JP3148183B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3148183B2
JP3148183B2 JP24523598A JP24523598A JP3148183B2 JP 3148183 B2 JP3148183 B2 JP 3148183B2 JP 24523598 A JP24523598 A JP 24523598A JP 24523598 A JP24523598 A JP 24523598A JP 3148183 B2 JP3148183 B2 JP 3148183B2
Authority
JP
Japan
Prior art keywords
film
interlayer insulating
forming
insulating film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24523598A
Other languages
Japanese (ja)
Other versions
JP2000077406A (en
Inventor
光市 大音
達矢 宇佐美
光司 岸本
賢一 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24523598A priority Critical patent/JP3148183B2/en
Publication of JP2000077406A publication Critical patent/JP2000077406A/en
Application granted granted Critical
Publication of JP3148183B2 publication Critical patent/JP3148183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に関し、さらに詳述すると、半導体装置の層間絶縁
膜やパッシベーション膜の形成に関するものである。
The present invention relates to a method of manufacturing a semiconductor device, and more particularly to the formation of an interlayer insulating film and a passivation film of a semiconductor device.

【0002】[0002]

【従来の技術】ICの製造分野では、デバイスの高集積
化に伴い、スケーリング則に従った横方向のデバイスの
微細化が進んでいる。これに伴って、配線幅と配線間隔
も縮小化の方向にある。配線間隔が狭くなると、配線間
の寄生容量は配線間隔に反比例して増加する。この配線
間容量の増加はRC時定数を大きくし、配線の信号伝播
速度の遅延を招き、デバイスの処理速度低下の原因とな
るため、デバイスの微細化を進める上で大きな問題とな
っている。
2. Description of the Related Art In the field of IC manufacturing, miniaturization of devices in a horizontal direction in accordance with a scaling law is progressing along with high integration of devices. Along with this, the wiring width and the wiring interval have also been reduced. When the wiring interval becomes narrow, the parasitic capacitance between the wirings increases in inverse proportion to the wiring interval. This increase in the capacitance between the wirings increases the RC time constant, causes a delay in the signal propagation speed of the wirings, and causes a reduction in the processing speed of the device. This is a major problem in miniaturizing the device.

【0003】近年、前述した配線間容量を低減するため
の方法として、従来層間絶縁膜として用いられているS
iO2膜よりも比誘電率の低い絶縁膜を形成することが
検討されている。代表的な低誘電率層間絶縁膜として
は、SiOF膜の他に、HSQ(Hydrogen Silsesquiox
ane)、BCB(Benzocycrobutene)等の無機又は有機
塗布膜、フッ素化アモルファスカーボン膜やパリレン等
をはじめとするCVD有機膜などが知られている。しか
し、これらの膜、特にSiOF膜やフッ素化アモルファ
スカーボン膜などのFを含む膜は、Fの脱離やH2Oと
の反応による比誘電率の増加や、膜中のFと下地やAl
配線等との反応が懸念されている。そのため、これらの
問題を解決する目的で、通常は図4に示すように層間膜
を多層構造に形成すること、すなわちFを含む層間絶縁
膜層4を上下からSiO2膜3で挟み込む積層構造の形
を採ることが行われている。なお、図4において1は下
地絶縁膜、2はAl配線を示す。
In recent years, as a method for reducing the inter-wiring capacitance, the S
It has been studied to form an insulating film having a lower dielectric constant than the iO 2 film. Typical low dielectric constant interlayer insulating films include HSQ (Hydrogen Silsesquiox) in addition to SiOF films.
Inorganic or organic coating films such as ane) and BCB (Benzocycrobutene), and CVD organic films such as fluorinated amorphous carbon films and parylene are known. However, these films, particularly films containing F, such as SiOF films and fluorinated amorphous carbon films, increase the relative dielectric constant due to the desorption of F or the reaction with H 2 O, or the F in the film and the underlayer or Al.
There is concern about reactions with wiring and the like. Therefore, in order to solve these problems, an interlayer film is usually formed in a multilayer structure as shown in FIG. 4, that is, a multilayer structure in which an interlayer insulating film layer 4 including F is sandwiched between SiO 2 films 3 from above and below. Taking shape is taking place. In FIG. 4, 1 indicates a base insulating film, and 2 indicates an Al wiring.

