JPH1163443A - Method of regulating concentration of oxygen in pyrolysis furnace - Google Patents

Method of regulating concentration of oxygen in pyrolysis furnace

Info

Publication number
JPH1163443A
JPH1163443A JP23080197A JP23080197A JPH1163443A JP H1163443 A JPH1163443 A JP H1163443A JP 23080197 A JP23080197 A JP 23080197A JP 23080197 A JP23080197 A JP 23080197A JP H1163443 A JPH1163443 A JP H1163443A
Authority
JP
Japan
Prior art keywords
furnace
oxygen
oxygen concentration
pyrolysis
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23080197A
Other languages
Japanese (ja)
Inventor
Naokatsu Mori
直克 毛利
Minoru Akiyama
実 穐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP23080197A priority Critical patent/JPH1163443A/en
Publication of JPH1163443A publication Critical patent/JPH1163443A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of regulating the concentration of oxygen in a pyrolytic furnace which can control the concentration of oxygen in a pyrolytic furnace in an optimum range even in the case that the properties of waste change largely and can stabilize the system. SOLUTION: The concentration of oxygen in a pyrolysis furnace 1 is operated and the concentration of oxygen within the pyrolytic furnace l is grasped, from the concentration of oxygen in a combustion furnace 2 high in oxygen concentration and capable of measurement and the quantity of oxygen supplied to the combustion furnace 2, and the quantity of air to be supplied for partial combustion into the pyrolysis furnace 1 is controlled. Therefore, even in the case that the property of waste changes greatly, the concentration of oxygen within a pyrolytic furnace can be controlled within the optimum range, and environmental pollution can be prevented by stabilizing the system and removing the fluctuation of exhaust gas composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄物の処理等に
用いられる熱分解炉のための酸素濃度調整方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen concentration adjusting method for a pyrolysis furnace used for treating wastes.

【0002】[0002]

【従来の技術】廃棄物の処理法として、図2に示すよう
にまず熱分解炉1を用いて廃棄物を還元雰囲気中で熱分
解し、そのときに発生する可燃性の熱分解ガスを後段の
燃焼炉2で燃焼させるとともに、その燃焼熱で熱分解残
渣を溶融する方法が注目されている。この方法は、廃棄
物から発生する熱分解ガスのエネルギを熱分解残渣の溶
融のエネルギとして有効利用できる点で優れている。
2. Description of the Related Art As a method for treating waste, as shown in FIG. 2, waste is first thermally decomposed in a reducing atmosphere using a pyrolysis furnace 1, and flammable pyrolysis gas generated at that time is post-processed. Attention has been focused on a method of burning in a combustion furnace 2 and melting the pyrolysis residue with the heat of combustion. This method is excellent in that the energy of the pyrolysis gas generated from the waste can be effectively used as the energy for melting the pyrolysis residue.

【0003】この熱分解炉1の内部は還元雰囲気に保た
れる必要があるが、廃棄物の性状変化に応じて少量の部
分燃焼用空気を供給することにより部分燃焼用酸素/理
論燃焼用酸素の比(以下、空気比と呼ぶ)を一定に保
ち、廃棄物の性状が変化しても熱分解ガスの組成を安定
させることが望まれる。またその後段の溶融炉を兼ねる
燃焼炉2には多量の空気を供給して熱分解ガスの安定燃
焼を行わせることが望まれる。
[0003] The inside of the pyrolysis furnace 1 needs to be kept in a reducing atmosphere, but by supplying a small amount of partial combustion air in accordance with a change in the properties of the waste, the partial combustion oxygen / theoretical combustion oxygen is reduced. It is desired to keep the ratio of the pyrolysis gas constant (hereinafter, referred to as the air ratio) and stabilize the composition of the pyrolysis gas even if the properties of the waste change. Further, it is desired that a large amount of air be supplied to the combustion furnace 2 also serving as a melting furnace in the subsequent stage so that stable combustion of the pyrolysis gas is performed.

【0004】このようなシステムを適切に運転するため
には、熱分解炉1の内部の酸素濃度を常に検出しつつ酸
素を供給し、廃棄物の性状の変化にかかわらず空気比を
一定に維持することが望まれる。ところが、熱分解炉1
の内部は還元雰囲気であるために酸素濃度の測定手段が
ない。従って、従来は熱分解炉1の内部の酸素濃度の変
動に伴い熱分解ガスの組成が不安定となり、後段の燃焼
炉2のみの酸素濃度を制御しても、燃焼炉2の排ガス中
に含まれる未燃ガスを完全燃焼させることができないお
それがあった。
In order to operate such a system properly, oxygen is supplied while always detecting the oxygen concentration inside the pyrolysis furnace 1 and the air ratio is kept constant irrespective of the change in the properties of the waste. It is desired to do. However, pyrolysis furnace 1
Since there is a reducing atmosphere inside, there is no means for measuring the oxygen concentration. Therefore, conventionally, the composition of the pyrolysis gas becomes unstable due to the fluctuation of the oxygen concentration inside the pyrolysis furnace 1, and even if the oxygen concentration of only the latter combustion furnace 2 is controlled, it is contained in the exhaust gas of the combustion furnace 2. There is a possibility that the unburned gas may not be completely burned.

【0005】なおこの問題は、熱分解ガスの組成や性状
の変動を吸収できるに十分な熱量を確保するとともに、
必要最低限の酸素量の空気を燃焼炉2に供給すれば、解
決できる。しかし実際には、熱分解残渣を溶融させる高
温の燃焼炉2はできるだけコンパクトにすることが望ま
しいとともに、必要なエネルギーを増大させることにつ
ながり実用的ではない。
[0005] This problem is caused by securing a sufficient amount of heat to absorb fluctuations in the composition and properties of the pyrolysis gas.
The problem can be solved by supplying the air with the minimum necessary oxygen amount to the combustion furnace 2. However, in practice, it is desirable that the high-temperature combustion furnace 2 for melting the pyrolysis residue is as compact as possible, and it is not practical because it leads to an increase in required energy.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決して、廃棄物の性状によって変動する熱
分解炉内の酸素濃度を的確に制御し、システムを安定さ
せることができるようにした熱分解炉の酸素濃度調整方
法を提供するためになされたものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and can stably control the oxygen concentration in the pyrolysis furnace which fluctuates depending on the nature of the waste and stabilize the system. The purpose of the present invention is to provide a method for adjusting the oxygen concentration of a pyrolysis furnace as described above.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明は、後段に熱分解ガスの燃焼炉を備
えた部分燃焼式熱の分解炉のための酸素濃度調整方法で
あって、後段の燃焼炉(もしくは溶融炉)の出口の酸素
濃度を測定し、この酸素濃度と熱分解炉及び燃焼炉ヘの
酸素供給量とから熱分解炉の酸素濃度を演算し、演算さ
れた熱分解炉の酸素濃度が目標値となるように熱分解炉
への部分燃焼用空気供給量を制御することを特徴とする
ものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to an oxygen concentration adjusting method for a partial combustion type heat cracking furnace having a pyrolysis gas combustion furnace at a subsequent stage. Then, the oxygen concentration at the outlet of the subsequent combustion furnace (or melting furnace) was measured, and the oxygen concentration of the pyrolysis furnace was calculated from the oxygen concentration and the oxygen supply amount to the pyrolysis furnace and the combustion furnace. It is characterized in that the supply amount of the partial combustion air to the pyrolysis furnace is controlled so that the oxygen concentration of the pyrolysis furnace becomes a target value.

【0008】本発明によれば、酸素濃度が高く測定可能
な燃焼炉の酸素濃度と、同じく測定可能な部分燃焼式の
熱分解炉及び燃焼炉ヘの酸素供給量とから熱分解炉の酸
素濃度を演算し、熱分解炉の内部の酸素濃度を把握する
ようにしたので、廃棄物の性状が大きく変動した場合に
も熱分解炉の酸素濃度を最適範囲に制御することができ
る。このため、本発明によればシステムを安定化させ、
排ガス組成の変動をなくして環境の汚染を防止すること
ができる。
According to the present invention, the oxygen concentration of a pyrolysis furnace is determined from the oxygen concentration of a combustion furnace having a high oxygen concentration and the partial combustion type pyrolysis furnace and the amount of oxygen supplied to the combustion furnace which can also be measured. Is calculated and the oxygen concentration inside the pyrolysis furnace is grasped, so that even if the properties of the waste greatly change, the oxygen concentration of the pyrolysis furnace can be controlled to an optimum range. Therefore, according to the present invention, the system is stabilized,
The pollution of the environment can be prevented by eliminating the fluctuation of the exhaust gas composition.

【0009】[0009]

【発明の実施の形態】以下に本発明の好ましい実施形態
を示す。なお前記した通り空気比は酸素濃度に一義的に
換算可能であるから、空気比mと酸素濃度とは同一の物
理量を異なる尺度で表現したものである。図1は本発明
の制御系統図であり、1は廃棄物を還元雰囲中で熱分解
するための部分燃焼式の熱分解炉、2はそのときに発生
する可燃性の熱分解ガスを燃焼させるとともに、熱分解
残査を溶融する燃焼炉(もしくは溶融炉)である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. As described above, since the air ratio can be uniquely converted to the oxygen concentration, the air ratio m and the oxygen concentration represent the same physical quantity on different scales. FIG. 1 is a control system diagram of the present invention. 1 is a partial combustion type pyrolysis furnace for thermally decomposing waste in a reducing atmosphere, and 2 is a flammable pyrolysis gas generated at that time. A combustion furnace (or melting furnace) for melting the pyrolysis residue.

【0010】3は熱分解炉1に空気を送るブロワであ
り、その前部に流量制御弁4と流量計5とが接続されて
いる。同様に6は燃焼炉2に空気を送るブロワであり、
その前部に流量制御弁7と流量計8とが接続されてい
る。9は空気流量制御計であり、熱分解炉1への部分燃
焼用空気の供給量(酸素供給量)を制御している。また
10は空気流量制御計であり、燃焼炉2への空気供給量
(酸素供給量)を制御している。
Reference numeral 3 denotes a blower for sending air to the pyrolysis furnace 1, and a flow control valve 4 and a flow meter 5 are connected to the front of the blower. Similarly, reference numeral 6 denotes a blower for sending air to the combustion furnace 2,
The flow control valve 7 and the flow meter 8 are connected to the front part. Reference numeral 9 denotes an air flow controller which controls the supply amount (oxygen supply amount) of the partial combustion air to the pyrolysis furnace 1. An air flow controller 10 controls an air supply amount (oxygen supply amount) to the combustion furnace 2.

【0011】燃焼炉2には酸素濃度計11が設置されて
おり、従来と同様に燃焼炉2内の酸素濃度を測定して信
号を酸素濃度制御計12に出力している。前記したよう
に熱分解炉1については酸素濃度を測定する手段がな
い。そこで本発明では燃焼炉2の酸素濃度と、流量計
5、8により測定された熱分解炉1及び燃焼炉2ヘの酸
素供給量とから、熱分解炉1の酸素濃度を演算する。こ
のため酸素濃度制御計12からの酸素濃度信号と、熱分
解炉1への酸素供給量信号と、燃焼炉2への酸素供給量
信号は、演算器13に入力されている。演算器13にお
ける溶融部の酸素濃度の演算は、次のようにして行われ
る。
An oxygen concentration meter 11 is installed in the combustion furnace 2, measures the oxygen concentration in the combustion furnace 2, and outputs a signal to the oxygen concentration controller 12 as in the conventional case. As described above, the pyrolysis furnace 1 has no means for measuring the oxygen concentration. Therefore, in the present invention, the oxygen concentration of the pyrolysis furnace 1 is calculated from the oxygen concentration of the combustion furnace 2 and the oxygen supply amounts to the pyrolysis furnace 1 and the combustion furnace 2 measured by the flow meters 5 and 8. Therefore, the oxygen concentration signal from the oxygen concentration controller 12, the oxygen supply signal to the pyrolysis furnace 1, and the oxygen supply signal to the combustion furnace 2 are input to the calculator 13. The calculation of the oxygen concentration in the molten portion in the calculator 13 is performed as follows.

【0012】流量計5と流量計8により測定された熱分
解炉1と燃焼炉2への現在の酸素供給量をそれぞれ
1 、w2 とし、燃焼炉2で酸素濃度計11により測定
された酸素濃度から換算した燃焼炉2の現在の空気比を
mとする。このとき、炉全体にはw1 +w2 の酸素が供
給されており、この状態で炉の出口に当たる燃焼炉2の
空気比がmである。このとき熱分解炉1にはw1 だけの
酸素が供給されているに過ぎない。従って酸素供給量が
1 である熱分解炉1の空気比mX は、(w1
2 ):m=w1 :mX の関係から演算できる。
The current oxygen supply amounts to the pyrolysis furnace 1 and the combustion furnace 2 measured by the flow meter 5 and the flow meter 8 are w 1 and w 2 , respectively, and were measured by the oxygen concentration meter 11 in the combustion furnace 2. The current air ratio of the combustion furnace 2 calculated from the oxygen concentration is m. At this time, oxygen of w 1 + w 2 is supplied to the entire furnace, and the air ratio of the combustion furnace 2 hitting the outlet of the furnace in this state is m. At this time, only w 1 of oxygen is supplied to the pyrolysis furnace 1. Air ratio m X of the pyrolysis furnace 1 oxygen supply is w 1 therefore, (w 1 +
w 2): m = w 1 : can be calculated from the relation m X.

【0013】また、熱分解炉1と燃焼炉2の最適な空気
比(酸素濃度)はm1 、m2 のように予め分かっている
ので、演算された熱分解炉1の空気比mX を目的とする
値m1 に近づけるように演算器13は空気流量制御計9
に流量信号を送り、流量制御弁4を開閉して熱分解炉1
への部分燃焼用空気の供給量を制御する。また、最適な
空気比が上記の場合には、炉全体への酸素供給量のm1
/(m1 +m2 )を熱分解炉1に供給し、m2 /(m1
+m2 )を燃焼炉2に供給すればよいため、演算器13
は空気流量制御計10にも流量信号を送り、燃焼炉2へ
の酸素供給量を制御する。
Since the optimum air ratio (oxygen concentration) between the pyrolysis furnace 1 and the combustion furnace 2 is known in advance as m 1 and m 2 , the calculated air ratio m X of the pyrolysis furnace 1 is calculated as follows. The computing unit 13 controls the air flow controller 9 so as to approach the target value m 1.
To the pyrolysis furnace 1 by opening and closing the flow control valve 4
To control the supply of partial combustion air to the engine. If the optimum air ratio is as described above, the oxygen supply amount m 1
/ (M 1 + m 2 ) is supplied to the pyrolysis furnace 1 and m 2 / (m 1
+ M 2 ) to the combustion furnace 2,
Sends a flow signal also to the air flow controller 10 to control the amount of oxygen supplied to the combustion furnace 2.

【0014】このような制御を行えば、廃棄物の性状が
大きく変動した場合にも、熱分解炉1の酸素濃度を最適
範囲に制御することができる。従って本発明によればシ
ステムを安定させることができ、排ガス組成の変動をな
くして環境の汚染を防止することができる。
By performing such control, the oxygen concentration of the pyrolysis furnace 1 can be controlled to an optimum range even when the properties of the waste greatly change. Therefore, according to the present invention, the system can be stabilized, and the pollution of the environment can be prevented by eliminating the fluctuation of the exhaust gas composition.

【0015】[0015]

【発明の効果】以上に説明したように、本発明は測定可
能な燃焼炉の酸素濃度と同じく測定可能な熱分解炉及び
燃焼炉ヘの酸素供給量とから熱分解炉の酸素濃度を演算
し、演算された熱分解炉の酸素濃度が目標値となるよう
に熱分解炉への部分燃焼用空気供給量制御するようにし
たので、廃棄物の性状が大きく変動した場合にも熱分解
炉の酸素濃度を最適範囲に制御でき、熱分解ガスの組成
を一定としてシステムの安定を図ることができる。
As described above, the present invention calculates the oxygen concentration of a pyrolysis furnace from the measurable oxygen concentration of the combustion furnace and the measurable oxygen supply amount to the pyrolysis furnace and the combustion furnace. The air supply for the partial combustion to the pyrolysis furnace was controlled so that the calculated oxygen concentration of the pyrolysis furnace became the target value. The oxygen concentration can be controlled in the optimum range, and the composition of the pyrolysis gas can be kept constant to stabilize the system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す制御系統図である。FIG. 1 is a control system diagram showing an embodiment of the present invention.

【図2】従来例を示す断面図である。FIG. 2 is a sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 熱分解炉、2 燃焼炉、3 ブロワ、4 流量制御
弁、5 流量計、6ブロワ、7 流量制御弁、8 流量
計、9 空気流量制御計、10 空気流量制御計、11
酸素濃度計、12 酸素濃度制御計、13 演算器
1 Pyrolysis furnace, 2 Combustion furnace, 3 Blowers, 4 Flow control valves, 5 Flow meters, 6 Blowers, 7 Flow control valves, 8 Flow meters, 9 Air flow controllers, 10 Air flow controllers, 11
Oxygen concentration meter, 12 Oxygen concentration controller, 13 arithmetic unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 後段に熱分解ガスの燃焼炉を備えた部分
燃焼式熱分解炉のための酸素濃度調整方法であって、後
段の燃焼炉の出口の酸素濃度を測定し、この酸素濃度と
熱分解炉及び燃焼炉ヘの酸素供給量とから熱分解炉の酸
素濃度を演算し、演算された熱分解炉の酸素濃度が目標
値となるように熱分解炉への部分燃焼用空気供給量を制
御することを特徴とする熱分解炉の酸素濃度調整方法。
An oxygen concentration adjusting method for a partial combustion type pyrolysis furnace provided with a pyrolysis gas combustion furnace at a latter stage, wherein the oxygen concentration at an outlet of the latter combustion furnace is measured, and the oxygen concentration is measured. Calculate the oxygen concentration of the pyrolysis furnace from the oxygen supply amounts to the pyrolysis furnace and the combustion furnace, and supply the partial combustion air supply to the pyrolysis furnace so that the calculated oxygen concentration of the pyrolysis furnace becomes the target value. Controlling the oxygen concentration of the pyrolysis furnace.
JP23080197A 1997-08-27 1997-08-27 Method of regulating concentration of oxygen in pyrolysis furnace Pending JPH1163443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23080197A JPH1163443A (en) 1997-08-27 1997-08-27 Method of regulating concentration of oxygen in pyrolysis furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23080197A JPH1163443A (en) 1997-08-27 1997-08-27 Method of regulating concentration of oxygen in pyrolysis furnace

Publications (1)

Publication Number Publication Date
JPH1163443A true JPH1163443A (en) 1999-03-05

Family

ID=16913495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23080197A Pending JPH1163443A (en) 1997-08-27 1997-08-27 Method of regulating concentration of oxygen in pyrolysis furnace

Country Status (1)

Country Link
JP (1) JPH1163443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922871B2 (en) 2008-01-18 2011-04-12 Recycled Carbon Fibre Limited Recycling carbon fibre

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922871B2 (en) 2008-01-18 2011-04-12 Recycled Carbon Fibre Limited Recycling carbon fibre

Similar Documents

Publication Publication Date Title
US6247416B1 (en) Method of operating a furnace and device for implementing the method
JP2000065314A (en) Fuel combustion process by oxygen rich oxidant
KR890000341B1 (en) Method for controlling oxygen density in combustion exhaust gas
JPH1163443A (en) Method of regulating concentration of oxygen in pyrolysis furnace
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
JPH0579622A (en) Method for controlling combustion by control of oxygen concentration in combustion furnace
CN115479276A (en) Control device, waste incineration facility, control method, and program
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
CN112556441A (en) Steel rolling heating furnace and dynamic control method for asymmetric characteristics of flue gas pipe network thereof
JPH0323806B2 (en)
KR970002100A (en) Combustion control method and apparatus for waste incinerator
JPH028213B2 (en)
WO2024048006A1 (en) Combustion equipment
JP7075021B1 (en) Combustion control device and combustion control method for waste incineration facilities
JPH025222Y2 (en)
JPH0419445B2 (en)
KR0136199B1 (en) Air volume control system of a furnace
JP2007139412A (en) Refuse incineration plant regulation method using operation of support burner
JPH10339420A (en) Combustion control method of combustion furnace and system therefor
JPH0842801A (en) Method for controlling quantity of exhaust gas from boiler
JPH06331123A (en) Control of amount of combustion air for incinerator for waste
JPH10169952A (en) Combustion control method of sludge incinerator and apparatus therefor and medium for fuzzy inference combustion control program
JPS5694118A (en) Combustion control for industrial heating furnace
JP2002267134A (en) Combustion control system of refuse incinerator having no boiler facility
CN112555859A (en) Waste incineration power generation boiler and dynamic control method for asymmetric characteristic of flue gas pipe network of waste incineration power generation boiler

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001107