JPH115864A - Conductive polymer and its production - Google Patents

Conductive polymer and its production

Info

Publication number
JPH115864A
JPH115864A JP9159782A JP15978297A JPH115864A JP H115864 A JPH115864 A JP H115864A JP 9159782 A JP9159782 A JP 9159782A JP 15978297 A JP15978297 A JP 15978297A JP H115864 A JPH115864 A JP H115864A
Authority
JP
Japan
Prior art keywords
conductive polymer
solvent
polymer
polyaniline
lithium perchlorate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9159782A
Other languages
Japanese (ja)
Inventor
Shigeru Tsurumaki
茂 弦巻
Akihiro Sawada
明宏 沢田
Katsuhiro Hashizume
克浩 橋爪
Yoshiyuki Tasaka
佳之 田坂
Takashi Ueda
隆 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9159782A priority Critical patent/JPH115864A/en
Publication of JPH115864A publication Critical patent/JPH115864A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Moulding By Coating Moulds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject polymer capable of decreasing ion diffusion resistance within anodes by forming minute, thin pores in the highly dense conductive polymer. SOLUTION: This polymer is obtained by uniformly distributing minute, thin pores of a molecular size within pressured products of a conductive polymer material produced by chemical oxidation polymerization. For example, this polymer is obtained by mixing (A) a conductive polymer (e.g. polyaniline, polythiophen, etc.) obtained by chemical oxidation polymerization with a solvent (e.g. acetone, etc.) in which 1-30 wt.%, based on the component A, of a low molecular weight compound (e.g. lithium perchlorate, lithium tetrafluoroborate, etc.) is(are) dissolved, and pressing, without using any solvent, a mixture in which the low molecular weight compound is homogenously dispersed by evapolating the solvent only. Thus, the reaction diffusion resistance affecting the internal resistance of electrodes is decreased, resulting in occurrence of ideal charge-discharge reactions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】導電性高分子は、近年、二次
電池の正極材料、電磁波シールド材、センサー用半導体
素子、光記録材料等に広く利用されているが、本発明
は、化学的安定性に優れ、工業的応用価値の高いリチウ
ム二次電池用正極に用いられる導電性高分子とその製造
方法に関するものである。
BACKGROUND OF THE INVENTION In recent years, conductive polymers have been widely used as cathode materials for secondary batteries, electromagnetic wave shielding materials, semiconductor devices for sensors, optical recording materials, and the like. The present invention relates to a conductive polymer used for a positive electrode for a lithium secondary battery having excellent industrial properties and a high industrial application value, and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、原料であるアニリン等のモノ
マーを電気化学的に酸化重合する電解重合法、または原
料であるアニリン等のモノマーを酸化剤存在下で重合す
る化学酸化重合法で導電性高分子を合成することが一般
的に知られている。
2. Description of the Related Art Conventionally, electroconductive polymerization is carried out by electrochemically oxidizing and polymerizing a monomer such as aniline as a raw material, or by chemical oxidative polymerization wherein a monomer such as aniline is polymerized in the presence of an oxidant. It is generally known to synthesize polymers.

【0003】しかしながら、電解重合法では導電性高分
子の大量合成時に電解効率がかなり低下したり、大規模
な電解槽が必要とされる等の問題点があり、このため、
量産を必要とする製品では、化学酸化重合法による導電
性高分子の合成が必要である。ポリアニリン系物質の化
学酸化重合に関しては例えば特開平7−179578号
公報に開示されている。化学酸化重合法で得られたポリ
アニリンを用いて二次電池の正極材料を製造する場合、
ポリアニリン粉末を導電剤及びバインダと混合し、加圧
成形する方法や、ポリアニリン粉末の全量または一部を
有機溶媒に溶解して集電材に塗布する方法が一般的に採
用されている。
[0003] However, the electropolymerization method has problems such as a considerable decrease in electrolysis efficiency when a large amount of conductive polymer is synthesized and a need for a large-scale electrolytic cell.
For products requiring mass production, it is necessary to synthesize a conductive polymer by a chemical oxidation polymerization method. The chemical oxidative polymerization of a polyaniline-based substance is disclosed in, for example, JP-A-7-179578. When producing a cathode material for a secondary battery using polyaniline obtained by a chemical oxidation polymerization method,
A method in which polyaniline powder is mixed with a conductive agent and a binder and pressure-molded, or a method in which the whole or a part of the polyaniline powder is dissolved in an organic solvent and applied to a current collector, are generally adopted.

【0004】化学酸化重合法で得られた導電性高分子
は、その分子鎖がランダムに絡まった状態となってお
り、集電材上に高分子で、緻密な物理構造の正極が形成
されることになる。特に、加圧成形する場合には、その
緻密性が増大する。二次電池正極材料のように溶媒中の
イオンが導電性高分子鎖内を出入りすることで電池反応
が進行する場合、この緻密な構造は、正極内のイオン拡
散抵抗を増大させる要因となり、電池の性能が、サイク
ル充放電を頻繁に繰り返さないと向上し難いという問題
点があった。
[0004] The conductive polymer obtained by the chemical oxidation polymerization method has a molecular chain in which the molecular chains are randomly entangled, and a polymer and a positive electrode having a dense physical structure are formed on the current collector. become. In particular, in the case of pressure molding, its denseness increases. When a battery reaction proceeds as ions in a solvent move in and out of the conductive polymer chain as in a secondary battery cathode material, this dense structure causes an increase in ion diffusion resistance in the cathode, and the battery However, there is a problem that the performance is difficult to improve unless the cycle charge / discharge is frequently repeated.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上述の緻密
な導電性高分子に細孔を形成することによって、二次電
池正極材料として用いた場合、従来の化学酸化重合法で
得られた導電性高分子に比較して正極内のイオン拡散抵
抗が低く、電池性能を飛躍的に向上できるような導電性
高分子及びその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention, when used as a secondary battery positive electrode material by forming pores in the above-described dense conductive polymer, has been obtained by a conventional chemical oxidation polymerization method. It is an object of the present invention to provide a conductive polymer having a lower ion diffusion resistance in a positive electrode than a conductive polymer and capable of dramatically improving battery performance, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明は、この目的を達
成するために、 1) 化学酸化重合して得られる導電性高分子材の加圧
成形体中に分子サイズの微細な細孔を均一に分散して設
けてなる導電性高分子を提供し、 2) 化学酸化重合して得られる導電性高分子を当該高
分子に対して1重量%乃至30重量%の低分子化合物を
溶解させた溶剤に混合し、溶剤のみを蒸発させて低分子
化合物を均一に分散させた混合物を得た後、溶剤を使用
せずに加圧成形する(以下第1の方法という)、 3) 化学酸化重合して得られる導電性高分子を当該高
分子に対して1重量%乃至30重量%の低分子化合物及
び当該高分子に対して5重量%乃至30重量%のバイン
ダーを溶解させた溶液に混合し、キャスト成形した後、
溶剤のみを蒸発させて成形する(以下第2の方法とい
う)、各方法を提供するものである。
In order to achieve this object, the present invention provides: 1) fine pores of a molecular size in a pressure-formed body of a conductive polymer material obtained by chemical oxidation polymerization; (2) providing a conductive polymer obtained by uniformly dispersing a conductive polymer obtained by chemical oxidative polymerization, by dissolving 1 to 30% by weight of a low-molecular compound with respect to the polymer; Mixed with a mixed solvent, evaporating only the solvent to obtain a mixture in which the low molecular weight compound is uniformly dispersed, and then performing pressure molding without using a solvent (hereinafter referred to as a first method), 3) chemical oxidation A conductive polymer obtained by polymerization is mixed with a solution in which a low-molecular compound of 1% to 30% by weight and a binder of 5% to 30% by weight of the polymer are dissolved. After casting,
The present invention provides each method of forming by evaporating only the solvent (hereinafter referred to as a second method).

【0007】本発明の導電性高分子によれば、化学酸化
重合して得られた従来の緻密な導電性高分子に対して分
子サイズで形成されるような微細な細孔が形成されてい
るので、正極内のイオン拡散抵抗が低くなり、電池性能
を飛躍的に向上させることが可能な導電性高分子が提供
できる。本発明に係る第1の方法では粉末を加圧成形す
るだけで容易に電極を成形することが可能である。更に
第2の方法ではキャスト成形機や大型の乾燥機を必要と
するが、大面積化や連続生産が可能となる。
[0007] According to the conductive polymer of the present invention, fine pores having a molecular size formed with respect to a conventional dense conductive polymer obtained by chemical oxidation polymerization are formed. Therefore, it is possible to provide a conductive polymer that has a low ion diffusion resistance in the positive electrode and can dramatically improve battery performance. In the first method according to the present invention, it is possible to easily form the electrode only by pressing the powder under pressure. Furthermore, the second method requires a cast molding machine and a large-sized dryer, but allows for a large area and continuous production.

【0008】[0008]

【発明の実施の形態】本発明に係る方法で用いられる導
電性高分子としては、ポリアニリン、ポリチオフェン、
ポリピロールなどが挙げられる。その重合度は、ポリア
ニリン100〜5,000、ポリチオフェン100〜
5,000、ポリピロール100〜5,000である。
このうち、ポリアニリンの原料モノマーとしては無置換
または芳香族にアルキル基が置換されたアニリンなどが
挙げられるが、さらにこれらのアニリンは、特開平7−
179578号公報に記載されているように、リチウム
イオンと反応するドーパント物質としてアルキルスルホ
ン酸が複合化されていてもよい。その組成比は例えばポ
リアニリン:アルキルスルホン酸=2:1mol%であ
る。また、低分子化合物としては、リチウム塩、好まし
くは二次電池の電解液の性能を阻害しない電解質、例え
ば過塩素酸リチウム、四フッ化ホウ素酸リチウム、六フ
ッ化リン酸リチウムなどが挙げられる。低分子化合物
は、十分な効果が得られるために導電性高分子に対して
外割りで1%以上とし、正極の成形性を維持し、剥離等
を防止するために30%以下とするのが望ましい。ま
た、低分子を溶解する溶剤としては、第1の方法では低
分子化合物のみを溶解し、蒸発させ易い溶剤であればよ
く、具体的には、アセトン、アセトニトリル、ニトロメ
タンがあり、中でもアセトンが好ましい。第2の方法で
は低分子化合物とバインダーの両方を溶解させる必要が
あり、具体的には、N−メチルピロリドン(NMP)、
N,N−ジメチルアセトアミド(DMAC)、N,N−
ジメチルホルムアミド(DMF)があり、中でもNMP
が好ましい。第2の方法で用いるバインダーとしては例
えばポリフッ化ビニリデン(PVDF)又はそれらと同
効のものが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The conductive polymer used in the method according to the present invention includes polyaniline, polythiophene,
And polypyrrole. The polymerization degree is polyaniline 100-5,000, polythiophene 100-
5,000, polypyrrole 100-5,000.
Among them, as a raw material monomer for polyaniline, aniline and the like which are unsubstituted or aromatically substituted with an alkyl group may be mentioned.
As described in 179578, an alkyl sulfonic acid may be compounded as a dopant substance that reacts with lithium ions. The composition ratio is, for example, polyaniline: alkylsulfonic acid = 2: 1 mol%. Examples of the low molecular compound include a lithium salt, preferably an electrolyte that does not hinder the performance of the electrolytic solution of the secondary battery, such as lithium perchlorate, lithium tetrafluoroborate, and lithium hexafluorophosphate. The low molecular weight compound should be 1% or more in terms of the conductive polymer in order to obtain a sufficient effect, and 30% or less in order to maintain the moldability of the positive electrode and prevent peeling. desirable. In addition, as the solvent for dissolving the low-molecular compound, any solvent that dissolves only the low-molecular compound in the first method and is easy to evaporate may be used. Specific examples include acetone, acetonitrile, and nitromethane. . In the second method, both the low-molecular compound and the binder need to be dissolved, and specifically, N-methylpyrrolidone (NMP),
N, N-dimethylacetamide (DMAC), N, N-
There is dimethylformamide (DMF), especially NMP
Is preferred. As the binder used in the second method, for example, polyvinylidene fluoride (PVDF) or a binder having the same effect as those is preferable.

【0009】本発明に係る導電性高分子の製造方法で
は、第1及び第2のいずれの方法においても、まず、化
学酸化重合して得られた導電性高分子に、溶剤に溶解さ
せた例えば過塩素酸リチウムのような低分子化合物を均
一に分散混合させ、混合溶液を導電性高分子の粒子間及
び分子鎖間に浸透させ、分子サイズで均一に分散させ
る。次いで、本発明に係る第1の方法では、混合溶液ま
たはスラリーを乾燥させ、粉末状にした後、集電材上に
加圧成形する。加圧成形は、金属製の型に集電材を設置
し、上記混合粉末を所定量加えた後、プレス機を用いて
約500〜2,000kgf/cm2 の圧力で行う。こ
の加圧成形物(電極)を電解液に浸漬すると、元の三次
元構造を維持したままで導電性高分子の粒子間及び高分
子鎖間から低分子化合物のみが溶出する。したがって、
加圧成形された導電性高分子には、低分子化合物が占有
していた跡に対応する微細な細孔が形成される。この大
きさは、低分子化合物の高分子への浸透状態や乾燥時の
析出粒径及び分散状態で変化するが、数μm以下であ
る。
In the method for producing a conductive polymer according to the present invention, in any of the first and second methods, first, for example, a conductive polymer obtained by chemical oxidative polymerization is dissolved in a solvent. A low molecular compound such as lithium perchlorate is uniformly dispersed and mixed, and the mixed solution is permeated between the conductive polymer particles and between the molecular chains to be uniformly dispersed in the molecular size. Next, in the first method according to the present invention, the mixed solution or slurry is dried to be powdered, and then pressure-formed on a current collector. Pressure molding is performed by placing a current collector in a metal mold, adding a predetermined amount of the mixed powder, and then using a press at a pressure of about 500 to 2,000 kgf / cm 2 . When this pressed product (electrode) is immersed in the electrolytic solution, only the low-molecular compound is eluted from between the conductive polymer particles and between the polymer chains while maintaining the original three-dimensional structure. Therefore,
Fine pores corresponding to the trace occupied by the low-molecular compound are formed in the conductive polymer formed by pressure molding. This size varies depending on the state of penetration of the low-molecular compound into the polymer, the precipitated particle size at the time of drying, and the dispersion state, but is several μm or less.

【0010】本発明に係る第2の方法においても同様
に、溶剤に溶解させた例えば過塩素酸リチウムのような
低分子化合物とバインダーを、化学酸化重合して得られ
た導電性高分子に、均一に分散混合させ、導電性高分子
の粒子間及び分子鎖間に浸透させ、分子サイズで均一に
分散させる。こうして得られた混合溶液またはスラリー
を集電材上にキャストした後、溶剤を蒸発させると、固
体状で導電性化合物及び低分子化合物が均一に複合化さ
れた緻密な三次元構造の正極材料が得られる。これを電
解液に浸漬すると、元の三次元構造を維持したままで導
電性高分子の粒子間及び高分子鎖間から低分子化合物の
みが溶出する。したがって、加圧成形された導電性高分
子には、低分子化合物が占有していた跡に対応する微細
な細孔が形成される。この大きさは、低分子化合物の高
分子への浸透状態や乾燥時の析出粒径及び分散状態で変
化するが、数μm以下である。
Similarly, in the second method according to the present invention, a conductive polymer obtained by chemically oxidatively polymerizing a low molecular compound such as lithium perchlorate and a binder dissolved in a solvent is added to the conductive polymer. Uniformly disperse and mix, penetrate between conductive polymer particles and between molecular chains, and uniformly disperse in molecular size. The resulting mixed solution or slurry is cast on a current collector, and then the solvent is evaporated to obtain a solid cathode material having a dense three-dimensional structure in which the conductive compound and the low-molecular compound are uniformly compounded. Can be When this is immersed in the electrolytic solution, only the low-molecular compound is eluted from between the conductive polymer particles and between the polymer chains while maintaining the original three-dimensional structure. Therefore, fine pores corresponding to the trace occupied by the low-molecular compound are formed in the conductive polymer molded by pressure. This size varies depending on the state of penetration of the low-molecular compound into the polymer, the precipitated particle size at the time of drying, and the dispersion state, but is several μm or less.

【0011】以上のように、本発明に係る導電性高分子
の製造方法では、第1及び第2のいずれの方法において
も、導電性高分子に適当な大きさの空隙が形成され、電
解液中のイオン、例えばリチウムイオンや過塩素酸イオ
ンなどの拡散抵抗が減少する。このため、導電性高分子
中のイオンが容易に移動できるようになり、イオンと導
電性高分子活性部位との反応がスムーズに行われるよう
になる。これにより、電池内部抵抗に影響を及ぼす反応
拡散抵抗が減少し、充放電反応が理想的に行われる。
As described above, in the method for producing a conductive polymer according to the present invention, in any of the first and second methods, a gap of an appropriate size is formed in the conductive polymer, and The diffusion resistance of the ions therein, such as lithium ions and perchlorate ions, decreases. For this reason, the ions in the conductive polymer can easily move, and the reaction between the ions and the conductive polymer active site can be smoothly performed. Thereby, the reaction diffusion resistance which affects the internal resistance of the battery is reduced, and the charge / discharge reaction is ideally performed.

【0012】[0012]

【実施例】以下に本発明に係る導電性高分子の製造方法
の実施例を示すが、本発明はこれらの実施例により限定
されるものではない。 実施例1 ポリアニリンの原料モノマーであるアニリン5.59g
(60mmol)を60wt%の過塩素酸13.4g
(80mmol)を溶解したイオン交換水60mlに加
え、0℃に冷却しながら窒素置換した。次に酸化剤とし
て1.6mol/リットルの過硫酸アンモニウム水溶液
64.0gを約1時間で滴下した後、5時間攪拌混合し
た。このポリアニリンをイオン交換水200mlに約2
時間浸漬し、4Gのガラスフィルターで固形分3.5g
を得た後、固形分を真空乾燥器で脱水し、ポリアニリン
粉末を得た。
EXAMPLES Examples of the method for producing a conductive polymer according to the present invention will be described below, but the present invention is not limited to these examples. Example 1 5.59 g of aniline which is a raw material monomer of polyaniline
(60 mmol) to 13.4 g of 60 wt% perchloric acid
(80 mmol) was dissolved in 60 ml of ion-exchanged water, and the mixture was cooled to 0 ° C. and replaced with nitrogen. Next, 64.0 g of a 1.6 mol / liter ammonium persulfate aqueous solution as an oxidizing agent was added dropwise in about 1 hour, and the mixture was stirred and mixed for 5 hours. About 200 ml of this polyaniline is added to 200 ml of deionized water.
Immersion for 3.5 hours, 3.5g solid content with 4G glass filter
After the solid was obtained, the solid content was dehydrated with a vacuum drier to obtain a polyaniline powder.

【0013】このポリアニリン粉末3.0gを、過塩素
酸リチウム0.3gを溶解させたアセトン約30ml中
に混合浸漬した後、アセトンを室温で蒸発させて混合粉
末を得た。この粉末を炭素繊維で構成された集電材状に
分散させ、プレス機を用いて1,000kgf/cm2
の圧力で加圧成形した。次に、この材料を二次電池用の
電解液である過塩素酸リチウム1mol/lを溶解した
炭酸プロピレン溶液中に一昼夜浸漬し、ポリアニリン中
の過塩素酸リチウムを電解液中に溶出させて正極材料を
得た。このようにして得られた正極材料とLi−Al合
金負極及びセパレータを組み合わせてセルを作製した。
このセルを交流インピーダンス法で測定して得られたc
ole−coleプロットから、反応拡散抵抗に起因す
る円弧の虚数部と周波数の平方根の逆数との間に直線関
係があると仮定して、その勾配を求めることからみかけ
の拡散定数(D)を算出した。
After mixing and immersing 3.0 g of the polyaniline powder in about 30 ml of acetone in which 0.3 g of lithium perchlorate was dissolved, acetone was evaporated at room temperature to obtain a mixed powder. This powder was dispersed into a current collector made of carbon fiber, and was then subjected to 1,000 kgf / cm 2 using a press machine.
Under pressure. Next, this material was immersed all day and night in a propylene carbonate solution in which 1 mol / l of lithium perchlorate as an electrolyte for a secondary battery was dissolved, and lithium perchlorate in polyaniline was eluted into the electrolyte to form a positive electrode. The material was obtained. A cell was fabricated by combining the positive electrode material thus obtained, the Li-Al alloy negative electrode, and the separator.
C obtained by measuring this cell by the AC impedance method
Assuming that there is a linear relationship between the imaginary part of the arc caused by the reaction diffusion resistance and the reciprocal of the square root of the frequency, an apparent diffusion constant (D) is calculated from the ole-cole plot by calculating the gradient thereof. did.

【0014】比較のために過塩素酸リチウムを添加しな
い以外は実施例1と同様にして得られた正極材料を用い
てセルを作製し、交流インピーダンス法で測定して得ら
れたcole−coleプロットからみかけの拡散定数
(D)を算出した。以上の結果を表1に示す。表1によ
れば、過塩素酸リチウムを添加した場合は添加しない場
合に比較してみかけの拡散定数(D)が15倍増加して
おり、明らかに反応拡散抵抗を低減する効果が実施例1
に示されている。
For comparison, a cell was prepared using a positive electrode material obtained in the same manner as in Example 1 except that lithium perchlorate was not added, and a cole-cole plot obtained by measurement by an AC impedance method. The apparent diffusion constant (D) was calculated. Table 1 shows the above results. According to Table 1, when lithium perchlorate was added, the apparent diffusion constant (D) was increased by a factor of 15 as compared with the case where lithium perchlorate was not added.
Is shown in

【0015】実施例2 ポリアニリンに代えてポリチオフェン、ポリピロール、
ポリアニリン/エタンジスルホン酸複合体をそれぞれ用
いた以外は実施例1と同様にして得られた正極材料を用
いてセルを作製し、交流インピーダンス法で測定した得
られたたcole−coleプロットからみかけの拡散
定数(D)を算出した。また、比較のために過塩素酸リ
チウムを添加しない以外は上記と同様にして得られた正
極材料を用いてセルを作製し、交流インピーダンス法で
測定して得られたcole−coleプロットからみか
けの拡散定数(D)を算出した。以上の結果を表1に併
記する。表1によれば、導電性高分子の種類を変えても
過塩素酸リチウムを添加した場合は添加しない場合に比
較してみかけの拡散定数(D)が増加しており、反応拡
散抵抗を低減する効果が実施例2に示されている。
Example 2 Instead of polyaniline, polythiophene, polypyrrole,
A cell was prepared using the positive electrode material obtained in the same manner as in Example 1 except that the polyaniline / ethanedisulfonic acid composite was used, and an apparent cole-cole plot measured by an AC impedance method was used. The diffusion constant (D) was calculated. Also, for comparison, a cell was prepared using the positive electrode material obtained in the same manner as described above except that lithium perchlorate was not added, and an apparent cole-cole plot was obtained by measurement using an AC impedance method. The diffusion constant (D) was calculated. The results are shown in Table 1. According to Table 1, even when the kind of the conductive polymer was changed, the apparent diffusion constant (D) was increased when lithium perchlorate was added as compared with the case where lithium perchlorate was not added, and the reaction diffusion resistance was reduced. The effect of this is shown in the second embodiment.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例3 ポリアニリンに代えて実施例2のポリアニリン/エタン
ジスルホン酸複合体を用い、表2に示す量の過塩素酸リ
チウム、四フッ化ホウ素酸リチウムおよび六フッ化リン
酸リチウムを用いて実施例1と同様にして得られた正極
材料を用いてセルを作製し、交流インピーダンス法で測
定して得られたcole−coleプロットからみかけ
の拡散定数(D)を算出した。また、比較のために過塩
素酸リチウムを添加しない以外は上記と同様にして得ら
れた正極材料を用いてセルを作製し、交流インピーダン
ス法で測定して得られたcole−coleプロットか
らみかけの拡散定数(D)を算出した。以上の結果を表
2に示す。表2によれば、導電性高分子に添加する低分
子化合物の種類を変えても低分子を添加した場合は添加
しない場合に比較してみかけの拡散定数(D)が増加し
ており、反応拡散抵抗を低減する効果が実施例3に示さ
れている。また、上記低分子化合物の添加量としては、
1〜30重量%、特に3〜20重量%が適当であること
が示されている。この添加量が1重量%未満では効果が
不充分であり、30重量%を超えると、正極の成形性が
悪く、剥離等が起こり易くなり、50重量%では正極の
成形が困難で測定ができなかった。
Example 3 The polyaniline / ethanedisulfonic acid complex of Example 2 was used instead of polyaniline, and the amounts of lithium perchlorate, lithium tetrafluoroborate and lithium hexafluorophosphate shown in Table 2 were used. A cell was manufactured using the positive electrode material obtained in the same manner as in Example 1, and an apparent diffusion constant (D) was calculated from a cole-col plot obtained by measurement by an AC impedance method. Also, for comparison, a cell was prepared using the positive electrode material obtained in the same manner as described above except that lithium perchlorate was not added, and an apparent cole-cole plot was obtained by measurement using an AC impedance method. The diffusion constant (D) was calculated. Table 2 shows the above results. According to Table 2, even when the type of the low molecular compound added to the conductive polymer was changed, the apparent diffusion constant (D) increased when the low molecule was added as compared with the case where the low molecule was not added. The effect of reducing the diffusion resistance is shown in the third embodiment. In addition, the amount of the low molecular compound added,
1 to 30% by weight, especially 3 to 20% by weight, has been shown to be suitable. If the addition amount is less than 1% by weight, the effect is insufficient. If it exceeds 30% by weight, the moldability of the positive electrode is poor and peeling is likely to occur. Did not.

【0018】[0018]

【表2】 [Table 2]

【0019】実施例4 このポリアニリン粉末3.0gを、過塩素酸リチウム
0.3gとバインダー(PVDF)0.3gを溶解させ
たNMP溶液約10ml中に混合浸漬した後、炭素繊維
で構成された集電材状にキャスト成形し、NMPを10
0℃の乾燥器内で蒸発させてキャスト成形膜を得た。こ
のキャスト成形膜を正極として、実施例1と同様にセル
を作製し、交流インピーダンス法で測定した得られたc
ole−coleプロットから見かけの拡散定数(D)
を算出した。。比較のために過塩素酸リチウムを添加し
ない以外は実施例4と同様にして得られた正極材料を用
いてセルを作製し、交流インピーダンス法で測定して得
られたcole−coleプロットからみかけの拡散定
数(D)を算出した。以上の結果を表3に示す。表3に
よれば、過塩素酸リチウムを添加した場合は添加しない
場合に比較してみかけの拡散定数(D)が25倍増加し
ており、明らかに反応拡散抵抗を低減する効果が実施例
4に示されている。
Example 4 3.0 g of this polyaniline powder was mixed and immersed in about 10 ml of an NMP solution in which 0.3 g of lithium perchlorate and 0.3 g of a binder (PVDF) were dissolved, and then the mixture was made of carbon fibers. Cast into current collector material, NMP 10
Evaporation was performed in a dryer at 0 ° C. to obtain a cast film. Using this cast molded film as a positive electrode, a cell was prepared in the same manner as in Example 1, and the obtained c was measured by an AC impedance method.
Diffusion constant apparent from ole-cole plot (D)
Was calculated. . For comparison, a cell was produced using the positive electrode material obtained in the same manner as in Example 4 except that lithium perchlorate was not added, and an apparent cole-cole plot was obtained by measurement using an AC impedance method. The diffusion constant (D) was calculated. Table 3 shows the above results. According to Table 3, the apparent diffusion constant (D) was increased by 25 times when lithium perchlorate was added as compared with the case where lithium perchlorate was not added. Is shown in

【0020】実施例5 ポリアニリンに代えて実施例2の3種類の導電性高分子
をそれぞれ用いた以外は実施例4と同様にして得られた
正極材料を用いてセルを作製し、交流インピーダンス法
で測定して得られたたcole−coleプロットから
みかけの拡散定数(D)を算出した。また、比較のため
に過塩素酸リチウムを添加しない以外は上記と同様にし
て得られた正極材料を用いてセルを作製し、交流インピ
ーダンス法で測定したcole−coleプロットから
みかけの拡散定数(D)を算出した。以上の結果を表3
に併記する。表3によれば、導電性高分子の種類を変え
ても過塩素酸リチウムを添加した場合は添加しない場合
に比較してみかけの拡散定数(D)が増加していること
を示しており、反応拡散抵抗を低減する効果が実施例5
に示されている。
Example 5 A cell was prepared using the positive electrode material obtained in the same manner as in Example 4 except that the three kinds of conductive polymers of Example 2 were used instead of polyaniline, and an AC impedance method was used. The apparent diffusion constant (D) was calculated from the cole-colle plot obtained by the measurement in (1). For comparison, a cell was prepared using the positive electrode material obtained in the same manner as described above except that lithium perchlorate was not added, and an apparent diffusion constant (D ) Was calculated. Table 3 shows the above results.
It is described together. According to Table 3, even when the type of the conductive polymer was changed, the apparent diffusion constant (D) was increased when lithium perchlorate was added as compared with the case where lithium perchlorate was not added, Example 5 shows the effect of reducing the reaction diffusion resistance.
Is shown in

【0021】[0021]

【表3】 [Table 3]

【0022】実施例6 ポリアニリンに代えて実施例2のポリアニリン/エタン
ジスルホン酸複合体を用い、表4に示す量の過塩素酸リ
チウム、四フッ化ホウ素酸リチウムおよび六フッ化リン
酸リチウムを用いて実施例4と同様にして得られた正極
材料を用いてセルを作製し、交流インピーダンス法で測
定して得られたたcole−coleプロットからみか
けの拡散定数(D)を算出した。また、比較のために過
塩素酸リチウムを添加しない以外は上記と同様にして得
られた正極材料を用いてセルを作製し、交流インピーダ
ンス法で測定して得られたcole−coleプロット
からみかけの拡散定数(D)を算出した。以上の結果を
表4に示す。表4によれば、導電性高分子の種類を変え
ても過塩素酸リチウムを添加した場合は添加しない場合
に比較してみかけの拡散定数(D)が増加しており、反
応拡散抵抗を低減する効果が実施例6に示されている。
また、上記低分子化合物の添加量としては、1〜30重
量%、特に3〜20重量%が適当であることが示されて
いる。この添加量が1重量%未満では効果が不充分であ
り、30重量%を超えると、正極の成形性が悪く、剥離
等が起こり易くなり、50重量%では正極の成形が困難
で測定ができなかった。
Example 6 The polyaniline / ethanedisulfonic acid complex of Example 2 was used instead of polyaniline, and the amounts of lithium perchlorate, lithium tetrafluoroborate and lithium hexafluorophosphate shown in Table 4 were used. A cell was produced using the positive electrode material obtained in the same manner as in Example 4, and an apparent diffusion constant (D) was calculated from a cole-col plot obtained by measurement by an AC impedance method. Also, for comparison, a cell was prepared using the positive electrode material obtained in the same manner as described above except that lithium perchlorate was not added, and an apparent cole-cole plot was obtained by measurement using an AC impedance method. The diffusion constant (D) was calculated. Table 4 shows the above results. According to Table 4, even when the type of the conductive polymer was changed, the apparent diffusion constant (D) increased when lithium perchlorate was added as compared with the case where lithium perchlorate was not added, and the reaction diffusion resistance was reduced. The effect of this is shown in the sixth embodiment.
It is also shown that the amount of the low molecular compound to be added is suitably 1 to 30% by weight, particularly 3 to 20% by weight. If the addition amount is less than 1% by weight, the effect is insufficient. If it exceeds 30% by weight, the moldability of the positive electrode is poor and peeling is likely to occur. Did not.

【0023】[0023]

【表4】 [Table 4]

【0024】[0024]

【発明の効果】以上、詳述したように、本発明によって
緻密な導電性高分子に微細な細孔が形成することで、正
極内のイオン拡散抵抗を低減し、電池性能を飛躍的に向
上させることができた。
As described above in detail, by forming fine pores in a dense conductive polymer according to the present invention, the ion diffusion resistance in the positive electrode is reduced, and the battery performance is dramatically improved. I was able to.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年8月26日[Submission date] August 26, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0018】[0018]

【表2】 [Table 2]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】[0023]

【表4】 [Table 4]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田坂 佳之 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 上田 隆 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Yoshiyuki Tasaka 1-8-1 Koura, Kanazawa-ku, Yokohama-shi, Kanagawa Prefecture Inside the Research Center for Basic Technology Mitsubishi Heavy Industries, Ltd. 8-1 Inside Mitsubishi Heavy Industries, Ltd. Basic Technology Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 化学酸化重合して得られる導電性高分子
材の加圧成形体中に分子サイズの微細な細孔を均一に分
散して設けてなる導電性高分子。
1. A conductive polymer obtained by uniformly dispersing fine pores having a molecular size in a pressure-formed body of a conductive polymer material obtained by chemical oxidation polymerization.
【請求項2】 化学酸化重合して得られる導電性高分子
を当該高分子に対して1重量%乃至30重量%の低分子
化合物を溶解させた溶剤に混合し、溶剤のみを蒸発させ
て低分子化合物を均一に分散させた混合物を得た後、溶
剤を使用せずに加圧成形することを特徴とする導電性高
分子の製造方法。
2. A method according to claim 1, wherein the conductive polymer obtained by the chemical oxidative polymerization is mixed with a solvent in which a low molecular compound of 1% to 30% by weight is dissolved with respect to the polymer, and only the solvent is evaporated. A method for producing a conductive polymer, comprising: obtaining a mixture in which a molecular compound is uniformly dispersed, followed by pressure molding without using a solvent.
【請求項3】 化学酸化重合して得られる導電性高分子
を当該高分子に対して1重量%乃至30重量%の低分子
化合物及び当該高分子に対して5重量%乃至30重量%
のバインダーを溶解させた溶液に混合し、キャスト成形
した後、溶剤のみを蒸発させて成形することを特徴とす
る導電性高分子の製造方法。
3. A conductive polymer obtained by chemical oxidative polymerization, comprising 1 to 30% by weight of the low molecular compound based on the polymer and 5 to 30% by weight based on the polymer.
A method for producing a conductive polymer, comprising: mixing a solution in which a binder is dissolved, casting the mixture, and evaporating only the solvent to form the mixture.
JP9159782A 1997-06-17 1997-06-17 Conductive polymer and its production Withdrawn JPH115864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9159782A JPH115864A (en) 1997-06-17 1997-06-17 Conductive polymer and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9159782A JPH115864A (en) 1997-06-17 1997-06-17 Conductive polymer and its production

Publications (1)

Publication Number Publication Date
JPH115864A true JPH115864A (en) 1999-01-12

Family

ID=15701160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9159782A Withdrawn JPH115864A (en) 1997-06-17 1997-06-17 Conductive polymer and its production

Country Status (1)

Country Link
JP (1) JPH115864A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009040478A1 (en) * 2007-09-28 2009-04-02 Valtion Teknillinen Tutkimuskeskus Novel material, process for manufacturing thereof and new uses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009040478A1 (en) * 2007-09-28 2009-04-02 Valtion Teknillinen Tutkimuskeskus Novel material, process for manufacturing thereof and new uses

Similar Documents

Publication Publication Date Title
EP3057170B1 (en) Nonaqueous electrolyte secondary battery and cathode sheet therefor
DE69911779T2 (en) Manufacture and use of electrodes made of highly porous, conjugated polymers in electrochemical systems
CN110511377B (en) Electrode adhesive, preparation method thereof, lithium ion battery cathode and lithium ion battery
US4803138A (en) Nonaqueous secondary battery
JPS63314762A (en) Organic electrolyte cell using aluminum-lithium alloy as negative electrode
Jiang et al. Understanding the dual function of oxygen-containing groups in fabricating PANi electrodes and Zn-PANi battery
CN114883646A (en) Composite solid electrolyte and preparation method and application thereof
JP2000123825A (en) High polymer electrode
KR100361478B1 (en) Battery and capacitor using quinoxaline resin
JP2001319655A (en) Secondary battery and capacitor using polyquinoxaline ether
JPH115864A (en) Conductive polymer and its production
CN110474031B (en) Method for preparing copper-doped manganous-manganic oxide composite material by using polymeric complexing agent
JP3089707B2 (en) Solid electrode composition
EP2919306B1 (en) Nonaqueous electrolyte secondary battery and method for producing same
JP2562601B2 (en) Organic electrolyte battery with activated carbon-aniline composite as positive electrode
JP2588405B2 (en) Organic electrolyte battery using high concentration mixed solute
JP2542221B2 (en) Battery using polyaniline composite electrode
Nada Polymer Nanofibrous and Their Application for Batteries
JP2501821B2 (en) Secondary battery
JPS62226568A (en) Secondary battery
Cao et al. Improved Performance of Secondary Doped PANI and Its Application in Coated Zn//PANI Composite Film as Electrodes with Controllable Thickness for Rechargeable Batteries
JP2601776B2 (en) Organic electrolyte battery
CN117976971A (en) Modified PEO-based solid electrolyte, preparation thereof and application thereof in solid battery
JP2519454B2 (en) Organic electrolyte battery using nitrogen-containing substrate as electrode
JP2681888B2 (en) Organic electrolyte battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907