JPH1157478A - Preparation of solid acid catalyst - Google Patents

Preparation of solid acid catalyst

Info

Publication number
JPH1157478A
JPH1157478A JP9243528A JP24352897A JPH1157478A JP H1157478 A JPH1157478 A JP H1157478A JP 9243528 A JP9243528 A JP 9243528A JP 24352897 A JP24352897 A JP 24352897A JP H1157478 A JPH1157478 A JP H1157478A
Authority
JP
Japan
Prior art keywords
catalyst
zirconia
sulfuric acid
acid
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9243528A
Other languages
Japanese (ja)
Other versions
JP3568372B2 (en
Inventor
Kenji Matsuzawa
憲治 松沢
Kazuhiro Seki
和弘 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP24352897A priority Critical patent/JP3568372B2/en
Publication of JPH1157478A publication Critical patent/JPH1157478A/en
Application granted granted Critical
Publication of JP3568372B2 publication Critical patent/JP3568372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of preparing a molded solid acid catalyst having a high activity equivalent to or higher than that of a powder catalyst even though it is made as a solid acid catalyst molding containing a sulfuric acid constituent. SOLUTION: (a) Zirconium hydroxide and/or hydrate and aluminum hydrate having a boemite structure are mixed with each other and a molding is formed. (b) Then, the molding is burned at a temperature at which tetragonal zirconia is obtained. (c) The molding is made to carry a sulfuric acid constituent containing compound and is burned at a temperature of 300 deg.C or higher and lower than 700 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸触媒を必要とす
る反応に有用な固体酸触媒、特に、炭化水素の異性化反
応に高い活性を有し、取り扱いが容易でかつ反応中の触
媒の安定性に優れた固体酸触媒の製造方法に関する。
TECHNICAL FIELD The present invention relates to a solid acid catalyst useful for a reaction requiring an acid catalyst, and particularly to a catalyst which has high activity in isomerization of hydrocarbons, is easy to handle, and has a high activity. The present invention relates to a method for producing a solid acid catalyst having excellent stability.

【0002】[0002]

【従来の技術】化学工業においては、アルキル化反応、
エステル化反応、異性化反応等の酸触媒を必要とする反
応が多数知られている。従来この種の反応には、硫酸、
塩化アルミニウム、フッ化水素、リン酸、パラトルエン
スルホン酸等の酸触媒が使用されている。しかしこれら
の酸触媒は金属を腐食させる性質があり、高価な耐食材
料を使用するかあるいは耐食処理を施す必要があった。
また通常、反応後の反応物質との分離が困難な上に廃酸
処理が必要であり、アルカリ洗浄などの煩雑な工程を経
なければならず、環境面にも大きな問題があった。さら
に触媒を再利用することも非常に困難であった。
2. Description of the Related Art In the chemical industry, alkylation reactions,
Many reactions requiring an acid catalyst such as an esterification reaction and an isomerization reaction are known. Traditionally, this type of reaction involves sulfuric acid,
Acid catalysts such as aluminum chloride, hydrogen fluoride, phosphoric acid, and paratoluenesulfonic acid have been used. However, these acid catalysts have a property of corroding metals, so that it is necessary to use expensive corrosion-resistant materials or to perform a corrosion-resistant treatment.
In addition, usually, it is difficult to separate the reactants from the reactants after the reaction, and furthermore, waste acid treatment is required, and a complicated process such as alkali washing has to be performed. Furthermore, it was very difficult to reuse the catalyst.

【0003】このような問題に対して、周期律表第IV族
金属水酸化物もしくは水和酸化物を硫酸分含有溶液と接
触させた後、350〜800℃で焼成した硫酸根含有固
体酸触媒が提案された(特公昭59−6181号公
報)。この固体酸触媒は、100%硫酸(ハメットの酸
度関数H0は−11.93)より強い酸強度を示す。こ
れらの固体酸触媒は、その強い酸強度故に様々な酸触媒
反応に対し高い触媒性能を有し、しかも腐食性が低く、
反応物質との分離が容易で廃酸処理も不要で、触媒の再
利用も可能といった長所を有しており、様々な工業的反
応において、従来の酸触媒の代替が期待されている。
[0003] In order to solve such a problem, a sulfate-containing solid acid catalyst which is obtained by bringing a hydroxide or hydrated oxide of a Group IV metal of the periodic table into contact with a sulfuric acid-containing solution and calcining at 350 to 800 ° C. (Japanese Patent Publication No. 59-6181). This solid acid catalyst shows an acid strength stronger than 100% sulfuric acid (Hammet acidity function H0 is -11.93). These solid acid catalysts have high catalytic performance for various acid catalyzed reactions due to their strong acid strength, and have low corrosiveness.
It has the advantages of easy separation from reactants, no need for waste acid treatment, and reusability of the catalyst, and is expected to replace conventional acid catalysts in various industrial reactions.

【0004】また、周期律表第IV族以外の元素でも、硫
酸分を含有させた酸化物が100%硫酸よりも強い酸強
度を示すことは知られている。例えば、アルミニウムの
水酸化物もしくは酸化物に硫酸分含有化合物を添加し、
それを焼成して得られる固体酸触媒は、100%硫酸よ
りも強い酸強度を示す(特開平5−96171号報、荒
田、Trends in Physical Chemistry 2巻、1項(19
91年))。アルミナの場合は、一旦700℃程度でか
焼し結晶化させたものを硫酸処理する方法が最も活性が
高いと報告されている。また、これらの固体酸触媒に水
素化能を有する金属を添加した触媒も、良好な炭化水素
異性化活性を示すことは自明である。しかしこれらの酸
強度は硫酸ジルコニア系固体酸触媒に比べて弱いことも
明らかになっている。
It is also known that, for elements other than Group IV of the periodic table, an oxide containing sulfuric acid exhibits an acid strength stronger than 100% sulfuric acid. For example, adding a sulfuric acid-containing compound to aluminum hydroxide or oxide,
The solid acid catalyst obtained by calcining it shows an acid strength stronger than 100% sulfuric acid (Japanese Patent Application Laid-Open No. 5-96171, Arata, Trends in Physical Chemistry Volume 2, Item 1 (19)
1991)). In the case of alumina, it is reported that a method of once calcining and crystallizing at about 700 ° C. and treating with sulfuric acid has the highest activity. It is obvious that catalysts obtained by adding a metal having a hydrogenating ability to these solid acid catalysts also exhibit good hydrocarbon isomerization activity. However, it has also been revealed that the acid strength of these is weaker than that of the zirconia sulfate-based solid acid catalyst.

【0005】上記の触媒に白金族金属を担持させ、異性
化を主な目的とした触媒の製造法が特公平5−2950
3号公報、特公平5−29504号公報、特公平5−2
9505号公報及び特公平5−29506号公報に開示
されている。これらは、IV族金属又はIII族金属の水酸
化物、硫酸根を含有する処理剤、VIII族金属を主な原料
とする硫酸根含有固体酸触媒の製造方法である。得られ
る触媒は、直鎖炭化水素の異性化反応、炭化水素のアル
キル化反応等において触媒安定性に優れ、それまでの固
体酸触媒よりも分解反応が少ない触媒であるとされてい
る。しかしながらこれら硫酸分含有固体酸触媒は粉体で
製造されており、通常の工業的反応装置、たとえば固定
床流通式反応器に充填して使用する場合適当な大きさに
成形する必要がある。
[0005] A method for producing a catalyst mainly supporting isomerization by supporting a platinum group metal on the above-mentioned catalyst is disclosed in Japanese Examined Patent Publication No. 5-2950.
No. 3, Japanese Patent Publication No. 5-29504, Japanese Patent Publication No. 5-2
No. 9505 and Japanese Patent Publication No. 5-29506. These are methods for producing a hydroxide of a Group IV metal or a Group III metal, a treating agent containing a sulfate group, and a sulfate group-containing solid acid catalyst using a Group VIII metal as a main raw material. The resulting catalyst is said to be a catalyst having excellent catalyst stability in isomerization reactions of linear hydrocarbons, alkylation reactions of hydrocarbons, and the like, and having less decomposition reaction than conventional solid acid catalysts. However, these sulfuric acid-containing solid acid catalysts are produced in powder form and need to be formed into a suitable size when used in a conventional industrial reactor, for example, a fixed bed flow reactor.

【0006】特開平9−38494号公報には硫酸根処
理金属酸化物触媒成形体の製造法が開示されている。こ
れは、金属水酸化物とベーマイトを用いて成形し、成形
体を300℃以上500℃以下の温度で前焼成した後、
硫酸根処理を行うことを特徴とするアルミナを結合剤と
する触媒成形方法である。しかしながらその触媒活性は
ベーマイトを加えて成形したために、ベーマイトを加え
ない粉体触媒に比べて活性が低下している。このよう
に、アルミナを加えた触媒は加えないものに比べて活性
が低下するとされている。また、白金担持硫酸ジルコニ
ア触媒粉末をベーマイト粉末と混合し、水を添加して練
った後成形し、焼成した触媒は、さらに大幅に触媒活性
が低下することも開示されている。
Japanese Patent Application Laid-Open No. 9-38494 discloses a method for producing a sulfated metal oxide catalyst molded article. This is performed using a metal hydroxide and boehmite, and after pre-baking the formed body at a temperature of 300 ° C. or more and 500 ° C. or less,
A catalyst molding method using alumina as a binder, characterized by performing a sulfate treatment. However, its catalytic activity is lower than that of a powder catalyst without boehmite because the catalyst is formed by adding boehmite. As described above, the activity of the catalyst containing alumina is lower than that of the catalyst not containing alumina. It is also disclosed that a catalyst obtained by mixing a platinum-supported zirconia sulfate catalyst powder with a boehmite powder, kneading the mixture after adding water, molding, and calcining the catalyst further greatly reduces the catalytic activity.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記問題点を
解決するためになされたもので、硫酸分含有する固体酸
触媒の成形物でありながら、粉体触媒と同等以上の高い
活性を有する成形された固体酸触媒の製造方法を提供す
ることにある。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is a molded product of a solid acid catalyst containing sulfuric acid, but has a high activity equal to or higher than that of a powder catalyst. An object of the present invention is to provide a method for producing a shaped solid acid catalyst.

【0008】[0008]

【課題を解決するための手段】本発明者が鋭意検討した
結果、水酸化ジルコニウムとアルミナ水和物(擬ベーマ
イト)を混練して成形し、600℃で焼成した場合、触
媒の活性発現に好ましい正方晶のジルコニアが容易に生
成し、この焼成された成形体に硫酸分などを担持するこ
とにより粉末状ジルコニアの固体酸触媒と同等以上の炭
化水素異性化活性を有することを見出し、本発明を完成
させた。
Means for Solving the Problems As a result of diligent studies by the present inventors, it has been found that when zirconium hydroxide and alumina hydrate (pseudo-boehmite) are kneaded, molded and calcined at 600 ° C., it is preferable for expressing the activity of the catalyst. It has been found that tetragonal zirconia is easily formed, and that the calcined molded body has a hydrocarbon isomerization activity equal to or higher than that of a solid acid catalyst of powdered zirconia by supporting a sulfuric acid component or the like, and the present invention Completed.