【0004】しかし、SiO2を成膜する方法として一
般的に用いられているのは、SiH4を用いたCVD法
である。このため、SiO2の成膜中に、Fを含む層間
絶縁膜はSiH4の分解により生成したHラジカルに晒
されることになる。また、TEOSを用いた場合でも膜
中に多くの水分を含むため、これがFと反応してしま
う。さらに、SiO2膜は一般的にH2やH2Oの拡散に
対する耐性が低いため、成膜後における大気開放中の膜
質の安定性にも問題が残る。そのため、Fを含む低誘電
率の層間絶縁膜を半導体デバイスに用いることは困難に
なっている。
However, a CVD method using SiH 4 is generally used as a method for forming a SiO 2 film. Therefore, during the formation of SiO 2, the interlayer insulating film containing F is exposed to the H radical generated by the decomposition of SiH 4 . Further, even when TEOS is used, a large amount of water is contained in the film, and this reacts with F. Furthermore, since the SiO 2 film generally has low resistance to diffusion of H 2 and H 2 O, there remains a problem in the stability of the film quality during the opening to the atmosphere after the film formation. For this reason, it is difficult to use a low dielectric constant interlayer insulating film containing F in a semiconductor device.

【0005】[0005]

【発明が解決しようとする課題】前述したように、従来
の半導体装置の製造、特に層間絶縁膜又はパッシベーシ
ョン膜の形成に関しては、次のような問題があった。 SiO2を成膜する方法として一般的に用いられてい
るのは、SiH4を用いたCVD法である。そのため、
SiO2の成膜中に、Fを含む層間絶縁膜はSiH4の分
解により生成したHラジカルに晒されることになり、F
がHラジカルと反応する。したがって、Hを含まないソ
ースを用いた成膜方法が必要となる。
As described above, the following problems have been encountered in the manufacture of a conventional semiconductor device, particularly in the formation of an interlayer insulating film or a passivation film. A commonly used method for forming SiO 2 is a CVD method using SiH 4 . for that reason,
During the film formation of SiO 2, the interlayer insulating film containing F is exposed to H radicals generated by decomposition of SiH 4 ,
Reacts with H radicals. Therefore, a film formation method using a source containing no H is required.

【0006】SiH4を用いたCVD法で成膜したS
iO2膜中にはHが残留しているため、このHがFと反
応する。また、TEOSを用いた場合でも膜中に多くの
水分を含むため、同様にこの水分がFと反応してしま
う。したがって、HやH2Oを含まない層間膜が必要と
なる。
[0006] S formed by CVD using SiH 4
Since H remains in the iO 2 film, this H reacts with F. Even when TEOS is used, a large amount of water is contained in the film, so that the water reacts with F similarly. Therefore, an interlayer film containing neither H nor H 2 O is required.

【0007】SiO2膜はH2やH2Oの拡散に対する
耐性が低いため、成膜後、大気開放中の膜質の安定性に
問題が残る。したがって、H2やH2Oの拡散に対する耐
性の高い層間膜が必要となる。
Since the SiO 2 film has low resistance to diffusion of H 2 and H 2 O, there remains a problem in the stability of the film quality during the opening to the atmosphere after the film formation. Therefore, an interlayer film having high resistance to diffusion of H 2 or H 2 O is required.

【0008】以上のように、Fを含む低誘電率膜を層間
絶縁膜に用いる場合、その上下に成膜する層間膜の形成
には、成膜ガスとしてHを含まないガスを用いたSiN
膜やSiON膜の成膜が必要となってくる。
As described above, when a low dielectric constant film containing F is used as an interlayer insulating film, an interlayer film formed above and below the film is formed of SiN using a gas containing no H as a film forming gas.
It is necessary to form a film or a SiON film.

【0009】本発明は、前述した事情に鑑みてなされた
もので、その目的は、半導体装置において層間絶縁膜あ
るいはパッシベーション膜を形成する際に、比誘電率の
低い、安定な膜質の多層の層間絶縁膜あるいはパッシベ
ーション膜を形成することが可能な方法を提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to form a multilayer film having a low relative dielectric constant and a stable film quality when forming an interlayer insulating film or a passivation film in a semiconductor device. An object is to provide a method capable of forming an insulating film or a passivation film.

【0010】[0010]

【課題を解決するための手段】本発明は、前記目的を達
成するため、下記(1)〜(6)に示す半導体装置の製
造方法を提供する。
In order to achieve the above object, the present invention provides a method for manufacturing a semiconductor device as described in the following (1) to (6).

【0011】(1)2層以上の多層層間絶縁膜の形成方
法であって、Fを含む層間絶縁膜を成膜する工程と、そ
の下地及び上地の一方又は両方に、Hを含まない無機の
Si系ガスとN2を用いた高密度プラズマCVDにより
SiN膜を成膜する工程とを有し、かつ前記各工程を同
一成膜室内で行うことを特徴とする半導体装置の製造方
法。 (2)2層以上の多層層間絶縁膜の形成方法であって、
Fを含む層間絶縁膜を成膜する工程と、その下地及び上
地の一方又は両方に、Hを含まない無機のSi系ガスと
2とO2、Hを含まない無機のSi系ガスとNO、又
は、Hを含まない無機のSi系ガスとN2Oを用いた高
密度プラズマCVDによりSiON膜を形成する工程と
を有し、かつ前記各工程を同一成膜室内で行うことを特
徴とする半導体装置の製造方法。 (3)Hを含まない無機のSi系ガスとN2を用いた高
密度プラズマCVDによりSiN膜を形成する工程と、
SiN膜をHを含まない雰囲気中で熱処理する工程とを
有することを特徴とする半導体装置の製造方法。
(1) A method for forming a multi-layered interlayer insulating film having two or more layers, wherein a step of forming an interlayer insulating film containing F and an inorganic film containing no H on one or both of a base and an upper surface thereof Forming a SiN film by high-density plasma CVD using a Si-based gas and N 2 , and performing each of the steps in the same film forming chamber. (2) A method of forming a multilayer interlayer insulating film having two or more layers,
A step of forming an interlayer insulating film containing F, an inorganic Si-based gas containing no H, an N 2 and O 2 , and an inorganic Si-based gas containing no H Forming a SiON film by high-density plasma CVD using NO or NO-containing inorganic Si-based gas and N 2 O, and performing each of the steps in the same film forming chamber. Manufacturing method of a semiconductor device. (3) forming a SiN film by high-density plasma CVD using H-free inorganic Si-based gas and N 2 ;
Heat treating the SiN film in an atmosphere containing no H.

【0012】(4)Hを含まない無機のSi系ガスが、
Sixy又はSixCly(式中x及びyはそれぞれ1以
上の整数を示す)で表わされるガスであることを特徴と
する(1)〜(3)の半導体装置の製造方法。 (5)Sixyで表わされるガスがSiF4である
(4)の半導体装置の製造方法。 (6)SixClyで表わされるガスがSiCl4である
(4)の半導体装置の製造方法。
(4) The inorganic Si-based gas containing no H is
Si x F y or Si x Cl y The method of manufacturing a semiconductor device characterized in that it is a gas represented by (wherein x and y are an integer of 1 or more, respectively) (1) to (3). (5) Si x F gases represented by y is SiF 4 (4) The method for manufacturing a semiconductor device. (6) Si x The method for manufacturing a semiconductor device Cl y gas represented by is SiCl 4 (4).

【0013】[0013]

【発明の実施の形態】[実施例1]以下に本発明の実施
例1を説明する。図1(a)に示すように、シリコン基
板上に成膜された下地絶縁膜1上に、第1の層間絶縁膜
としてSiN膜5を、高密度プラズマCVD法によりS
iF4:20sccm、N2:100sccm、成膜圧
力:50mTorr、ICPソースパワー:3000
W、バイアスパワー:0Wの条件で50nm成膜した。
次に、第2の層間絶縁膜としてSiOF膜6を400n
m成膜した。さらに、第3の層間絶縁膜としてSiN膜
5を前記と同一条件で50nm成膜した。ここでは、こ
れら第1、2、3層の層間絶縁膜を同一成膜室内で成膜
することにより、Fを含む層間絶縁膜が大気に晒される
のを防止し、Fの反応を抑制した。
Embodiment 1 Embodiment 1 of the present invention will be described below. As shown in FIG. 1A, a SiN film 5 as a first interlayer insulating film is formed on a base insulating film 1 formed on a silicon substrate by a high-density plasma CVD method.
iF 4 : 20 sccm, N 2 : 100 sccm, film formation pressure: 50 mTorr, ICP source power: 3000
A film having a thickness of 50 nm was formed under the conditions of W and bias power: 0 W.
Next, an SiOF film 6 is formed as a second interlayer insulating film by 400 n.
m was formed. Further, a 50 nm thick SiN film 5 was formed as a third interlayer insulating film under the same conditions as described above. Here, by forming the first, second, and third interlayer insulating films in the same film forming chamber, the interlayer insulating film containing F was prevented from being exposed to the atmosphere, and the reaction of F was suppressed.

【0014】次いで、図1(b)に示すように、フォト
リソグラフィーとドライエッチングにより溝7を形成し
た。その後、バリヤメタルであるTaとCuをスパッタ
法及びメッキにより成膜し、図1(C)に示すようにC
MPにより層間絶縁膜表面のTaとCuを除去しCu配
線8を形成した。
Next, as shown in FIG. 1B, a groove 7 was formed by photolithography and dry etching. Thereafter, a barrier metal Ta and Cu are formed by sputtering and plating, and as shown in FIG.
Ta and Cu on the surface of the interlayer insulating film were removed by MP to form a Cu wiring 8.

【0015】本例では、第1、第3の層間絶縁膜として
SiNを成膜したが、N2Oを添加してSiON膜を成
膜してもよい。また、第2の層間絶縁膜としてSiOF
膜を用いたが、例えばこれに代わりフッ素化アモルファ
スカーボン、ポリテトラフロオロエチレン、パリレンA
F4(ポリパラキシレン)等のフッ素を含む有機膜を用
いてもよい。
In this embodiment, SiN is formed as the first and third interlayer insulating films. However, a SiON film may be formed by adding N 2 O. Further, SiOF is used as a second interlayer insulating film.
A membrane was used, but instead of this, for example, fluorinated amorphous carbon, polytetrafluoroethylene, parylene A
An organic film containing fluorine such as F4 (polyparaxylene) may be used.

【0016】[実施例2]以下に本発明の実施例2を説
明する。本例では、本発明によるSiN膜を容量のカバ
ー膜として用い、強誘電体材料が水素により還元される
のを抑制した。まず、図2(a)に示すように、シリコ
ン基板上に成膜された下地絶縁膜1上にPt/Ti下部
電極9、Pb(Zr,Ti)O3強誘電体10、Ir/
IrO2上部電極11の構造の容量を形成した。次に、
図2(b)に示すように、実施例1と同じ条件でSiN
膜5を50nm成膜し、さらにCVD法によりSiO2
膜3を600nm成膜した。最後に、フォトリソグラフ
ィーとドライエッチングによりコンタクト開口後、図2
(c)に示すようにWコンタクトとAl配線2を形成し
た。
Embodiment 2 Hereinafter, Embodiment 2 of the present invention will be described. In this example, the SiN film according to the present invention was used as a capacitor cover film, and the reduction of the ferroelectric material by hydrogen was suppressed. First, as shown in FIG. 2 (a), a Pt / Ti lower electrode 9, a Pb (Zr, Ti) O 3 ferroelectric 10, an Ir /
A capacitor having the structure of the IrO 2 upper electrode 11 was formed. next,
As shown in FIG. 2B, under the same conditions as in Example 1, SiN
A film 5 is formed to a thickness of 50 nm, and SiO 2 is further formed by a CVD method.
The film 3 was formed to a thickness of 600 nm. Finally, after contact opening by photolithography and dry etching, FIG.
A W contact and an Al wiring 2 were formed as shown in FIG.

【0017】[実施例3]以下に本発明の実施例3を説
明する。ここでは、Al配線形成後、パッシベーション
膜を形成するのに本発明を用いた。図3に示すように、
Al配線2上に、まず第1の層としてCVDによりSi
2膜3を100nm成膜し、次いで第2の層として実施
例1と同じ条件でSiN膜5を1μm成膜した。そして
最後に、N 2プラズマアニールをN2:500sccm、
圧力:50mTorr、ICPソースパワー:3000
Wの条件で30秒間行った。
[Embodiment 3] Embodiment 3 of the present invention will be described below.
I will tell. Here, passivation after Al wiring formation
The invention was used to form a film. As shown in FIG.
On the Al wiring 2, first, as the first layer,
OTwoFilm 3 is deposited to a thickness of 100 nm and then implemented as a second layer
Under the same conditions as in Example 1, a 1 μm SiN film 5 was formed. And
Finally, N TwoPlasma annealing to NTwo: 500sccm,
Pressure: 50 mTorr, ICP source power: 3000
This was performed for 30 seconds under the condition of W.

【0018】[0018]

【発明の効果】本発明に係る半導体装置の製造方法は、
以下に述べる効果を奏する。第1の効果は、SiN膜形
成時にFを含む層間絶縁膜でのHF形成を無くすことが
できることである。その理由は、Hを含まないガスを用
いてSiN膜を成膜するため、成膜中にFを含む層間絶
縁膜がHラジカル等に晒されることがなく、Fとの反応
を抑制できるためである。
According to the method of manufacturing a semiconductor device according to the present invention,
The following effects are obtained. A first effect is that HF formation in an interlayer insulating film containing F can be eliminated when forming a SiN film. The reason is that since the SiN film is formed using a gas containing no H, the interlayer insulating film containing F is not exposed to H radicals or the like during the film formation, and the reaction with F can be suppressed. is there.

【0019】第2の効果は、SiN成膜時におけるFを
含む層間絶縁膜からのFの脱離を抑制できることであ
る。その理由は、一般にFを含む層間絶縁膜は高温で熱
するとFの脱離が起こりやすいが、本発明ではSiN膜
を高密度プラズマCVD法で成膜しているので、低温成
膜が可能であり、その結果SiN成膜時のFの脱離を抑
制できるためである。
A second effect is that desorption of F from the interlayer insulating film containing F at the time of SiN film formation can be suppressed. The reason is that, generally, when an interlayer insulating film containing F is heated at a high temperature, F is easily desorbed. However, in the present invention, a SiN film is formed by a high-density plasma CVD method. This is because, as a result, the desorption of F at the time of SiN film formation can be suppressed.

【0020】第3の効果は、層間絶縁膜膜質の長期安定
性の向上を図れることである。その理由は、Fを含む層
間絶縁膜をSiO2膜よりもH2やH2Oの拡散に対して
耐性の高いSiN膜で挟み込む構造を採っているので、
多層の層間絶縁膜形成後に大気中のH2やH2OとFとが
反応することを抑制できるためである。
A third effect is that the long-term stability of the quality of the interlayer insulating film can be improved. The reason is that a structure is employed in which an interlayer insulating film containing F is sandwiched between SiN films having higher resistance to diffusion of H 2 and H 2 O than SiO 2 films.
This is because it is possible to suppress the reaction between H 2 or H 2 O in the atmosphere and F after the formation of the multilayer interlayer insulating film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の説明図である。FIG. 1 is an explanatory diagram of a first embodiment of the present invention.

【図2】本発明の第2の実施例の説明図である。FIG. 2 is an explanatory diagram of a second embodiment of the present invention.

【図3】本発明の第3の実施例の説明図である。FIG. 3 is an explanatory diagram of a third embodiment of the present invention.

【図4】従来例の説明図である。FIG. 4 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 下地層間絶縁膜 2 Al配線 3 SiO2 4 Fを含む層間絶縁膜層 5 SiN 6 SiOF 7 溝 8 Cu配線 9 下部電極 10 強誘電体 11 上部電極REFERENCE SIGNS LIST 1 base interlayer insulating film 2 Al wiring 3 interlayer insulating film layer containing SiO 2 4 F 5 SiN 6 SiOF 7 groove 8 Cu wiring 9 lower electrode 10 ferroelectric 11 upper electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小柳 賢一 東京都港区芝五丁目7番1号 日本電気 株式会社内 (56)参考文献 特開 平5−29301(JP,A) 特開 平8−227888(JP,A) 特開 昭57−152132(JP,A) 特開 平9−17860(JP,A) 特開 平9−237783(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/312 H01L 21/314 H01L 21/316 H01L 21/318 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Kenichi Koyanagi 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation (56) References JP-A-5-29301 (JP, A) JP-A-8 JP-A-227888 (JP, A) JP-A-57-152132 (JP, A) JP-A-9-17860 (JP, A) JP-A-9-237783 (JP, A) (58) Fields investigated (Int. . 7, DB name) H01L 21/312 H01L 21/314 H01L 21/316 H01L 21/318

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2層以上の多層層間絶縁膜の形成方法で
あって、Fを含む層間絶縁膜を成膜する工程と、その下
地及び上地の一方又は両方に、Hを含まない無機のSi
系ガスとN2を用いた高密度プラズマCVDによりSi
N膜を成膜する工程とを有し、かつ前記各工程を同一成
膜室内で行うことを特徴とする半導体装置の製造方法。
1. A method for forming a multi-layered interlayer insulating film having two or more layers, comprising: forming an interlayer insulating film containing F; Si
Si by high-density plasma CVD using a base gas and N 2
A step of forming an N film, wherein each of the steps is performed in the same film forming chamber.
【請求項2】 2層以上の多層層間絶縁膜の形成方法で
あって、Fを含む層間絶縁膜を成膜する工程と、その下
地及び上地の一方又は両方に、Hを含まない無機のSi
系ガスとN2とO2、Hを含まない無機のSi系ガスとN
O、又は、Hを含まない無機のSi系ガスとN2Oを用
いた高密度プラズマCVDによりSiON膜を形成する
工程とを有し、かつ前記各工程を同一成膜室内で行うこ
とを特徴とする半導体装置の製造方法。
2. A method for forming a multi-layered interlayer insulating film having two or more layers, wherein a step of forming an interlayer insulating film containing F and an inorganic material not containing H are provided on one or both of a base and an upper surface thereof. Si
-Based gas and N 2 and O 2 , H-free inorganic Si-based gas and N
Forming a SiON film by high-density plasma CVD using O or H-free inorganic Si-based gas and N 2 O, and performing each of the steps in the same film forming chamber. Manufacturing method of a semiconductor device.
【請求項3】 Hを含まない無機のSi系ガスとN2
用いた高密度プラズマCVDによりSiN膜を形成する
工程と、SiN膜をHを含まない雰囲気中で熱処理する
工程とを有することを特徴とする半導体装置の製造方
法。
3. A method comprising the steps of: forming a SiN film by high-density plasma CVD using an H-free inorganic Si-based gas and N 2 ; and heat-treating the SiN film in an H-free atmosphere. A method for manufacturing a semiconductor device, comprising:
【請求項4】 Hを含まない無機のSi系ガスが、Si
xy又はSixCly(式中x及びyはそれぞれ1以上の
整数を示す)で表わされるガスであることを特徴とする
請求項1〜3のいずれか1項に記載の半導体装置の製造
方法。
4. The method according to claim 1, wherein the inorganic Si-based gas containing no H is Si gas.
x F y or Si x Cl y of the semiconductor device according to claim 1, characterized in that the gas represented by (wherein x and y are an integer of 1 or more, respectively) Production method.
【請求項5】 Sixyで表わされるガスがSiF4
ある請求項4に記載の半導体装置の製造方法。
5. A method of manufacturing a semiconductor device according to claim 4 gas represented by Si x F y is SiF 4.
【請求項6】 SixClyで表わされるガスがSiCl
4である請求項4に記載の半導体装置の製造方法。
Gas SiCl represented by wherein Si x Cl y
The method for manufacturing a semiconductor device according to claim 4, wherein
JP24523598A 1998-08-31 1998-08-31 Method for manufacturing semiconductor device Expired - Fee Related JP3148183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24523598A JP3148183B2 (en) 1998-08-31 1998-08-31 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24523598A JP3148183B2 (en) 1998-08-31 1998-08-31 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2000077406A JP2000077406A (en) 2000-03-14
JP3148183B2 true JP3148183B2 (en) 2001-03-19

Family

ID=17130676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24523598A Expired - Fee Related JP3148183B2 (en) 1998-08-31 1998-08-31 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3148183B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150107655A (en) 2014-03-13 2015-09-23 도쿄엘렉트론가부시키가이샤 Semiconductor device, manufacturing method thereof, and manufacturing apparatus
KR20170069991A (en) 2013-06-28 2017-06-21 도쿄엘렉트론가부시키가이샤 Method of forming multi-layered passivation and apparatus of forming multi-layered passivation

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60037395T2 (en) 1999-03-09 2008-11-27 Tokyo Electron Ltd. PREPARATION OF A SEMICONDUCTOR COMPONENT
JP4260764B2 (en) * 1999-03-09 2009-04-30 東京エレクトロン株式会社 Manufacturing method of semiconductor device
WO2000054328A1 (en) 1999-03-09 2000-09-14 Tokyo Electron Limited Production method for semiconductor device
US6372291B1 (en) * 1999-12-23 2002-04-16 Applied Materials, Inc. In situ deposition and integration of silicon nitride in a high density plasma reactor
JP2001320026A (en) * 2000-05-12 2001-11-16 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2002329720A (en) * 2001-04-27 2002-11-15 Samco International Inc Protective film for device and its manufacturing method
JP2004273920A (en) * 2003-03-11 2004-09-30 Toshiba Corp Semiconductor device
JP4838026B2 (en) * 2006-03-27 2011-12-14 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
JPWO2010038885A1 (en) * 2008-09-30 2012-03-01 東京エレクトロン株式会社 Silicon nitride film and method for forming the same, computer-readable storage medium, and plasma CVD apparatus
WO2010038887A1 (en) * 2008-09-30 2010-04-08 東京エレクトロン株式会社 Silicon dioxide film and process for production thereof, computer-readable storage medium, and plasma cvd device
US20110189862A1 (en) * 2008-09-30 2011-08-04 Tokyo Electron Limited Silicon oxynitride film and process for production thereof, computer-readable storage medium, and plasma cvd device
JP2011077323A (en) * 2009-09-30 2011-04-14 Tokyo Electron Ltd Method for forming silicon nitride film, and method for producing semiconductor memory device
US9385318B1 (en) * 2015-07-28 2016-07-05 Lam Research Corporation Method to integrate a halide-containing ALD film on sensitive materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170069991A (en) 2013-06-28 2017-06-21 도쿄엘렉트론가부시키가이샤 Method of forming multi-layered passivation and apparatus of forming multi-layered passivation
KR20150107655A (en) 2014-03-13 2015-09-23 도쿄엘렉트론가부시키가이샤 Semiconductor device, manufacturing method thereof, and manufacturing apparatus

Also Published As

Publication number Publication date
JP2000077406A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
JP2773530B2 (en) Method for manufacturing semiconductor device
JP3148183B2 (en) Method for manufacturing semiconductor device
US7119441B2 (en) Semiconductor interconnect structure
US5399529A (en) Process for producing semiconductor devices
US6040248A (en) Chemistry for etching organic low-k materials
JP3365554B2 (en) Method for manufacturing semiconductor device
JP4068072B2 (en) Semiconductor device and manufacturing method thereof
JP2973905B2 (en) Method for manufacturing semiconductor device
JP3193335B2 (en) Method for manufacturing semiconductor device
US6019906A (en) Hard masking method for forming patterned oxygen containing plasma etchable layer
KR100339677B1 (en) Method of manufacturing semiconductor device and semiconductor device
US5744378A (en) Method for fabricating a semiconductor device having multilevel interconnections
US5217567A (en) Selective etching process for boron nitride films
JP2005527098A (en) Boron doped titanium nitride layer for high aspect ratio semiconductor devices
JP2705513B2 (en) Method for manufacturing semiconductor integrated circuit device
US6593650B2 (en) Plasma induced depletion of fluorine from surfaces of fluorinated low-k dielectric materials
JP3015738B2 (en) Method for manufacturing semiconductor device
JPH07335753A (en) Semiconductor device and its manufacture thereof
US7642655B2 (en) Semiconductor device and method of manufacture thereof
JPH05206282A (en) Manufacturing method of multilayer wiring structure of semiconductor device
JP2830604B2 (en) Method for manufacturing semiconductor device
KR0149468B1 (en) A method for forming a semiconductor device
JP2560623B2 (en) Method for manufacturing semiconductor device
JP3104688B2 (en) Semiconductor device and manufacturing method thereof
JPH11233500A (en) Formation of insulating film, semiconductor device using the same and manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees