JPH1163871A - Dehumidifying air-conditioning system - Google Patents

Dehumidifying air-conditioning system

Info

Publication number
JPH1163871A
JPH1163871A JP22751097A JP22751097A JPH1163871A JP H1163871 A JPH1163871 A JP H1163871A JP 22751097 A JP22751097 A JP 22751097A JP 22751097 A JP22751097 A JP 22751097A JP H1163871 A JPH1163871 A JP H1163871A
Authority
JP
Japan
Prior art keywords
air
heat
desiccant
dehumidifying
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22751097A
Other languages
Japanese (ja)
Other versions
JP3933264B2 (en
Inventor
Kensaku Maeda
健作 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP22751097A priority Critical patent/JP3933264B2/en
Publication of JPH1163871A publication Critical patent/JPH1163871A/en
Application granted granted Critical
Publication of JP3933264B2 publication Critical patent/JP3933264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Abstract

PROBLEM TO BE SOLVED: To provide a dehumidifying air-conditioning system which can provide a comfortable environment through a year and which has a high capacity of preventing dew formation in a perimeter zone and is energy-saving. SOLUTION: A desiccant 102 adsorbing the moisture in process air and regenerated by regenerative air, and a heat pump operated by using the process air as a low heat source and the regenerative air as a high heat source, are provided. Indoor air is taken in and branched into the process air, and the regenerative air and the process air is cooled and dehumidified by the low heat source 240 of the heat pump, then adsorbed and dehumidified by the desiccant and supplied into a room, while the regenerative air is heated by the high heat source 220 of the heat pump and then passed through the desiccant, so as to regenerate the desiccant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、除湿空調システ
ム、特に室内プール施設などのように高湿度の空間を除
湿するための除湿空調システムに係り、ヒートポンプに
よる冷却除湿とデシカントによる吸着除湿を併せて行
い、かつヒートポンプからの放熱によってデシカントの
再生処理を連続的に行えるようにした空調システムに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dehumidifying and air-conditioning system, and more particularly to a dehumidifying and air-conditioning system for dehumidifying a high-humidity space such as an indoor pool facility, which combines cooling and dehumidification with a heat pump and adsorption and dehumidification with a desiccant. The present invention relates to an air conditioning system capable of continuously performing desiccant regeneration processing by performing heat radiation from a heat pump.

【0002】[0002]

【従来の技術】図7は、室内プール施設の内部空間用の
除湿装置として米国で普及している従来技術であり、こ
れは、圧縮機260と凝縮器220と蒸発器240と膨
張弁250を主な構成機器として蒸気圧縮式冷凍サイク
ルをなす冷媒経路Aと、蒸発器240で前記冷媒経路A
と熱交換し送風機101と顕熱交換器150を主な構成
機器として室内空気を取り入れて冷却除湿して室内に戻
す処理空気経路Bと、凝縮器220で前記冷媒経路Aと
熱交換しプール水を取り入れて加熱してプールに戻す水
経路Cとによって構成されている。
2. Description of the Related Art FIG. 7 shows a prior art which is widely used in the United States as a dehumidifying device for an internal space of an indoor pool facility. This device includes a compressor 260, a condenser 220, an evaporator 240, and an expansion valve 250. A refrigerant path A forming a vapor compression refrigeration cycle as main components, and the refrigerant path A in the evaporator 240.
And a processing air path B that takes in indoor air, cools and dehumidifies the air, and returns it to the room by using the blower 101 and the sensible heat exchanger 150 as main components. And a water path C for heating and returning the pool to the pool.

【0003】これにより、プール室内の高湿度の空気を
取り入れて処理空気とし、顕熱交換器150で除湿後の
処理空気と熱交換して予冷却したのち蒸発器240で露
点温度以下に冷却して除湿し、除湿後の処理空気を前記
顕熱交換器150で除湿前の処理空気と熱交換してレヒ
ート加熱して室内に供給するとともに、凝縮器220に
おいて処理空気の冷却によって生じる蒸気圧縮式冷凍サ
イクルの放熱でプール水を加熱してプールに戻すことに
よって、室内の除湿と、プール水の加熱を同時に行って
いた。そして、除湿した処理空気は主に、ペリメータ部
分の窓や壁が結露しないように窓や壁に沿って、スリッ
トダクトから室内に還流させていた。
[0003] Thus, high-humidity air in the pool room is taken in as processing air, heat-exchanged with the processing air after dehumidification by the sensible heat exchanger 150, pre-cooled, and then cooled to the dew point temperature or lower by the evaporator 240. The process air after dehumidification is heat-exchanged with the process air before dehumidification in the sensible heat exchanger 150, reheated and supplied to the room, and a vapor compression system generated by cooling the process air in the condenser 220. By heating the pool water by the heat radiation of the refrigeration cycle and returning it to the pool, indoor dehumidification and heating of the pool water were performed simultaneously. The dehumidified processing air is mainly returned to the room from the slit duct along the windows and walls so as to prevent condensation on the windows and walls of the perimeter.

【0004】[0004]

【発明が解決しようとする課題】上記のような従来の技
術においては、処理空気の状態変化は図8の湿り空気線
図に示すようになる。すなわち、平均的なプール室内の
環境である気温28〜30℃、相対湿度80〜90%の
高湿度の室内から取り入れた処理空気(状態K)は、顕
熱交換器150で除湿後の処理空気(状態M)と熱交換
して予冷却(状態L)されたのち蒸発器240で露点温
度以下に冷却除湿され(状態M)、除湿後の処理空気は
前記顕熱交換器150で除湿前の処理空気と熱交換しレ
ヒート加熱されて(状態N)室内に供給されている。従
って、室内空気(状態K)と給気(状態N)との間には、
ヒートバランスから、冷凍サイクルによって蒸発器24
0で状態Lから状態Mに冷却されるエンタルピ落差ΔQに
等しいエンタルピ落差が生じる。すなわちエンタルピ落
差ΔQだけ室内空間は冷房される。従って、ペリメータ
部分のスリットダクトからは室内気温よりも低い気温の
空気が供給されることになり、この部分にプールから上
がった人が入ると肌寒く感じる問題があった。
In the prior art as described above, the change in the state of the processing air is as shown in the psychrometric chart of FIG. That is, the processing air (state K) taken in from a high-humidity room having a temperature of 28 to 30 ° C. and a relative humidity of 80 to 90%, which is an average environment in the pool room, is processed air after dehumidification by the sensible heat exchanger 150. (State M), heat-exchanged and pre-cooled (State L), then cooled and dehumidified below the dew point temperature by the evaporator 240 (State M). Heat is exchanged with the processing air and reheated (state N) and supplied into the room. Therefore, between the room air (state K) and the supply air (state N),
From the heat balance, the evaporator 24
At 0, an enthalpy head equal to the enthalpy head ΔQ cooled from the state L to the state M occurs. That is, the indoor space is cooled by the enthalpy head ΔQ. Therefore, air at a temperature lower than the room temperature is supplied from the slit duct in the perimeter portion, and there is a problem that when a person who comes out of the pool enters this portion, it feels chilly.

【0005】また、給気(状態N)によってペリメータ
の窓や壁の結露を防止するためには、外気の気温が低下
するほど給気の露点温度(T1)を下げる必要があり、
そのためには蒸発器240の冷却能力ΔQを外気温が低
下するほど増加させることが必要になる。従って、外気
温が下がるほど、室内(状態K)と給気(状態N)のエン
タルピ落差即ち冷房効果が大きくなってペリメータ部分
の肌寒く感じる不快感がさらに増す欠点があった。さら
に、厳冬季に外気温が特に低くて露点温度を0℃近くま
で下げる必要がある場合には、冷凍サイクルの蒸発温度
が氷点下まで下がって、蒸発器240の伝熱面に霜が付
いて連続運転が不能になる欠点があった。
In order to prevent dew condensation on the windows and walls of the perimeter due to air supply (state N), it is necessary to lower the dew point temperature (T1) of the air supply as the temperature of the outside air decreases.
For that purpose, it is necessary to increase the cooling capacity ΔQ of the evaporator 240 as the outside air temperature decreases. Therefore, as the outside air temperature decreases, the enthalpy drop between the room (state K) and the air supply (state N), that is, the cooling effect, increases, and the discomfort that the perimeter feels chilly further increases. Furthermore, when the outside air temperature is particularly low during the severe winter season and the dew point temperature needs to be reduced to near 0 ° C., the evaporation temperature of the refrigeration cycle drops to below freezing point, and the heat transfer surface of the evaporator 240 becomes frosty and continuously. There was a drawback that driving became impossible.

【0006】この発明は、上記課題に鑑みてなされたも
ので、冷房が不適当な状況下では、高湿度の室内から取
り入れた空気を、処理空気と再生空気とに分岐し、処理
空気はヒートポンプで冷却除湿したのちデシカントでさ
らに吸着除湿を行って乾球温度を室温よりも上げ、露点
温度をさらに低下させた後、室内に供給するとともに、
冷房が適当な状況下では、デシカントの作用を弱める
か、停止させつつ、冷房効果と除湿効果を発生させるこ
とによって、年間を通じて快適な環境を提供することが
でき、かつペリメータゾーンの結露防止能力が高く、か
つ省エネルギな除湿空調システムを提供することを目的
とする。
The present invention has been made in view of the above-mentioned problems, and in a situation where cooling is inappropriate, air taken in from a high-humidity room is branched into processing air and regeneration air, and the processing air is supplied with a heat pump. After cooling and dehumidifying in the desiccant, perform further adsorption and dehumidification, raise the dry bulb temperature above room temperature, further reduce the dew point temperature, and then supply it indoors,
In a situation where cooling is appropriate, the desiccant function can be weakened or stopped, and a cooling and dehumidifying effect can be generated to provide a comfortable environment throughout the year. It is an object to provide a high-energy-saving dehumidifying air-conditioning system.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するためになされたもので、請求項1に記載の発明は、
処理空気中の水分を吸着し再生空気によって再生される
デシカントと、処理空気を低熱源、再生空気を高熱源と
して動作するヒートポンプとを備え、室内空気を取り入
れて、処理空気と再生空気とに分岐し、処理空気をヒー
トポンプの低熱源によって冷却除湿したのちデシカント
で吸着除湿して室内に供給するとともに、再生空気をヒ
ートポンプの高熱源で加熱したのちデシカントを通過さ
せてデシカントを再生することを特徴とする除湿空調シ
ステムである。
Means for Solving the Problems The present invention has been made to achieve the above object, and the invention according to claim 1 has the following features.
Equipped with a desiccant that adsorbs moisture in the processing air and is regenerated by the regenerating air, and a heat pump that operates using the processing air as a low heat source and the regenerating air as a high heat source. Then, the treated air is cooled and dehumidified by the low heat source of the heat pump, then adsorbed and dehumidified by the desiccant and supplied to the room, and the regenerated air is heated by the high heat source of the heat pump and passed through the desiccant to regenerate the desiccant. It is a dehumidifying air conditioning system.

【0008】このように、高湿度の室内から取り入れた
空気を、処理空気と再生空気とに分岐し、処理空気はヒ
ートポンプで冷却除湿したのちデシカントでさらに吸着
除湿を行って乾球温度を室温よりも上げた後、室内に供
給することによって冷房作用による不快感がなくなり、
かつ除湿能力が高くなり、かつ再生空気をヒートポンプ
からの放熱を再利用して加熱してデシカントを再生する
ことによって省エネルギ効果が得られる。
[0008] As described above, the air taken in from a room with high humidity is branched into processing air and regeneration air, and the processing air is cooled and dehumidified by a heat pump, and further adsorbed and dehumidified by a desiccant to reduce the dry bulb temperature from room temperature. After raising it, supplying it indoors eliminates the discomfort caused by cooling,
In addition, the dehumidifying ability is increased, and the regenerated air is heated by reusing the heat radiated from the heat pump to regenerate the desiccant, thereby achieving an energy saving effect.

【0009】請求項2に記載の発明は、デシカント再生
後の再生空気を乾燥用の温風として特定の箇所に供給す
ることを特徴とする請求項1に記載の除湿空調システム
である。このように、デシカント再生後であっても相対
湿度が高くなく、しかも乾球温度が高い再生空気を温風
として特定の箇所に供給することによって、乾燥用途に
有効に活用できる。
According to a second aspect of the present invention, there is provided the dehumidifying air-conditioning system according to the first aspect, wherein the regeneration air after desiccant regeneration is supplied to a specific location as hot air for drying. In this way, even after desiccant regeneration, by supplying regeneration air having a high relative humidity and a high dry bulb temperature as hot air to a specific location even after desiccant regeneration, it can be effectively used for drying applications.

【0010】請求項3に記載の発明は、デシカント再生
後の再生空気を屋外に排気することを特徴とする請求項
1に記載の除湿空調システムである。このように、絶対
湿度が室内及び室外よりも高いデシカント再生後の再生
空気を屋外に排気することによって、室内の除湿作用を
高くすることができる。
According to a third aspect of the present invention, there is provided the dehumidifying air-conditioning system according to the first aspect, wherein the regeneration air after desiccant regeneration is exhausted outside. In this way, by exhausting the regenerated air after desiccant regeneration having a higher absolute humidity than indoors and outdoors outdoors, the indoor dehumidifying action can be enhanced.

【0011】請求項4に記載の発明は、処理空気中の水
分を吸着し再生空気によって再生されるデシカントと、
圧縮機と、処理空気と熱交換する蒸発器と、デシカント
再生前の再生空気と熱交換する第1の凝縮器と、再生空
気以外の熱媒体と熱交換する第2の凝縮器とを有するヒ
ートポンプとを備え、室内空気を取り入れて、少なくと
もその一部を処理空気として蒸発器で冷却除湿したのち
デシカントを通過させて室内に供給するとともに、ヒー
トポンプの圧縮機によって圧縮した冷媒の一部を前記第
1の凝縮器に導いて再生空気を加熱するとともに、圧縮
した冷媒の他の一部を前記第2の凝縮器に導いて再生空
気以外の熱媒体を加熱することを特徴とする除湿空調シ
ステムである。
[0011] According to a fourth aspect of the present invention, there is provided a desiccant which adsorbs moisture in the processing air and is regenerated by the regenerating air.
Heat pump having a compressor, an evaporator for exchanging heat with process air, a first condenser for exchanging heat with regeneration air before desiccant regeneration, and a second condenser for exchanging heat with a heat medium other than regeneration air. Including room air, at least a part of it is cooled and dehumidified by an evaporator as processing air, and then passed through a desiccant to be supplied indoors, and a part of the refrigerant compressed by a compressor of a heat pump is supplied to the second part. A dehumidifying air-conditioning system characterized in that the refrigerant is led to the first condenser to heat the regeneration air, and another part of the compressed refrigerant is led to the second condenser to heat a heat medium other than the regeneration air. is there.

【0012】請求項5に記載の発明は、処理空気中の水
分を吸着し再生空気によって再生されるデシカントと、
圧縮機と、処理空気と熱交換する蒸発器と、デシカント
再生前の再生空気と熱交換する第1の凝縮器と、再生空
気以外の熱媒体と熱交換する第2の凝縮器とを有するヒ
ートポンプとを備え、室内空気を取り入れて、少なくと
もその一部を処理空気として蒸発器で冷却除湿するとと
もに、ヒートポンプの圧縮機によって圧縮した冷媒を前
記第1の凝縮器に導いて再生空気を加熱してデシカント
を再生し、冷却除湿した処理空気をデシカントで除湿し
たのち室内に供給する第1の運転形態と、圧縮した冷媒
を前記第2の凝縮器に導いて再生空気以外の熱媒体を加
熱することによって再生空気を加熱せず、冷却除湿した
処理空気をデシカントで除湿せずに室内に供給する第2
の運転形態と、ヒートポンプの圧縮機によって圧縮した
冷媒の一部を前記第1の凝縮器に導いて再生空気を加熱
して冷却除湿した処理空気をデシカントで除湿したのち
室内に供給するするとともに、圧縮した冷媒の他の一部
を前記第2の凝縮器にも導いて再生空気以外の熱媒体を
加熱する第3の運転形態とを選択的に運転可能であるこ
とを特徴とする除湿空調システムである。
According to a fifth aspect of the present invention, there is provided a desiccant which adsorbs moisture in the processing air and is regenerated by the regenerating air.
Heat pump having a compressor, an evaporator for exchanging heat with process air, a first condenser for exchanging heat with regeneration air before desiccant regeneration, and a second condenser for exchanging heat with a heat medium other than regeneration air. And taking in room air, cooling and dehumidifying at least a part of the air as processing air in an evaporator, and guiding a refrigerant compressed by a compressor of a heat pump to the first condenser to heat regeneration air. A first operation mode in which the desiccant is regenerated and the cooled and dehumidified processing air is dehumidified by the desiccant and then supplied into the room, and a compressed refrigerant is guided to the second condenser to heat a heat medium other than the regenerated air. And supplying the cooled and dehumidified treated air into the room without desiccant dehumidification without heating the regeneration air.
The operation mode and a part of the refrigerant compressed by the compressor of the heat pump is guided to the first condenser to heat the regeneration air, and the dehumidified treated air cooled and dehumidified is supplied to the room after being dehumidified, A dehumidifying air-conditioning system characterized in that it can selectively operate a third operation mode in which another part of the compressed refrigerant is guided to the second condenser to heat a heat medium other than the regenerated air. It is.

【0013】請求項6に記載の発明は、前記第2の運転
形態の際に、再生空気の送風機を停止することを特徴と
する請求項5に記載の除湿空調システムである。このよ
うに、冷房運転の際には再生空気の送風機を停止するこ
とによって省エネルギな運転ができる。
According to a sixth aspect of the present invention, there is provided the dehumidifying air-conditioning system according to the fifth aspect, wherein the blower for the regeneration air is stopped in the second operation mode. In this way, energy saving operation can be performed by stopping the blower of the regeneration air during the cooling operation.

【0014】請求項7に記載の発明は、前記室内空気は
室内プールの空間内の空気であり、前記第2の凝縮器で
熱交換する再生空気以外の熱媒体はプール水であること
を特徴とする請求項1ないし6のいずれかに記載の除湿
空調システムである。このように、ヒートポンプからの
放熱をプール水などの加熱にも用いることによって、デ
シカントの除湿能力を調節して処理空気の吸着熱による
温度上昇を変化させ、必要に応じて冷房効果を発生させ
ることができ、夏期においても空調空間を快適に保つこ
とができる。
According to a seventh aspect of the present invention, the indoor air is air in a space of an indoor pool, and the heat medium other than the regenerated air for exchanging heat in the second condenser is pool water. The dehumidifying air-conditioning system according to any one of claims 1 to 6. In this way, by using the heat radiation from the heat pump for heating pool water, etc., the desiccant's dehumidifying capacity is adjusted to change the temperature rise due to the heat of adsorption of the processing air, and the cooling effect is generated as necessary. The air conditioning space can be kept comfortable even in summer.

【0015】請求項8に記載の発明は、デシカントで除
湿後の処理空気を建物のペリメータゾーンに供給するこ
とを特徴とする請求項1ないし7のいずれかに記載の除
湿空調システムである。このように、最も湿度が下がり
かつ乾球温度が高くなった処理空気をペリメータゾーン
に送ることで、ペリメータゾーンの結露防止と不快感を
防止することができる。
The invention according to claim 8 is the dehumidifying air conditioning system according to any one of claims 1 to 7, characterized in that the desiccant-treated air after dehumidification is supplied to the perimeter zone of the building. In this way, by sending the processing air having the lowest humidity and the highest dry bulb temperature to the perimeter zone, it is possible to prevent dew condensation and discomfort in the perimeter zone.

【0016】請求項9に記載の発明は、ヒートポンプと
して蒸気圧縮式ヒートポンプを用いることを特徴とする
請求項1ないし8のいずれかに記載の除湿空調システム
である。請求項10に記載の発明は、ヒートポンプとし
て吸収式ヒートポンプを用いることを特徴とする請求項
1ないし9のいずれかに記載の除湿空調システムであ
る。
A ninth aspect of the present invention is the dehumidifying air conditioning system according to any one of the first to eighth aspects, wherein a vapor compression heat pump is used as the heat pump. The invention according to claim 10 is the dehumidifying air-conditioning system according to any one of claims 1 to 9, wherein an absorption heat pump is used as the heat pump.

【0017】[0017]

【発明の実施の形態】以下、本発明に係る除湿空調シス
テムの実施の形態を図面を参照して説明する。図1は、
本発明に係る除湿空調システムの第1の実施の形態の設
置状況を示す図である。図1において、室内プール40
を囲む空調空間1には、図2に基本構成を示すような内
部にデシカントを有する除湿空調機10を設置し、該除
湿空調機10は空気取り入れ口12から室内空気を取り
入れるようになっている。取り入れられた室内空気は、
この除湿空調機10の内部では、処理空気と再生空気に
分岐し、処理空気をデシカントで除湿し、除湿を行った
処理空気の出口はダクト50を介して、窓20,25に
隣接するペリメータに設置されたスリットダクト30,
35に接続している。一方、該除湿空調機10のデシカ
ントの再生を行った再生空気の出口14は、乾燥用の温
風として空調空間に局所的に吹き出すよう構成してい
る。また、該除湿空調機10の内部で冷却除湿によって
発生するドレンは経路16を介して、排水溝60に接続
するよう構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a dehumidifying air-conditioning system according to the present invention will be described below with reference to the drawings. FIG.
It is a figure showing an installation situation of a 1st embodiment of a dehumidification air-conditioning system concerning the present invention. In FIG. 1, the indoor pool 40
A dehumidifying air conditioner 10 having a desiccant inside as shown in FIG. 2 is installed in an air-conditioned space 1 surrounding the air conditioner, and the dehumidifying air conditioner 10 takes in indoor air from an air intake 12. . The indoor air taken in is
Inside the dehumidifying air conditioner 10, the air is branched into processing air and regeneration air, the processing air is dehumidified by a desiccant, and the outlet of the dehumidified processing air passes through a duct 50 to a perimeter adjacent to the windows 20, 25. Installed slit duct 30,
35. On the other hand, the outlet 14 of the regenerated air from which the desiccant of the dehumidifying air conditioner 10 is regenerated is blown out locally into the air-conditioned space as warm air for drying. The drain generated by cooling and dehumidifying inside the dehumidifying air conditioner 10 is connected to the drain 60 via the path 16.

【0018】図2は図1に示した除湿空調機10の基本
構成を示す説明図である。図2において、除湿空調機1
0は蒸気圧縮式ヒートポンプ及び処理空気と再生空気の
2種類の空気系統とから構成されている。このうち蒸気
圧縮式ヒートポンプの部分は、圧縮機260、低熱源熱
交換器(蒸発器)240、高熱源熱交換器(凝縮器)2
20、膨張弁250を構成機器として蒸気圧縮式冷凍サ
イクルを構成したものである。そして低熱源熱交換器
(蒸発器)240において低圧の冷媒蒸気がデシカント
102通過前の処理空気と熱交換関係をなし、かつ高熱
源熱交換器(凝縮器)220において高圧の冷媒蒸気が
デシカント通過前の再生空気と熱交換関係をなすよう構
成したものである。
FIG. 2 is an explanatory diagram showing the basic configuration of the dehumidifying air conditioner 10 shown in FIG. In FIG. 2, a dehumidifying air conditioner 1
Numeral 0 is composed of a vapor compression type heat pump and two types of air systems of processing air and regeneration air. Among them, the part of the vapor compression heat pump includes a compressor 260, a low heat source heat exchanger (evaporator) 240, a high heat source heat exchanger (condenser) 2
20, which constitutes a vapor compression refrigeration cycle using the expansion valve 250 as a constituent device. Then, in the low heat source heat exchanger (evaporator) 240, the low pressure refrigerant vapor has a heat exchange relationship with the processing air before passing through the desiccant 102, and in the high heat source heat exchanger (condenser) 220, the high pressure refrigerant vapor passes through the desiccant. It is configured to have a heat exchange relationship with the previous regeneration air.

【0019】また、空気系統は次のように構成されてい
る。デシカントロータ102は、デシカントが、処理空
気経路Aと再生空気経路Bの双方に跨がってアクチュエ
ータ103の作用によって所定のサイクルで回転するよ
う構成されている。処理空気経路Aは、空調空間1と低
熱源熱交換器(蒸発器)240と経路110を介して接
続し、低熱源熱交換器(蒸発器)240の処理空気の出
口は室内空気導入用の送風機101の吸い込み口と経路
111を介して接続し、送風機102の吐出口はデシカ
ントロータ102の水分吸着工程を行う第1の区画と経
路112を介して接続し、デシカントロータ102の処
理空気の出口は給気口(図1中の符号50で示す)とな
る処理空気出口と経路113を介して接続して形成す
る。
The air system is configured as follows. The desiccant rotor 102 is configured so that the desiccant rotates in a predetermined cycle by the action of the actuator 103 across both the processing air path A and the regeneration air path B. The processing air path A is connected to the air-conditioned space 1 and the low heat source heat exchanger (evaporator) 240 via the path 110, and the outlet of the processing air of the low heat source heat exchanger (evaporator) 240 is for introducing indoor air. The suction port of the blower 101 is connected via a path 111, and the discharge port of the blower 102 is connected via a path 112 to the first section of the desiccant rotor 102 where the moisture adsorption process is performed, and the outlet of the processing air of the desiccant rotor 102. Is formed by connecting through a passage 113 to a processing air outlet serving as an air supply port (indicated by reference numeral 50 in FIG. 1).

【0020】一方、再生空気経路Bは、空調空間1と高
熱源熱交換器(凝縮器)220とを経路120を介して
接続し、再生空気の高熱源熱交換器(凝縮器)220の
出口は室内空気導入用の送風機140の吸い込み口と経
路121を介して接続し、送風機140の吐出口はデシ
カントロータ102の再生空気の再生工程を行う第2の
区画と経路122を介して接続し、デシカントロータ1
02の再生空気の再生工程を行う第2の区画の再生空気
の出口は室内空間の局所的吹き出し口(図1中の符号1
4で示す)と経路123を介して接続して再生空気の経
路を形成する。なお図中、丸で囲ったアルファベットK
〜Sは、図3と対応する空気の状態を示す記号である。
On the other hand, the regeneration air path B connects the air-conditioned space 1 and the high heat source heat exchanger (condenser) 220 via the path 120, and the outlet of the high heat source heat exchanger (condenser) 220 for the regeneration air. Is connected to a suction port of a blower 140 for introducing indoor air through a path 121, and a discharge port of the blower 140 is connected to a second section of the desiccant rotor 102 for performing a regeneration process of regeneration air, via a path 122; Desiccant rotor 1
The outlet of the regeneration air in the second section for performing the regeneration process of regeneration air No. 02 is a local outlet in the indoor space (reference numeral 1 in FIG. 1).
4) via a path 123 to form a path for regenerated air. In the figure, the letter K enclosed in a circle
SS are symbols indicating the state of air corresponding to FIG.

【0021】上述のように構成された除湿空調機10の
蒸気圧縮式冷凍サイクル部分のサイクルを次に説明す
る。冷媒は低熱源熱交換器(蒸発器)240で処理空気
から蒸発潜熱を奪って蒸発し(状態a:約10℃、4.2
kg/cm2)、経路206を経て圧縮機260に吸引され圧
縮される。圧縮された冷媒(状態b:約80℃、19.3
kg/cm2)は経路202を経て高熱源熱交換器(凝縮器)
220に流入し冷媒の過熱蒸気の顕熱および凝縮潜熱を
デシカント102に流入前の再生空気に放出して凝縮し
た(状態c:約65℃、19.3kg/cm2)のち経路203
を経て膨張弁250に至りそこで減圧膨張した(状態
d:約10℃、4.2kg/cm2)後、経路205を経て低熱
源熱交換器(蒸発器)240に還流する。このように蒸
気圧縮式冷凍サイクル部分のサイクルは、従来ルームエ
アコン等の空調分野で通常行われているものと技術上大
きな差異はなく、作用温度と圧力のみが異なる。
Next, the cycle of the vapor compression refrigeration cycle of the dehumidifying air conditioner 10 configured as described above will be described. The refrigerant evaporates by removing latent heat of evaporation from the processing air in the low heat source heat exchanger (evaporator) 240 (state a: about 10 ° C., 4.2
kg / cm 2 ), and is sucked and compressed by the compressor 260 via the path 206. Compressed refrigerant (state b: about 80 ° C, 19.3
kg / cm 2 ) passes through path 202 and is a high heat source heat exchanger (condenser)
After flowing into 220, the sensible heat and latent heat of condensation of the superheated vapor of the refrigerant are discharged into the regenerated air before flowing into the desiccant 102 and condensed (state c: about 65 ° C., 19.3 kg / cm 2 ), and then the path 203
Through the expansion valve 250, where it is decompressed and expanded (state
d: about 10 ° C., 4.2 kg / cm 2 ), and then return to the low heat source heat exchanger (evaporator) 240 via the path 205. As described above, the cycle of the vapor compression refrigeration cycle portion is not technically significantly different from that conventionally performed in the air conditioning field such as a room air conditioner, and only the working temperature and pressure are different.

【0022】次に、前述のように構成されたヒートポン
プを熱源とする除湿空調機10の動作を図3の湿り空気
線図を参照して説明する。室内空気から導入され分岐さ
れた処理空気(状態K)は経路110を経て低熱源熱交
換器(蒸発器)240に至り、ヒートポンプの作用によ
り冷却除湿され乾球温度および絶対湿度が低下する(状
態L)。冷却除湿された処理空気は送風機101に吸引
され昇圧され、経路112 を経てデシカントロータ1
02の水分吸着工程を行う第1の区画 に送られ、デシ
カントロータ102の吸湿剤で空気中の水分を吸着され
て更に絶対湿度が低下するとともに吸着熱によって空気
は温度上昇する(状態M)。絶対湿度が下がり温度が上
昇した空気は、経路113を経て給気として空調空間の
ペリメータに送られる。なお、低熱源熱交換器(蒸発
器)で冷却除湿される際に処理空気から分離された結露
水(ドレン)は、ドレンパン245に集められ、図1に
示した経路16を経て、排水溝60に捨てられる。
Next, the operation of the dehumidifying air conditioner 10 using the heat pump configured as described above as a heat source will be described with reference to the psychrometric chart of FIG. The process air (state K) introduced and branched from the room air reaches the low-heat-source heat exchanger (evaporator) 240 via the path 110, and is cooled and dehumidified by the action of the heat pump to lower the dry bulb temperature and the absolute humidity (state K). L). The cooled and dehumidified processing air is sucked into the blower 101 and pressurized, and passes through the path 112 to the desiccant rotor 1.
02, where the moisture is absorbed by the desiccant rotor 102, the absolute humidity is further reduced, and the temperature of the air is increased by the heat of adsorption (state M). The air having a decreased absolute humidity and a raised temperature is sent to the perimeter of the conditioned space as air supply via a path 113. Condensed water (drain) separated from the processing air at the time of cooling and dehumidification by the low heat source heat exchanger (evaporator) is collected in a drain pan 245, passes through the path 16 shown in FIG. Thrown away.

【0023】一方、デシカントロータ102の再生は次
のように行われる。室内空気から導入され分岐された再
生空気(状態K)は経路120を経て高熱源熱交換器
(凝縮器)220に至り、ここで冷媒蒸気によって加熱
されて温度上昇し(状態R)、経路121を経て送風機
140 に吸引され昇圧され、経路122を経てデシカ
ントロータ102の再生工程を行う第2の区画を通過し
てデシカントロータ102の水分を除去し再生作用を行
い(状態S)、経路123を経て、室内空間1の局所的
吹き出し口(図1中の符号14で示す)から室内に戻さ
れる。
On the other hand, the regeneration of the desiccant rotor 102 is performed as follows. The regenerated air (state K) introduced and branched from the room air reaches the high heat source heat exchanger (condenser) 220 via the path 120, where it is heated by the refrigerant vapor and rises in temperature (state R). Then, the air is sucked by the blower 140 and pressurized, passes through the second section in which the regeneration process of the desiccant rotor 102 is performed through the path 122, removes the moisture of the desiccant rotor 102, and performs the regeneration action (state S). After that, the air is returned to the room from a local outlet (indicated by reference numeral 14 in FIG. 1) of the indoor space 1.

【0024】このようにして、処理空気の冷却除湿およ
びデシカントによる吸着除湿とデシカントの再生をくり
かえし行うことによって、除湿運転を行うことができる
が、この際、室内に供給される空気の状態は、従来技術
と比べて大きく異なる。この点について以下に説明す
る。
In this manner, the dehumidification operation can be performed by repeating the cooling and dehumidification of the treatment air, the adsorption and dehumidification by the desiccant, and the regeneration of the desiccant. At this time, the condition of the air supplied to the room is It is significantly different from the prior art. This will be described below.

【0025】平均的なプール室内の環境である気温28
〜30℃、相対湿度80〜90%の高湿度の室内から取
り入れた処理空気(状態K)は、蒸発器240で露点温
度(24〜28℃)以下に冷却除湿され(状態L)、乾
球温度が低下し(15〜20℃)、絶対湿度が低下する
(11〜15 g/kg)。この状態では処理空気の露点温
度はヒートポンプの低熱源温度(蒸発温度)よりも高く
なるが、さらにデシカントロータ102の除湿剤によっ
て吸着除湿することにより、湿り空気線図では、ほぼ等
エンタルピ線上を移動して乾球温度が上昇する(35〜
40℃)とともに、絶対湿度も低下(3.5〜6g/kg)
する。
Temperature 28, which is the average environment in the pool room
Processed air (state K) taken from a room with high humidity of -30 ° C and relative humidity of 80-90% is cooled and dehumidified to a dew point temperature (24-28 ° C) or less in the evaporator 240 (state L), and a dry bulb The temperature decreases (15-20 ° C.) and the absolute humidity decreases (11-15 g / kg). In this state, the dew point temperature of the processing air is higher than the low heat source temperature (evaporation temperature) of the heat pump. However, the dehumidifying agent of the desiccant rotor 102 further adsorbs and dehumidifies, so that the dew point moves substantially on the isenthalpy line in the psychrometric chart. And the dry bulb temperature rises (35-
40 ° C) and the absolute humidity is also reduced (3.5-6g / kg)
I do.

【0026】このようにして得られる処理空気は気温が
室内よりも高く、また露点温度は蒸発温度より大幅に低
くなり(0〜6℃)かつ露点と乾球温度との温度差が大
きい。従って、このように除湿された空気を、図1に示
すようなペリメータのスリットダクトから吹き出すこと
によって、外気温度が低くても、窓等の外壁部に結露を
生じにくくなり、また、スリットダクトから吹き出す空
気の噴流内にプールから上がった人が入っても、乾球温
度が高いため肌寒く感じないで済む。また、厳冬季に外
気温が特に低くて露点温度を0℃近くまで下げる必要が
ある場合でも、冷凍サイクルの蒸発温度を氷点下まで下
げる必要がなく、従って蒸発器240の伝熱面に霜が付
かず連続運転が可能になる。
The temperature of the treated air thus obtained is higher than that of the room, the dew point temperature is much lower than the evaporation temperature (0 to 6 ° C.), and the temperature difference between the dew point and the dry bulb temperature is large. Therefore, by blowing the air thus dehumidified from the slit duct of the perimeter as shown in FIG. 1, even when the outside air temperature is low, dew condensation hardly occurs on the outer wall portion such as a window, Even if a person climbs out of the pool into the jet of air that blows out, the high dry bulb temperature does not make it feel chilly. Further, even when the outside air temperature is particularly low in a severe winter and the dew point temperature needs to be reduced to near 0 ° C., it is not necessary to lower the evaporating temperature of the refrigeration cycle to below the freezing point, so that the heat transfer surface of the evaporator 240 is frosted. Continuous operation becomes possible.

【0027】さらに、デシカント再生後の再生空気は、
絶対湿度は上昇する(25〜30g/kg)ものの、乾球温
度が高い(40〜45℃)ため、相対湿度が50%前後
となり、乾燥用の温風としても利用できるので、プール
から上がった人のためにスポット風として、局所的に供
給してもよく、また室内からの除湿能力を高めたい場合
には外部に排気し、代りに絶対湿度の低い外気を取り入
れても差し支えない。また図4の設置形態のように、デ
シカントを出た再生空気をダクト14、給気口71を介
して、乾燥用の部屋70に供給したのち、排気口72か
ら外部に排気しても差し支えない。また、排気と取り入
れる外気との間に顕熱熱交換器を用いても差し支えな
い。このように再生空気も乾燥用として利用することが
できる。
Further, the regeneration air after desiccant regeneration is
Although the absolute humidity rises (25-30 g / kg), the relative humidity is around 50% because the dry bulb temperature is high (40-45 ° C), and it can be used as hot air for drying. The air may be supplied locally as a spot wind for a person, or when it is desired to increase the dehumidifying ability from the room, the air may be exhausted to the outside, and instead, outside air having a low absolute humidity may be introduced. Further, as shown in the installation form of FIG. 4, after the regenerated air that has exited the desiccant is supplied to the drying room 70 through the duct 14 and the air supply port 71, the air may be exhausted to the outside through the exhaust port 72. . Further, a sensible heat exchanger may be used between the exhaust gas and the outside air to be taken. Thus, the regeneration air can also be used for drying.

【0028】次に、本実施の形態のエネルギ効率につい
て説明する。本実施の形態では、図3において、冷却除
湿して処理空気から取り出した熱量(ΔQ)は外部にそ
のまま捨てずに、ヒートポンプで昇温して再生空気の加
熱に用いるため、熱の多重効用化が図れる。すなわち、
ヒートポンプの駆動エネルギ(圧縮機入力)はまず冷却
除湿効果を発生させ、その時取り出した熱とヒートポン
プの駆動エネルギ(圧縮機入力)は熱エネルギとして再
生空気の加熱に再度用いられて、デシカントによる吸着
除湿効果を発生する。従って、ヒートポンプの駆動エネ
ルギ(圧縮機入力)が少なくて済み、省エネルギ効果が
ある。本実施の形態ではヒートポンプとして蒸気圧縮式
ヒートポンプを事例として示したが、吸収ヒートポンプ
を用いても同様の省エネルギ効果が得られる。
Next, the energy efficiency of this embodiment will be described. In this embodiment, in FIG. 3, the amount of heat (ΔQ) extracted from the processing air after cooling and dehumidification is not discarded to the outside, but is raised by a heat pump and used for heating the regenerated air. Can be achieved. That is,
The drive energy of the heat pump (compressor input) first produces a cooling and dehumidifying effect, and the heat extracted at that time and the drive energy of the heat pump (compressor input) are reused as heat energy for heating the regenerated air, and are adsorbed and dehumidified by the desiccant. Create an effect. Therefore, the driving energy (compressor input) of the heat pump can be reduced, and there is an energy saving effect. In this embodiment, a vapor compression heat pump is described as an example of a heat pump, but the same energy saving effect can be obtained by using an absorption heat pump.

【0029】図5は本発明に係る除湿空調システムの第
2の実施の形態の設置形態を示す図であり、図6は図5
中に示した除湿空調機10の基本構成を示す説明図であ
る。この実施の形態では、除湿空調機10は、圧縮機2
60と、処理空気と熱交換する蒸発器240と、デシカ
ント再生前の再生空気と熱交換する第1の凝縮器220
と、プール水と熱交換する第2の凝縮器230とを有す
るヒートポンプとを備えている。これにより、室内空気
を取り入れて、少なくともその一部を処理空気として蒸
発器240で冷却除湿したのちデシカントを通過させて
室内に供給するとともに、ヒートポンプの圧縮機260
によって圧縮した冷媒の一部を前記第1の凝縮器220
に導いて再生空気を加熱するとともに、圧縮した冷媒の
他の一部を前記第2の凝縮器230にも導いてプール水
を加熱するようにしている。そして、図5に示すよう
に、除湿空調機10の第2の凝縮器230には経路1
7,18を介してプール水が流動して冷媒と熱交換する
ようになっている。
FIG. 5 is a view showing an installation form of a second embodiment of the dehumidifying air-conditioning system according to the present invention, and FIG.
It is explanatory drawing which shows the basic structure of the dehumidifying air conditioner 10 shown inside. In this embodiment, the dehumidifying air conditioner 10 includes the compressor 2
60, an evaporator 240 for exchanging heat with process air, and a first condenser 220 for exchanging heat with regeneration air before desiccant regeneration.
And a heat pump having a second condenser 230 that exchanges heat with the pool water. As a result, indoor air is taken in, at least a part of the air is cooled and dehumidified in the evaporator 240 as processing air, and then supplied through a desiccant to the room.
A part of the refrigerant compressed by the first condenser 220
To heat the regenerated air, and also guide another part of the compressed refrigerant to the second condenser 230 to heat the pool water. Then, as shown in FIG. 5, the first condenser 230 of the dehumidifying air conditioner 10
The pool water flows through 7, 18 to exchange heat with the refrigerant.

【0030】また、本実施の形態では、制御機器として
コントローラ301を設け、該コントローラ301は、
室内空間の温度湿度の状態や外気温度を検出して、冷房
または暖房の負荷状況を判断している。これにより、冷
媒の流量調節用の3方弁270及びデシカントロータ1
02のアクチュエータ103及び各送風機101、14
0を制御して、第1の実施の形態で示した、冷房効果が
なく肌寒さを感じない運転形態のみでなく、状況に応じ
て、適度な冷房効果を発生させることができるようにな
っている。
In the present embodiment, a controller 301 is provided as a control device, and the controller 301
The state of the temperature and humidity in the indoor space and the outside air temperature are detected to determine the cooling or heating load condition. Thereby, the three-way valve 270 for adjusting the flow rate of the refrigerant and the desiccant rotor 1
02 and the blowers 101 and 14
By controlling 0, an appropriate cooling effect can be generated according to the situation, in addition to the driving mode in which there is no cooling effect and no chill is felt as shown in the first embodiment. I have.

【0031】以下に、上記の実施の形態の除湿空調シス
テムの作用について説明する。まず、第1の運転形態に
おいては、冷媒の流量調節用の3方弁270の経路20
7側を閉じて、全ての冷媒を第1の凝縮器220に導く
ようにするが、この場合には、第1の実施の形態と同じ
になるので、説明を省略する。
Hereinafter, the operation of the dehumidifying air-conditioning system according to the above embodiment will be described. First, in the first operation mode, the path 20 of the three-way valve 270 for adjusting the flow rate of the refrigerant is used.
The seventh side is closed to guide all of the refrigerant to the first condenser 220. In this case, the description is omitted because it is the same as in the first embodiment.

【0032】次に、冷媒の流量調節用の3方弁270の
経路202側を閉じて、全ての冷媒を第2の凝縮器24
0に導く第2の運転形態について説明する。この場合、
第1の凝縮器220は作用せず、従って再生空気が加熱
されないので、デシカントを再生することができないた
め、デシカントの除湿作用がなくなり、処理空気は吸着
除湿されない。従って、図3の湿り空気線図の状態Mと
状態Lが等しくなって、給気が室温よりも低くなり、図
7に示した従来例と同様に冷房作用が得られる。このよ
うな第2の運転形態は、夏期など冷房することが適当な
時期に用いる。なお、プール水の温度が上昇して好まし
くない場合には、冷却水を用いて外部のクーリングタワ
ーに第2の凝縮器240の熱を排出しても差し支えな
く、また第2の凝縮器を空冷式として、外部に設置して
も差し支えない。また、再生空気を流動させる必要がな
い場合には、省エネルギのためコントローラ301によ
って、送風機140およびデシカントロータ102のア
クチュエータ103を停止させても差し支えない。
Next, the path 202 side of the three-way valve 270 for adjusting the flow rate of the refrigerant is closed, and all the refrigerant is supplied to the second condenser 24.
A second operation mode leading to zero will be described. in this case,
Since the first condenser 220 does not operate, and thus the regeneration air is not heated, the desiccant cannot be regenerated, so that the desiccant does not have a dehumidifying effect and the treated air is not adsorbed and dehumidified. Therefore, the state M and the state L in the psychrometric chart of FIG. 3 become equal, the air supply becomes lower than the room temperature, and the cooling effect is obtained as in the conventional example shown in FIG. Such a second mode of operation is used when cooling is appropriate, such as in summer. If the temperature of the pool water rises, which is not preferable, the heat of the second condenser 240 may be discharged to an external cooling tower using cooling water, and the second condenser may be cooled by an air-cooling method. As it can be installed outside. When it is not necessary to flow the regeneration air, the controller 301 may stop the blower 140 and the actuator 103 of the desiccant rotor 102 for energy saving.

【0033】次に、冷媒の流量調節用の3方弁270の
経路202側および経路207側を両方開けて、第1の
凝縮器220および第2の凝縮器240を共に作用させ
る第3の運転形態について説明する。この場合、第1の
凝縮器220における再生空気への加熱作用が弱くな
り、従ってデシカントの除湿能力が低下し、処理空気の
吸着除湿作用が低下して図3における状態Mが状態Lに近
づき、処理空気の出口の乾球温度が第1の運転形態より
も低くなる。従って、第1の運転形態と第2の運転形態
の中間的な冷房効果を抑制した運転が可能である。従っ
て、中間期にも、快適な室内環境が得られる。
Next, the third operation in which the first condenser 220 and the second condenser 240 are operated together by opening both the path 202 and the path 207 of the three-way valve 270 for adjusting the flow rate of the refrigerant. The form will be described. In this case, the heating action on the regenerated air in the first condenser 220 is weakened, so that the desiccant dehumidifying ability is reduced, the adsorption dehumidifying action of the treated air is reduced, and the state M in FIG. The dry-bulb temperature at the outlet of the processing air is lower than in the first operation mode. Therefore, an operation in which the cooling effect intermediate between the first operation mode and the second operation mode is suppressed is possible. Therefore, a comfortable indoor environment can be obtained even in the middle period.

【0034】このように、暖房が必要な時期にはデシカ
ントを作動させて乾球温度を室温よりも上げた後、室内
に供給することによって冷房作用を防止しかつ省エネル
ギな運転形態ができるほか、冷房が必要な時期にはヒー
トポンプからの放熱をプール水の加熱に用いることによ
って、デシカントの除湿能力を停止して処理空気の吸着
熱による温度上昇を止め、冷房効果を発生させる運転形
態を採ることができ、またその中間的運転形態も採るこ
とができるので、年間を通じて室内プール施設の空調空
間を快適に保つことができる。
As described above, when heating is required, the desiccant is operated to raise the dry-bulb temperature above room temperature, and then supplied into the room to prevent the cooling effect and to achieve an energy-saving operation mode. When cooling is required, the heat radiation from the heat pump is used to heat the pool water, so that the desiccant dehumidifying capacity is stopped, the temperature rise due to the heat of adsorption of the treated air is stopped, and a cooling effect is generated. And an intermediate operation mode can be adopted, so that the air-conditioned space of the indoor pool facility can be kept comfortable throughout the year.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
冷房が不適当な状況下では、高湿度の室内から取り入れ
た空気を、処理空気と再生空気とに分岐し、処理空気は
ヒートポンプで冷却除湿したのちデシカントでさらに吸
着除湿を行って乾球温度を室温よりも上げ、露点温度を
さらに低下させた後、室内に供給するとともに、冷房が
適当な状況下では、デシカントの作用を弱めるか、停止
させつつ、冷房効果と除湿効果を発生させることによっ
て、年間を通じて、快適で、かつペリメータゾーンの結
露防止能力が高く、かつ省エネルギな除湿空調システム
を提供することができる。
As described above, according to the present invention,
Under conditions where cooling is inappropriate, the air taken in from a high-humidity room is split into treated air and regenerated air, and the treated air is cooled and dehumidified by a heat pump and then further adsorbed and dehumidified by a desiccant to reduce the dry bulb temperature. After raising the room temperature and lowering the dew point temperature further, supply it indoors, and under appropriate cooling conditions, reduce or stop the action of the desiccant, while generating the cooling effect and dehumidifying effect, Throughout the year, it is possible to provide a dehumidifying air-conditioning system that is comfortable, has a high performance of preventing dew condensation in the perimeter zone, and saves energy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る除湿空調システムの一実施の形態
の基本構成を示す説明図である。
FIG. 1 is an explanatory diagram showing a basic configuration of an embodiment of a dehumidifying air conditioning system according to the present invention.

【図2】図1に示した除湿空調機の基本構成を示す説明
図である。
FIG. 2 is an explanatory diagram showing a basic configuration of the dehumidifying air conditioner shown in FIG.

【図3】ヒートポンプを熱源とする除湿空調機の動作を
説明する湿り空気線図である。
FIG. 3 is a psychrometric chart explaining the operation of a dehumidifying air conditioner using a heat pump as a heat source.

【図4】図1に示す除湿空調システムの変形例を示す説
明図である。
FIG. 4 is an explanatory diagram showing a modified example of the dehumidifying air conditioning system shown in FIG.

【図5】本発明に係る除湿空調システムの第2の実施の
形態を示す説明図である。
FIG. 5 is an explanatory diagram showing a second embodiment of the dehumidifying air-conditioning system according to the present invention.

【図6】図5に示した除湿空調機の基本構成を示す説明
図である。
FIG. 6 is an explanatory diagram showing a basic configuration of the dehumidifying air conditioner shown in FIG.

【図7】従来の除湿空調機を示す説明図である。FIG. 7 is an explanatory view showing a conventional dehumidifying air conditioner.

【図8】図7に示す除湿空調機の動作を説明する湿り空
気線図である。
FIG. 8 is a psychrometric chart for explaining the operation of the dehumidifying air conditioner shown in FIG. 7;

【符号の説明】 1 空調空間 10 除湿空調機 12 空気取り入れ口 30,35 スリットダクト 40 室内プール 101 送風機 102 デシカントロータ 220 高熱源熱交換器(凝縮器) 240 低熱源熱交換器(蒸発器) 250 膨張弁 260 圧縮機 A 処理空気経路 B 再生空気経路[Description of Signs] 1 Air conditioning space 10 Dehumidifying air conditioner 12 Air intake 30, 35 Slit duct 40 Indoor pool 101 Blower 102 Desiccant rotor 220 High heat source heat exchanger (condenser) 240 Low heat source heat exchanger (evaporator) 250 Expansion valve 260 Compressor A Process air path B Regeneration air path

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 処理空気中の水分を吸着し再生空気によ
って再生されるデシカントと、処理空気を低熱源、再生
空気を高熱源として動作するヒートポンプとを備え、 室内空気を取り入れて、処理空気と再生空気とに分岐
し、処理空気をヒートポンプの低熱源によって冷却除湿
したのちデシカントで吸着除湿して室内に供給するとと
もに、再生空気をヒートポンプの高熱源で加熱したのち
デシカントを通過させてデシカントを再生することを特
徴とする除湿空調システム。
1. A desiccant that adsorbs moisture in process air and is regenerated by regenerative air, and a heat pump that operates with process air as a low heat source and regenerative air as a high heat source. The processing air is cooled and dehumidified by the low heat source of the heat pump, then adsorbed and dehumidified by the desiccant and supplied to the room, and the regenerated air is heated by the high heat source of the heat pump and passed through the desiccant to regenerate the desiccant. A dehumidifying air conditioning system characterized by:
【請求項2】 デシカント再生後の再生空気を乾燥用の
温風として特定の箇所に供給することを特徴とする請求
項1に記載の除湿空調システム。
2. The dehumidifying air-conditioning system according to claim 1, wherein the regeneration air after desiccant regeneration is supplied to a specific location as hot air for drying.
【請求項3】 デシカント再生後の再生空気を屋外に排
気することを特徴とする請求項1に記載の除湿空調シス
テム。
3. The dehumidifying air-conditioning system according to claim 1, wherein the regeneration air after desiccant regeneration is exhausted outside.
【請求項4】 処理空気中の水分を吸着し再生空気によ
って再生されるデシカントと、圧縮機と、処理空気と熱
交換する蒸発器と、デシカント再生前の再生空気と熱交
換する第1の凝縮器と、再生空気以外の熱媒体と熱交換
する第2の凝縮器とを有するヒートポンプとを備え、 室内空気を取り入れて、少なくともその一部を処理空気
として蒸発器で冷却除湿したのちデシカントを通過させ
て室内に供給するとともに、ヒートポンプの圧縮機によ
って圧縮した冷媒の一部を前記第1の凝縮器に導いて再
生空気を加熱するとともに、圧縮した冷媒の他の一部を
前記第2の凝縮器に導いて再生空気以外の熱媒体を加熱
することを特徴とする除湿空調システム。
4. A desiccant that adsorbs moisture in the processing air and is regenerated by the regenerated air, a compressor, an evaporator that exchanges heat with the processing air, and a first condenser that exchanges heat with the regenerated air before desiccant regeneration. And a heat pump having a second condenser for exchanging heat with a heat medium other than regenerated air. The room air is taken in, and at least a part thereof is cooled and dehumidified by an evaporator as processing air, and then passes through a desiccant. While supplying a part of the refrigerant compressed by the compressor of the heat pump to the first condenser to heat the regenerated air, and another part of the compressed refrigerant to the second condenser. A dehumidifying air-conditioning system characterized by heating a heat medium other than regeneration air by introducing the heat medium to a heating device.
【請求項5】 処理空気中の水分を吸着し再生空気によ
って再生されるデシカントと、圧縮機と、処理空気と熱
交換する蒸発器と、デシカント再生前の再生空気と熱交
換する第1の凝縮器と、再生空気以外の熱媒体と熱交換
する第2の凝縮器とを有するヒートポンプとを備え、 室内空気を取り入れて、少なくともその一部を処理空気
として蒸発器で冷却除湿するとともに、ヒートポンプの
圧縮機によって圧縮した冷媒を前記第1の凝縮器に導い
て再生空気を加熱してデシカントを再生し、冷却除湿し
た処理空気をデシカントで除湿したのち室内に供給する
第1の運転形態と、 圧縮した冷媒を前記第2の凝縮器に導いて再生空気以外
の熱媒体を加熱することによって再生空気を加熱せず、
冷却除湿した処理空気をデシカントで除湿せずに室内に
供給する第2の運転形態と、 ヒートポンプの圧縮機によって圧縮した冷媒の一部を前
記第1の凝縮器に導いて再生空気を加熱して冷却除湿し
た処理空気をデシカントで除湿したのち室内に供給する
するとともに、圧縮した冷媒の他の一部を前記第2の凝
縮器にも導いて再生空気以外の熱媒体を加熱する第3の
運転形態とを選択的に運転可能であることを特徴とする
除湿空調システム。
5. A desiccant that adsorbs moisture in the processing air and is regenerated by the regenerated air, a compressor, an evaporator that exchanges heat with the processing air, and a first condenser that exchanges heat with the regenerated air before desiccant regeneration. And a heat pump having a second condenser for exchanging heat with a heat medium other than regenerated air, taking in room air, cooling and dehumidifying at least a part of the heat with an evaporator as processing air, and A first operation mode in which the refrigerant compressed by the compressor is guided to the first condenser to heat the regeneration air to regenerate the desiccant, and the cooled and dehumidified treated air is dehumidified by the desiccant and supplied to the room; Heating the heating medium other than the regeneration air by introducing the refrigerant into the second condenser without heating the regeneration air,
A second operation mode in which the cooled and dehumidified treated air is supplied into the room without being dehumidified by a desiccant, and a part of the refrigerant compressed by the compressor of the heat pump is guided to the first condenser to heat the regenerated air. A third operation in which the cooled and dehumidified treated air is dehumidified by a desiccant and then supplied into the room, and another part of the compressed refrigerant is guided to the second condenser to heat a heat medium other than the regenerated air. A dehumidifying air-conditioning system characterized in that the air conditioner can be selectively operated.
【請求項6】 前記第2の運転形態の際に、再生空気の
送風機を停止することを特徴とする請求項5に記載の除
湿空調システム。
6. The dehumidifying air-conditioning system according to claim 5, wherein the blower of the regeneration air is stopped in the second operation mode.
【請求項7】 前記室内空気は室内プールの空間内の空
気であり、前記第2の凝縮器で熱交換する再生空気以外
の熱媒体はプール水であることを特徴とする請求項1な
いし6のいずれかに記載の除湿空調システム。
7. The indoor air is air in a space of an indoor pool, and the heat medium other than the regenerated air for exchanging heat in the second condenser is pool water. The dehumidifying air conditioning system according to any one of the above.
【請求項8】 デシカントで除湿後の処理空気を建物の
ペリメータゾーンに供給することを特徴とする請求項1
ないし7のいずれかに記載の除湿空調システム。
8. The method according to claim 1, wherein the desiccant-processed and dehumidified processing air is supplied to a perimeter zone of a building.
8. The dehumidifying air conditioning system according to any one of claims 7 to 7.
【請求項9】 ヒートポンプとして蒸気圧縮式ヒートポ
ンプを用いることを特徴とする請求項1ないし8のいず
れかに記載の除湿空調システム。
9. The dehumidifying air-conditioning system according to claim 1, wherein a vapor compression heat pump is used as the heat pump.
【請求項10】 ヒートポンプとして吸収式ヒートポン
プを用いることを特徴とする請求項1ないし9のいずれ
かに記載の除湿空調システム。
10. The dehumidifying air-conditioning system according to claim 1, wherein an absorption heat pump is used as the heat pump.
JP22751097A 1997-08-08 1997-08-08 Dehumidification air conditioning system Expired - Fee Related JP3933264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22751097A JP3933264B2 (en) 1997-08-08 1997-08-08 Dehumidification air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22751097A JP3933264B2 (en) 1997-08-08 1997-08-08 Dehumidification air conditioning system

Publications (2)

Publication Number Publication Date
JPH1163871A true JPH1163871A (en) 1999-03-05
JP3933264B2 JP3933264B2 (en) 2007-06-20

Family

ID=16862040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22751097A Expired - Fee Related JP3933264B2 (en) 1997-08-08 1997-08-08 Dehumidification air conditioning system

Country Status (1)

Country Link
JP (1) JP3933264B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221471A (en) * 2000-02-07 2001-08-17 Denso Corp Humidifier
CN100373101C (en) * 2004-12-15 2008-03-05 三星电子株式会社 Dehumidity and moistening unit
JP2008256307A (en) * 2007-04-06 2008-10-23 Mitsubishi Electric Corp Air-conditioner
JP2009115379A (en) * 2007-11-06 2009-05-28 Sasakura Engineering Co Ltd Water refrigerant refrigerating device and heating/cooling system comprising the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221471A (en) * 2000-02-07 2001-08-17 Denso Corp Humidifier
CN100373101C (en) * 2004-12-15 2008-03-05 三星电子株式会社 Dehumidity and moistening unit
JP2008256307A (en) * 2007-04-06 2008-10-23 Mitsubishi Electric Corp Air-conditioner
JP2009115379A (en) * 2007-11-06 2009-05-28 Sasakura Engineering Co Ltd Water refrigerant refrigerating device and heating/cooling system comprising the same

Also Published As

Publication number Publication date
JP3933264B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP2968241B2 (en) Dehumidifying air conditioning system and operating method thereof
KR100487381B1 (en) air conditioning system ventilating room
US4474021A (en) Heat pump apparatus and method
KR100504489B1 (en) air conditioner
JP5417213B2 (en) Indirect evaporative cooling type external air conditioning system
KR100943285B1 (en) Hybrid desiccant dehumidification apparatus and threrof control method
US4719761A (en) Cooling system
US8631661B2 (en) Energy recovery enhanced condenser reactivated desiccant refrigerant dehumidifier
JP2968232B2 (en) Air conditioning system and operating method thereof
JP4857901B2 (en) Desiccant air conditioning system
WO2007141901A1 (en) Humidity controller
KR20040101635A (en) Hybrid dehumidified cooling system
CN108006913A (en) A kind of air conditioning control method and air conditioner
KR20200092221A (en) An air conditioning system
JP2002235933A (en) Air conditioner
CN108826541A (en) A kind of dehumidification heat exchange heat pump air conditioning system and its operation method with regenerator
JPH09329371A (en) Air conditioning system
CN109425063B (en) Air conditioner
JP5828140B2 (en) Air conditioner for vehicles
JP5537832B2 (en) External air conditioner and external air conditioning system
CN105805868A (en) Regenerative and recuperative dehumidifying heat pump system and running method thereof
JP4333986B2 (en) Air conditioner
JP2968224B2 (en) Air conditioners and air conditioning systems
JP2006336971A (en) Ventilating and air conditioning device
EP3133352B1 (en) Dehumidifying and cooling apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Effective date: 20051128

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20060718

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060914

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070313

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070313

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees