図4(a)に示すように、半導体基板
1として不図示のトランジスタ等が作りこまれたシリコ
ン基板を採用し、この半導体基板1上に下層絶縁体膜2
としてシリコン酸化膜をCVD法により800nmの厚
さに形成し、必要に応じてここに接続孔(不図示)を開
口する。この後、Al−1%Si合金膜をスパッタリン
グによりH=600nmの厚さに形成し、さらに化学増
幅型レジストとKrFエキシマレーザステッパによるリ
ソグラフィ、ドライエッチング等の工程を経てラインア
ンドスペース状の配線群3を形成する。Al−1%Si
合金膜はTi、TiN等によるバリア層や反射防止層を
含んでいてもよい。
First, as shown in FIG. 4A, a silicon substrate on which transistors and the like (not shown) are formed is adopted as a semiconductor substrate 1, and a lower insulating film 2 is formed on the semiconductor substrate 1.
A silicon oxide film is formed to a thickness of 800 nm by a CVD method, and a connection hole (not shown) is opened here if necessary. Thereafter, an Al-1% Si alloy film is formed to a thickness of H = 600 nm by sputtering, and furthermore, through a process such as lithography and dry etching using a chemically amplified resist and a KrF excimer laser stepper, a line-and-space wiring group. Form 3 Al-1% Si
The alloy film may include a barrier layer made of Ti, TiN or the like or an antireflection layer.

【0025】配線群3は、0.25μmの配線幅と同じ
く0.25μmのスペース幅からなる密な配線間隔領域
6と、1〜10μm程度の広いスペース幅を有する疎な
配線間隔領域7とを含んでいる。密な配線間隔領域6の
配線の面積率Sは0.5である。
The wiring group 3 includes a dense wiring space region 6 having a space width of 0.25 μm, which is the same as a wiring width of 0.25 μm, and a sparse wiring space region 7 having a wide space width of about 1 to 10 μm. Contains. The area ratio S of the wiring in the dense wiring interval region 6 is 0.5.

【0026】つぎにこれら配線群を被覆するように、ベ
ンゾシクロブテンポリマ溶液をスピンコーティング法に
より塗布し、低誘電率絶縁体膜4を形成する。 スピンコーティング条件 回転数 3000 rpm 2分 キュアリング 250 ℃ 5分 これにより、図4(b)に示すように疎な配線間隔領域
7の広いスペース上にT=330nmの厚さに低誘電率
絶縁体膜4を形成する。
Next, a benzocyclobutene polymer solution is applied by a spin coating method so as to cover these wiring groups, and a low dielectric constant insulator film 4 is formed. Spin coating conditions Rotation speed 3000 rpm 2 minutes Curing 250 ° C. 5 minutes As a result, as shown in FIG. 4B, a low dielectric constant insulator having a thickness of T = 330 nm is formed on a wide space of the sparse wiring space 7. The film 4 is formed.

【0027】この低誘電率絶縁体膜の膜厚Tは、密な配
線間隔領域6の配線の面積率Sとしたとき、(1−S)
=0.5と、配線の高さH=600nmとの積よりも、
やや大きい値である。これは、密な配線間隔領域6の配
線群3のスペース間を低誘電率絶縁体膜4で埋め込み、
さらにこの密な配線間隔領域6の配線群3上に低誘電率
絶縁体膜を存在させるためであり、本実施例の場合には
密な配線間隔領域6の配線群3上にt=約30nmの低
誘電率絶縁体膜が形成される。密な配線間隔領域6の配
線間容量を十分に低減するためには、tの値は配線高H
の20%程度以上(t≧0.2H)の厚さに設定するこ
とが望ましいが、厚すぎると熱放散の経路を遮断するこ
とになる。本実施例の場合には、配線間容量の低減と、
熱放散の効率化が両立するように、t≒0.05Hとな
るように設定した。
The film thickness T of the low dielectric constant insulator film is (1-S) when the area ratio S of the wiring in the dense wiring space region 6 is obtained.
= 0.5 and the product of the wiring height H = 600 nm,
This is a slightly larger value. This is because the space between the wiring groups 3 in the dense wiring space region 6 is filled with the low dielectric constant insulator film 4,
Further, this is because a low dielectric constant insulator film is present on the wiring group 3 in the dense wiring space 6. In the case of this embodiment, t = about 30 nm on the wiring group 3 in the dense wiring space 6. Is formed. In order to sufficiently reduce the capacitance between wirings in the dense wiring space region 6, the value of t must be equal to the wiring height H.
It is desirable to set the thickness to about 20% or more (t ≧ 0.2H), but if it is too thick, the heat dissipation path will be blocked. In the case of the present embodiment, reduction of the capacitance between wirings and
It was set so that t ≒ 0.05H so that the efficiency of heat dissipation was compatible.

【0028】この後、低誘電率絶縁体膜4上に上層絶縁
体膜5としてシリコン酸化膜をCVD法により1000
nm形成し、必要に応じてその表面をCMP(Chem
ical Mechanical Polishin
g)法により平坦化する。本実施例においては図4
(c)に示すように上層絶縁体膜5をCMPにより平坦
化した。上層絶縁体膜5は、密な配線間隔領域6上で少
なくとも500nm残すことが望ましい。多層配線構造
とする場合には、上層絶縁体膜5上に上層配線群(不図
示)を形成し、上述した低誘電率絶縁体膜の形成等を反
復すればよい。本実施例によれば、スピンコーティング
法により低誘電率絶縁体膜を形成することにより、低誘
電率絶縁体膜の膜厚分布を、配線間容量の低減と放熱経
路の確保の両面から最適設計することができる。
Thereafter, a silicon oxide film is formed on the low dielectric constant insulator film 4 as an upper insulator film 5 by a CVD method.
nm, and if necessary, the surface is formed by CMP (Chem).
Ical Mechanical Polish
Flatten by the method g). In this embodiment, FIG.
As shown in (c), the upper insulating film 5 was flattened by CMP. It is desirable that the upper insulating film 5 be left at least 500 nm on the dense wiring space 6. In the case of a multilayer wiring structure, an upper wiring group (not shown) may be formed on the upper insulating film 5 and the above-described formation of the low dielectric constant insulating film may be repeated. According to the present embodiment, by forming the low dielectric constant insulator film by the spin coating method, the film thickness distribution of the low dielectric constant insulator film is optimally designed in terms of both reducing the capacitance between wirings and securing the heat dissipation path. can do.

【0029】実施例2 本実施例は、低誘電率絶縁体膜材料としてフッ化パラキ
シリレンポリマを採用し、これをコンフォーマルCVD
法で形成した例であり、この工程を再度図4(a)〜
(c)を参照して説明する。
Embodiment 2 In this embodiment, a paraxylylene fluoride polymer is adopted as a material for a low dielectric constant insulator film, and this is conformal CVD.
This is an example in which the process is performed by the method shown in FIGS.
This will be described with reference to FIG.

【0030】図4(a)に示す配線群3の形成工程迄は
前実施例1と同様であるので、重複する説明は省略する
こととする。つぎにこれら配線群を被覆するように、フ
ッ化ジパラキシリレン(商標名:パリレンAF−4)を
原料としてコンフォーマルCVD法により成膜し、低誘
電率絶縁体膜4を形成する。 コンフォーマルCVD条件 フッ化ジパラキシリレン昇華温度 300 ℃ 加熱分解温度 600〜650 ℃ 基板温度 0 ℃ フッ化ジパラキシリレンは固体粉末であるが、減圧雰囲
気中300℃程度に加熱することにより、ダイマの形の
まま、気体となって昇華する。このフッ化ジパラキシリ
レンガスは600〜650℃に加熱することにより、モ
ノマに分解される。加熱は例えば同じCVDチャンバ内
の昇華源と基板間に抵抗加熱ヒータを巻回した中空加熱
炉を配設し、この中空加熱炉中にフッ化ジパラキシリレ
ンガスを通過させればよい。分解されたフッ化パラキシ
リレンモノマは、0℃程度あるいはそれ以下に冷却され
た基板上で重合し、フッ化パラキシリレンポリマからな
る低誘電率絶縁体膜4を形成する。本CVD条件により
形成される低誘電率絶縁体膜4はコンフォーマルな成膜
形状を有する。低誘電率絶縁体膜の膜厚は、平坦部分で
300nmが得られる膜厚とした。これにより、図4
(b)に示すように疎な配線間隔領域7の広いスペース
上にT=300nmの厚さに低誘電率絶縁体膜4が形成
される。
Since the steps up to the step of forming the wiring group 3 shown in FIG. 4A are the same as those of the first embodiment, the overlapping description will be omitted. Next, a low dielectric constant insulator film 4 is formed using diparaxylylene fluoride (trade name: Parylene AF-4) as a raw material by a conformal CVD method so as to cover these wiring groups. Conformal CVD conditions Diparaxylylene fluoride sublimation temperature 300 ° C Thermal decomposition temperature 600-650 ° C Substrate temperature 0 ° C Diparaxylylene fluoride is a solid powder, but when heated to about 300 ° C in a reduced-pressure atmosphere, it remains in the dimer form. Sublimates as a gas. This diparaxylylene fluoride gas is decomposed into monomers by heating to 600 to 650 ° C. For heating, for example, a hollow heating furnace in which a resistance heater is wound between a sublimation source and a substrate in the same CVD chamber is provided, and diparaxylylene fluoride gas may be passed through the hollow heating furnace. The decomposed paraxylylene fluoride monomer is polymerized on a substrate cooled to about 0 ° C. or lower to form a low dielectric constant insulator film 4 made of paraxylylene fluoride polymer. The low dielectric constant insulator film 4 formed under the present CVD conditions has a conformal film formation shape. The thickness of the low dielectric constant insulator film was set so as to obtain 300 nm in a flat portion. As a result, FIG.
As shown in (b), the low dielectric constant insulator film 4 is formed to a thickness of T = 300 nm on a wide space of the sparse wiring interval region 7.

【0031】この低誘電率絶縁体膜の膜厚Tは、密な配
線間隔領域6の配線の面積率Sとしたとき、(1−S)
=0.5と、配線の高さH=600nmとの積に等しい
値である。これは、密な配線間隔領域6の配線群3のス
ペース間を低誘電率絶縁体膜4で丁度埋め込むためであ
る。低誘電率絶縁体膜の膜厚は、前実施例1と同様に
(1−S)Hより若干厚めに形成してもよい。
The film thickness T of the low dielectric constant insulator film is (1-S) when the area ratio S of the wiring in the dense wiring space region 6 is obtained.
= 0.5 and the product of the wiring height H = 600 nm. This is because the space between the wiring groups 3 in the dense wiring space region 6 is just filled with the low dielectric constant insulator film 4. The thickness of the low dielectric constant insulator film may be slightly larger than (1-S) H as in the first embodiment.

【0032】この後、図4(c)に示すように低誘電率
絶縁体膜4上に上層絶縁体膜5としてシリコン酸化膜を
CVD法により1000nm形成し、必要に応じてその
表面をCMP(Chemical Mechanica
l Polishing)法により平坦化する。上層絶
縁体膜5は、密な配線間隔領域6上で少なくとも500
nm残すことが望ましい。多層配線構造とする場合に
は、上層絶縁体膜5上に上層配線群(不図示)を形成
し、上述した低誘電率絶縁体膜の形成等を反復すればよ
い。本実施例によれば、コンフォーマルCVD法により
低誘電率絶縁体膜を形成することにより、低誘電率絶縁
体膜の膜厚分布を、配線間容量の低減と放熱経路の確保
の両面から最適設計することができる。
Thereafter, as shown in FIG. 4 (c), a silicon oxide film is formed on the low dielectric constant insulator film 4 as an upper insulator film 5 by a CVD method to a thickness of 1000 nm, and the surface is subjected to CMP ( Chemical Mechanical
1 Polishing). The upper insulator film 5 has a thickness of at least 500
It is desirable to leave nm. In the case of a multilayer wiring structure, an upper wiring group (not shown) may be formed on the upper insulating film 5 and the above-described formation of the low dielectric constant insulating film may be repeated. According to the present embodiment, by forming the low dielectric constant insulator film by the conformal CVD method, the film thickness distribution of the low dielectric constant insulator film is optimized from both the viewpoint of reducing the capacitance between wirings and securing the heat dissipation path. Can be designed.

【0033】実施例3 本実施例は、低誘電率絶縁体膜材料としてフッ化パラキ
シリレンポリマを採用し、これをコンフォーマルCVD
法で形成した後、さらに疎な配線間隔領域の低誘電率絶
縁体膜を除去してシリコン酸化膜からなる高熱伝導率絶
縁体膜を形成した例であり、この工程を図5(a)〜
(c)を参照して説明する。
Embodiment 3 In this embodiment, a paraxylylene fluoride polymer is adopted as a material for a low dielectric constant insulator film, and this is conformal CVD.
This is an example of forming a high thermal conductivity insulator film made of a silicon oxide film by removing the low dielectric constant insulator film in a further sparse wiring interval region after forming by a method.
This will be described with reference to FIG.

【0034】本実施例の前半の工程、すなわち低誘電率
絶縁体膜4の成膜工程までは前実施例2で図4(a)〜
(b)までを参照して説明した工程と同様であるので、
重複する説明は省略することとする。つぎに、密な配線
間隔領域6のみをレジストマスク(不図示)により保護
した後、図5(a)に示すように、疎な配線間隔領域7
の低誘電率絶縁体膜4をエッチング除去する。レジスト
マスクは、シリコン含有レジストや表面シリル化レジス
トを用いることがエッチング選択比の点で望ましい。
The first half of this embodiment, that is, the process of forming the low dielectric constant insulator film 4 is the same as that of the second embodiment shown in FIGS.
Since the process is the same as that described with reference to (b),
Duplicate description will be omitted. Next, after only the dense wiring space 6 is protected by a resist mask (not shown), as shown in FIG.
The low dielectric constant insulator film 4 is removed by etching. It is desirable to use a silicon-containing resist or a surface silylation resist as the resist mask from the viewpoint of the etching selectivity.

【0035】この後、図5(b)に示すように高熱伝導
率絶縁体膜8として酸化シリコン膜をCVD法により1
200nmの厚さに形成する。続けて、図5(c)に示
すようにCMP法により高熱伝導率絶縁体膜8の表面を
平坦化する。この場合も、密な配線間隔領域6上には高
熱伝導率絶縁体膜8が少なくとも500nm残るように
研磨することが望ましい。多層配線構造とする場合に
は、高熱伝導率絶縁体膜8上に上層配線群(不図示)を
形成し、上述した低誘電率絶縁体膜の形成や高熱伝導率
絶縁体膜の形成等を反復すればよい。本実施例によれ
ば、疎な配線間隔領域に比較的熱伝導率の良好な酸化シ
リコン膜を形成することにより、配線間容量の低減と放
熱経路の確保の両面から最適設計することができる。
Thereafter, as shown in FIG. 5B, a silicon oxide film is formed as a high thermal conductivity insulator film 8 by CVD.
It is formed to a thickness of 200 nm. Subsequently, as shown in FIG. 5C, the surface of the high thermal conductivity insulator film 8 is flattened by the CMP method. Also in this case, it is desirable to polish the high thermal conductivity insulator film 8 so as to remain at least 500 nm on the dense wiring space region 6. In the case of a multi-layer wiring structure, an upper wiring group (not shown) is formed on the high thermal conductivity insulator film 8, and the formation of the low dielectric constant insulator film and the formation of the high thermal conductivity insulator film described above are performed. Just repeat. According to this embodiment, by forming a silicon oxide film having a relatively good thermal conductivity in a sparse wiring space region, it is possible to perform an optimal design from the viewpoints of both reducing the capacitance between wirings and securing a heat radiation path.

【0036】実施例4 本実施例は、低誘電率絶縁体膜材料として同じくフッ化
パラキシリレンポリマを採用し、これをコンフォーマル
CVD法で形成した後、さらに疎な配線間隔領域の低誘
電率絶縁体膜を除去してダイアモンドライクカーボン膜
からなる高熱伝導率絶縁体膜を形成した例であり、この
工程を図6(a)〜(c)を参照して説明する。
Embodiment 4 In this embodiment, a paraxylylene fluoride polymer is also used as a low dielectric constant insulator film material, and is formed by a conformal CVD method. This is an example in which a high thermal conductivity insulator film made of a diamond-like carbon film is formed by removing the high-rate insulator film, and this step will be described with reference to FIGS.

【0037】本実施例の前半の工程、すなわち低誘電率
絶縁体膜4の成膜工程までは前実施例2で図4(a)〜
(b)までを参照して説明した工程と同様であるので、
重複する説明は省略することとする。つぎに、図6
(a)に示すように、低誘電率絶縁体膜4上に上層絶縁
体膜5としてシリコン酸化膜をCVD法により600n
m形成する。
In the first half of this embodiment, that is, up to the step of forming the low dielectric constant insulator film 4, FIGS.
Since the process is the same as that described with reference to (b),
Duplicate description will be omitted. Next, FIG.
As shown in (a), a silicon oxide film is formed on the low dielectric constant insulator film 4 as the upper insulator film 5 by 600 nm by the CVD method.
m.

【0038】この後、図6(b)に示すように、密な配
線間隔領域6のみをレジストマスク(不図示)により保
護した後、疎な配線間隔領域7の上層絶縁体膜5を除去
する。このとき、レジストマスクの膜厚は、上層絶縁体
膜5がエッチオフされたときに消失するか、わずかに残
存する程度とする。エッチング装置は通常の平行平板型
プラズマエッチャーとフッ素系のガスを用い、異方性加
工が必要な場合には基板を0℃以下に冷却したり、側壁
保護膜形成を促進する堆積性のガス、例えばCHF3
ス等を添加することが望ましい。続けて、パターニング
された上層絶縁体膜5をエッチングマスクとし、酸素系
のエッチングガスに切り換えて低誘電率絶縁体膜4をエ
ッチング除去する。
After that, as shown in FIG. 6B, only the dense wiring space 6 is protected by a resist mask (not shown), and then the upper insulating film 5 of the sparse wiring space 7 is removed. . At this time, the film thickness of the resist mask is such that it disappears or slightly remains when the upper insulating film 5 is etched off. The etching apparatus uses an ordinary parallel-plate type plasma etcher and a fluorine-based gas. When anisotropic processing is required, the substrate is cooled to 0 ° C. or less, or a deposition gas that promotes formation of a sidewall protective film. For example, it is desirable to add CHF 3 gas or the like. Subsequently, using the patterned upper insulating film 5 as an etching mask, the low dielectric constant insulating film 4 is etched away by switching to an oxygen-based etching gas.

【0039】つぎに、高熱伝導率絶縁体膜としてダイア
モンドライクカーボン膜をプラズマCVD法により12
00nmの厚さに成膜する。 プラズマCVD条件 原料ガス アセチレン 圧力 10 Pa プラズマパワー 2000 W 基板温度 200 ℃ 続けて、図6(c)に示すようにCMP法により高熱伝
導率絶縁体膜8および上層絶縁体膜5の表面を平坦化す
る。この場合も、密な配線間隔領域6上には上層絶縁体
膜5が少なくとも500nm残るように研磨することが
望ましい。多層配線構造とする場合には、高熱伝導率絶
縁体膜8および上層絶縁体膜5上に上層配線群(不図
示)を形成し、上述した低誘電率絶縁体膜の形成や高熱
伝導率絶縁体膜の形成等を反復すればよい。本実施例に
よれば、疎な配線間隔領域に熱伝導率の良好なダイアモ
ンドライクカーボン膜を形成することにより、配線間容
量の低減と放熱経路の確保の両面から最適設計すること
ができる。
Next, a diamond-like carbon film was formed as a high thermal conductivity insulator film by plasma CVD.
A film is formed to a thickness of 00 nm. Plasma CVD conditions Source gas Acetylene pressure 10 Pa Plasma power 2000 W Substrate temperature 200 ° C. Subsequently, as shown in FIG. 6C, the surfaces of the high thermal conductivity insulator film 8 and the upper insulator film 5 are planarized by the CMP method. I do. Also in this case, it is desirable to polish the upper insulating film 5 so as to remain at least 500 nm on the dense wiring interval region 6. In the case of a multi-layer wiring structure, an upper wiring group (not shown) is formed on the high thermal conductivity insulating film 8 and the upper insulating film 5 to form the low dielectric constant insulating film and the high thermal conductivity insulating film. The formation of the body film and the like may be repeated. According to the present embodiment, by forming a diamond-like carbon film having good thermal conductivity in a sparse wiring space region, it is possible to optimally design both from the viewpoint of reducing the capacity between wirings and securing a heat radiation path.

【0040】以上、本発明を4例の実施例により詳細に
説明したが、本発明はこれら実施例に何ら限定されるも
のではない。
Although the present invention has been described in detail with reference to four examples, the present invention is not limited to these examples.

【0041】例えば、低誘電率絶縁体膜材料としてベン
ゾシクロブテンポリマあるいはフッ化ポリパラキシリレ
ンを例示したが、先述した各種無機・有機の絶縁体材料
を用いることができる。
For example, benzocyclobutene polymer or polyparaxylylene fluoride has been exemplified as the low dielectric constant insulator film material, but the various inorganic and organic insulator materials described above can be used.

【0042】また高熱伝導率絶縁体膜としてシリコン酸
化膜あるいはダイアモンドライクカーボンを例示した
が、これも先述した各種絶縁体材料を用いることができ
る。
Although a silicon oxide film or diamond-like carbon has been exemplified as the high thermal conductivity insulator film, the above-mentioned various insulator materials can also be used.

【0043】またAl−1%Si合金からなる配線層に
より配線群が形成された被処理基板を採用したが、多結
晶シリコンや高融点金属、あるいはその積層構造の高融
点金属ポリサイド等を用いてもよい。この場合には低誘
電率絶縁体膜等の層間絶縁膜形成の温度条件は高温側に
シフトすることができる。また層間絶縁膜を最終パッシ
ベーション膜として用いる場合にも適用できる。半導体
基板としてはSiの他にGaAs等の化合物半導体基板
を用いる場合にも有効である。また半導体装置以外に
も、薄膜ヘッドや薄膜インダクタ等、高周波の各種マイ
クロ電子デバイス等にも適用可能であることは言うまで
もない。
Although a substrate to be processed in which a wiring group is formed by a wiring layer made of an Al-1% Si alloy is employed, polycrystalline silicon, a high melting point metal, or a high melting point metal polycide having a laminated structure thereof is used. Is also good. In this case, the temperature condition for forming an interlayer insulating film such as a low dielectric constant insulator film can be shifted to a higher temperature side. Further, the present invention can be applied to a case where an interlayer insulating film is used as a final passivation film. It is also effective when a compound semiconductor substrate such as GaAs is used in addition to Si as the semiconductor substrate. It goes without saying that the present invention can be applied to various high-frequency microelectronic devices such as a thin film head and a thin film inductor other than the semiconductor device.

【0044】[0044]

【発明の効果】以上の説明から明らかなように、本発明
の層間絶縁膜の形成方法によれば、低誘電率膜による配
線間容量の低減と、熱放散経路の確保の両面から層間絶
縁膜の最適設計をおこなうことができる。したがって、
本発明の層間絶縁膜の形成方法の採用により、配線遅延
や消費電力が低減され、また温度上昇の少ない高集積度
の半導体装置を信頼性高く形成することが可能となる。
As is apparent from the above description, according to the method for forming an interlayer insulating film of the present invention, the interlayer insulating film can be formed from both sides of the reduction of the capacitance between wirings by the low dielectric constant film and the securing of the heat dissipation path. Optimal design can be performed. Therefore,
By employing the method for forming an interlayer insulating film of the present invention, wiring delay and power consumption are reduced, and a highly integrated semiconductor device with a small temperature rise can be formed with high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の層間絶縁膜の形成方法を含んで形成さ
れた半導体装置の概略断面図である。
FIG. 1 is a schematic sectional view of a semiconductor device formed including a method for forming an interlayer insulating film of the present invention.

【図2】本発明の他の層間絶縁膜の形成方法を含んで形
成された半導体装置の概略断面図である。
FIG. 2 is a schematic sectional view of a semiconductor device formed by including another method of forming an interlayer insulating film of the present invention.

【図3】本発明のさらに他の層間絶縁膜の形成方法を含
んで形成された半導体装置の概略断面図である。
FIG. 3 is a schematic sectional view of a semiconductor device formed by including still another method of forming an interlayer insulating film of the present invention.

【図4】本発明の層間絶縁膜の形成方法の工程を示す概
略断面図である。
FIG. 4 is a schematic cross-sectional view showing steps of a method for forming an interlayer insulating film of the present invention.

【図5】本発明の他の層間絶縁膜の形成方法の工程を示
す概略断面図である。
FIG. 5 is a schematic sectional view showing steps of another method of forming an interlayer insulating film of the present invention.

【図6】本発明のさらに他の層間絶縁膜の形成方法の工
程を示す概略断面図である。
FIG. 6 is a schematic cross-sectional view showing a step of a method of forming still another interlayer insulating film according to the present invention.

【図7】従来の半導体装置を示す概略断面図である。FIG. 7 is a schematic sectional view showing a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1…半導体基板、2…下層絶縁体膜、3…配線群、4…
低誘電率絶縁体膜、5…上層絶縁体膜、6…密な配線間
隔領域、7…疎な配線間隔領域、8…高熱伝導率絶縁体
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Lower insulating film, 3 ... Wiring group, 4 ...
Low dielectric constant insulating film, 5: upper insulating film, 6: dense wiring spacing region, 7: sparse wiring spacing region, 8: high thermal conductivity insulating film

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 疎な配線間隔領域と、密な配線間隔領域
とが混在するラインアンドスペース状の配線群を有し、
前記配線群を被覆する低誘電率絶縁体膜を含む層間絶縁
膜を有する半導体装置であって、 前記疎な配線間隔領域上の前記低誘電率絶縁体膜の膜厚
は、 前記密な配線間隔領域上の前記低誘電率絶縁体膜の膜厚
よりも薄いことを特徴とする半導体装置。
1. A line-and-space wiring group in which a sparse wiring space area and a dense wiring space area are mixed,
A semiconductor device having an interlayer insulating film including a low-dielectric-constant insulating film covering the wiring group, wherein the film thickness of the low-dielectric-constant insulating film on the sparse wiring-interval region is the dense wiring-interval A semiconductor device having a thickness smaller than a thickness of the low dielectric constant insulator film on a region.
【請求項2】 前記疎な配線間隔領域上の前記低誘電率
絶縁体膜の膜厚をTとするとき、 Tの値は下記式を満たすことを特徴とする請求項1記載
の半導体装置。 (1−S)H ≦ T ≦ (1−S)H+0.3H (ただし上記式中、Hは前記密な配線間隔領域の配線の
高さを、Sは前記密な配線間隔領域の配線の面積率をそ
れぞれ表す。)
2. The semiconductor device according to claim 1, wherein the value of T satisfies the following expression, where T is the thickness of the low dielectric constant insulator film on the sparse wiring space region. (1−S) H ≦ T ≦ (1−S) H + 0.3H (where H is the height of the wiring in the dense wiring spacing area, and S is the area of the wiring in the dense wiring spacing area) Rate.)
【請求項3】 疎な配線間隔領域と、密な配線間隔領域
とが混在するラインアンドスペース状の配線群を有し、
少なくとも前記密な配線間隔領域を被覆する低誘電率絶
縁体膜を含んで前記配線群を被覆する層間絶縁膜を有す
る半導体装置であって、 前記疎な配線間隔領域上の前記層間絶縁膜の熱伝導率
は、 前記密な配線間隔領域上の前記低誘電率絶縁体膜の熱伝
導率よりも大であることを特徴とする半導体装置。
3. A line and space wiring group in which a sparse wiring space area and a dense wiring space area are mixed,
A semiconductor device having an interlayer insulating film covering at least the wiring group including a low-dielectric-constant insulator film covering at least the dense wiring space region, wherein heat of the interlayer insulating film on the sparse wiring space region is provided. A semiconductor device, wherein the conductivity is higher than the thermal conductivity of the low dielectric constant insulator film on the dense wiring space region.
【請求項4】 前記疎な配線間隔領域上の前記層間絶縁
膜の材料は、 シリコン酸化膜、フッ化シリコン酸化膜、シリコン酸化
窒化膜、シリコン窒化膜、ダイアモンドライクカーボン
膜およびフッ化ダイアモンドライクカーボン膜のうちの
いずれか少なくとも1種であることを特徴とする請求項
3記載の半導体装置。
4. A material of the interlayer insulating film on the sparse wiring interval region is a silicon oxide film, a silicon fluoride oxide film, a silicon oxynitride film, a silicon nitride film, a diamond-like carbon film, and a fluorinated diamond-like carbon film. 4. The semiconductor device according to claim 3, wherein at least one of the films is used.
【請求項5】 被処理基板上に、疎な配線間隔領域と、
密な配線間隔領域とが混在するラインアンドスペース状
の配線群を形成する工程、 前記配線群を被覆する低誘電率絶縁体膜を含む層間絶縁
膜を形成する工程を有する層間絶縁膜の形成方法であっ
て、 前記低誘電率絶縁体膜を、前記配線群を被覆するごとく
スピンコーティング法により形成するとともに、 前記疎な配線間隔領域上の前記低誘電率絶縁体膜の膜厚
を、 前記密な配線間隔領域上の前記低誘電率絶縁体膜の膜厚
よりも薄く形成することを特徴とする層間絶縁膜の形成
方法。
5. A sparse wiring space region on a substrate to be processed,
A method for forming an interlayer insulating film, comprising: forming a line-and-space wiring group in which dense wiring spacing regions are mixed; and forming an interlayer insulating film including a low dielectric constant insulator film covering the wiring group. Wherein the low dielectric constant insulator film is formed by a spin coating method so as to cover the wiring group, and the film thickness of the low dielectric constant insulator film on the sparse wiring space region is set to Forming an interlayer insulating film having a thickness smaller than the thickness of the low dielectric constant insulator film on a wiring interval region.
【請求項6】 被処理基板上に、疎な配線間隔領域と、
密な配線間隔領域とが混在するラインアンドスペース状
の配線群を形成する工程、 前記配線群を被覆する低誘電率絶縁体膜を含む層間絶縁
膜を形成する工程を有する層間絶縁膜の形成方法であっ
て、 前記低誘電率絶縁体膜を、前記配線群を被覆するごとく
コンフォーマルCVD法(Chemical Vapor Deposition
法)により形成するとともに、 前記疎な配線間隔領域上の前記低誘電率絶縁体膜の膜厚
を、 前記密な配線間隔領域上の前記低誘電率絶縁体膜の膜厚
よりも薄く形成することを特徴とする層間絶縁膜の形成
方法。
6. A sparse wiring space region on a substrate to be processed,
A method for forming an interlayer insulating film, comprising: forming a line-and-space wiring group in which dense wiring spacing regions are mixed; and forming an interlayer insulating film including a low dielectric constant insulator film covering the wiring group. The conformal CVD method (Chemical Vapor Deposition) is performed so that the low dielectric constant insulator film covers the wiring group.
Method), and the film thickness of the low dielectric constant insulator film on the sparse wiring space region is formed smaller than the film thickness of the low dielectric constant insulating film on the dense wiring space region. A method for forming an interlayer insulating film.
【請求項7】 前記疎な配線間隔領域上の前記低誘電率
絶縁体膜の膜厚をTとするとき、 Tの値は下記式を満たすことを特徴とする請求項5また
は6記載の層間絶縁膜の形成方法。 (1−S)H ≦ T ≦ (1−S)H+0.3H (ただし上記式中、Hは前記密な配線間隔領域の配線の
高さを、Sは前記密な配線間隔領域の配線の面積率をそ
れぞれ表す。)
7. The interlayer according to claim 5, wherein the value of T satisfies the following expression, where T is the thickness of the low dielectric constant insulator film on the sparse wiring space region. A method for forming an insulating film. (1−S) H ≦ T ≦ (1−S) H + 0.3H (where H is the height of the wiring in the dense wiring spacing area, and S is the area of the wiring in the dense wiring spacing area) Rate.)
【請求項8】 被処理基板上に、疎な配線間隔領域と、
密な配線間隔領域とが混在するラインアンドスペース状
の配線群を形成する工程、 前記配線群を被覆する低誘電率絶縁体膜を含む層間絶縁
膜を形成する工程を有する層間絶縁膜の形成方法であっ
て、 前記低誘電率絶縁体膜を、前記配線群を被覆するごとく
形成する工程、 前記疎な配線間隔領域上に形成された前記低誘電率絶縁
体膜を除去する工程、前記疎な配線間隔領域上に、前記
低誘電率絶縁体膜より大きな熱伝導率を有する層間絶縁
膜を形成する工程、 を有することを特徴とする層間絶縁膜の形成方法。
8. A sparse wiring space region on a substrate to be processed,
A method for forming an interlayer insulating film, comprising: forming a line-and-space wiring group in which dense wiring spacing regions are mixed; and forming an interlayer insulating film including a low dielectric constant insulator film covering the wiring group. Forming the low dielectric constant insulating film so as to cover the wiring group; removing the low dielectric constant insulating film formed on the sparse wiring space region; Forming an interlayer insulating film having a higher thermal conductivity than the low dielectric constant insulating film on the wiring space region.
【請求項9】 前記疎な配線間隔領域上の前記層間絶縁
膜の材料は、 シリコン酸化膜、フッ化シリコン酸化膜、シリコン酸化
窒化膜、シリコン窒化膜、ダイアモンドライクカーボン
膜およびフッ化ダイアモンドライクカーボン膜のうちの
いずれか少なくとも1種であることを特徴とする請求項
8記載の層間絶縁膜の形成方法。
9. A material of said interlayer insulating film on said sparse wiring space region is a silicon oxide film, a silicon fluoride oxide film, a silicon oxynitride film, a silicon nitride film, a diamond-like carbon film, and a fluorinated diamond-like carbon film. 9. The method for forming an interlayer insulating film according to claim 8, wherein at least one of the films is used.
JP22528097A 1997-08-21 1997-08-21 Formation of interlayer insulating film and semiconductor device using the same Pending JPH1167906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22528097A JPH1167906A (en) 1997-08-21 1997-08-21 Formation of interlayer insulating film and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22528097A JPH1167906A (en) 1997-08-21 1997-08-21 Formation of interlayer insulating film and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JPH1167906A true JPH1167906A (en) 1999-03-09

Family

ID=16826868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22528097A Pending JPH1167906A (en) 1997-08-21 1997-08-21 Formation of interlayer insulating film and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JPH1167906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165924A (en) * 2010-02-10 2011-08-25 Mitsubishi Electric Corp Semiconductor device
WO2017064937A1 (en) * 2015-10-16 2017-04-20 ソニー株式会社 Semiconductor device and method for manufacturing semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165924A (en) * 2010-02-10 2011-08-25 Mitsubishi Electric Corp Semiconductor device
WO2017064937A1 (en) * 2015-10-16 2017-04-20 ソニー株式会社 Semiconductor device and method for manufacturing semiconductor device
CN108028224A (en) * 2015-10-16 2018-05-11 索尼公司 The manufacture method of semiconductor device and semiconductor device
US10879165B2 (en) 2015-10-16 2020-12-29 Sony Corporation Semiconductor device and method for manufacturing semiconductor device with low-permittivity layers
CN108028224B (en) * 2015-10-16 2022-08-16 索尼公司 Semiconductor device and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US7304386B2 (en) Semiconductor device having a multilayer wiring structure
US7119441B2 (en) Semiconductor interconnect structure
US6040248A (en) Chemistry for etching organic low-k materials
JP2973905B2 (en) Method for manufacturing semiconductor device
US6764774B2 (en) Structures with improved adhesion to Si and C containing dielectrics and method for preparing the same
US6372672B1 (en) Method of forming a silicon nitride layer in a semiconductor device
KR20010031049A (en) Borderless vias with hsq gap filled patterned metal layers
JP2001044191A (en) Laminated insulating film, manufacture thereof, semiconductor device and manufacture thereof
KR100292403B1 (en) Interlayer dielectric film of semiconductor device and method for forming film
JP2001223269A (en) Semiconductor device and manufacturing method therefor
JPH1154504A (en) Forming method of laminated insulator film and semiconductor device using the same
JP2003077920A (en) Method for forming metal wiring
JP3148183B2 (en) Method for manufacturing semiconductor device
JP3887175B2 (en) Semiconductor device and manufacturing method thereof
US20060110915A1 (en) Semiconductor device having low-k dielectric film in pad region and method for manufacture thereof
JPH06349830A (en) Manufacture of semiconductor integrated circuit device
JP3617283B2 (en) Semiconductor device manufacturing method and semiconductor device using the same
JP4523351B2 (en) Manufacturing method of semiconductor device
JPH10209148A (en) Method for forming low dielectric constant insulator film and semiconductor device using the same
JPH1167906A (en) Formation of interlayer insulating film and semiconductor device using the same
US5888898A (en) HSQ baking for reduced dielectric constant
JPH1131678A (en) Manufacture of semiconductor device
US6043147A (en) Method of prevention of degradation of low dielectric constant gap-fill material
JP3186998B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2003133411A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A02 Decision of refusal

Effective date: 20060131

Free format text: JAPANESE INTERMEDIATE CODE: A02