【0009】すなわち、本発明による固体酸触媒の製造
方法は、(a) ジルコニウムの水酸化物及び/又は水和酸
化物とベーマイト構造を有するアルミニウムの水和酸化
物を混練して成形体に成形し、(b) その成形体を正方晶
ジルコニアが得られる温度で焼成し、その後、(c) 成形
体に硫酸分含有化合物を担持して、300℃より高く7
00℃より低い温度で焼成するものである。
That is, the method for producing a solid acid catalyst according to the present invention comprises the steps of (a) kneading a hydroxide and / or hydrated oxide of zirconium and a hydrated oxide of aluminum having a boehmite structure to form a molded body. (B) firing the compact at a temperature at which tetragonal zirconia can be obtained; and (c) supporting a sulfuric acid-containing compound on the compact, and
It is fired at a temperature lower than 00 ° C.

【0010】特に、(c) 成形体に硫酸分含有化合物を担
持する際に、第8族、第9族、第10族から選ばれる1
種以上の金属化合物を担持すること、または、(a) ジル
コニウムの水酸化物及び/又は水和酸化物とベーマイト
構造を有するアルミニウムの水和酸化物を混練する際
に、第8族、第9族、第10族から選ばれる1種以上の
金属化合物を混練することが好ましい。
[0010] In particular, (c) when a sulfuric acid-containing compound is supported on the molded article, the first compound selected from Group 8 and Group 9 and Group 10 is used.
When carrying at least one kind of metal compound, or (a) kneading a hydroxide and / or hydrated oxide of zirconium and a hydrated oxide of aluminum having a boehmite structure, a group 8 or 9 It is preferable to knead at least one metal compound selected from Group 10 and Group 10.

【0011】[0011]

【発明の作用・効果】本発明によれば、高い触媒活性が
得られる正方晶ジルコニアの生成と、焼成された成形体
への硫酸分による強い酸点の形成を別個に行うことがで
きる。これが、本発明の硫酸分含有固体酸触媒の高い活
性の発現をもたらしていると考えられる。同時に、ベー
マイト構造を有するアルミニウムの水和酸化物の添加に
より、触媒として取り扱いが容易な成形体が得られる。
According to the present invention, it is possible to separately form tetragonal zirconia capable of obtaining a high catalytic activity and to form strong acid sites due to sulfuric acid in a fired molded body. This is considered to have resulted in the expression of high activity of the sulfuric acid-containing solid acid catalyst of the present invention. At the same time, by the addition of the aluminum hydrated oxide having a boehmite structure, a molded body that can be easily handled as a catalyst is obtained.

【0012】本発明の触媒は、特に炭化水素異性化反応
用成形固体酸触媒として高い触媒活性を有するばかりで
なく、成形触媒の機械的強度も強い。また、成形品のた
め、反応物質との分離が容易で触媒の再利用も可能とい
った格別の効果を奏するものである。また、工業的に適
応が容易な混練法による製造であるため、工業上の利用
価値が高い。
The catalyst of the present invention not only has a high catalytic activity, particularly as a molded solid acid catalyst for a hydrocarbon isomerization reaction, but also has a high mechanical strength of the molded catalyst. In addition, since the molded article is used, it has a special effect that it can be easily separated from the reactants and the catalyst can be reused. Further, since the production is performed by a kneading method that is industrially easy to adapt, it has high industrial utility value.

【0013】[0013]

【発明の実施の形態】ベーマイト構造を有するアルミニ
ウムの水和酸化物が、いわゆる擬ベーマイトであること
が、高い触媒活性と十分な圧壊強度を得るために好まし
い。これが、例えばα−アルミナやγ−アルミナを用い
ると圧壊強度が低くなる上に触媒に単斜晶ジルコニアが
混入するようになり、触媒活性が低下する。触媒中のジ
ルコニアとアルミナの合計量に占めるアルミナの含有量
は、10〜90質量%、特には20〜80質量%が好ま
しい。10質量%を切ると、アルミニウムの水和酸化物
の添加によるジルコニアの正方晶安定化効果が弱まるば
かりでなく、成形触媒の圧壊強度が弱まる。また、90
質量%を超えると、活性が低下することがある。アルミ
ニウム水和酸化物は、通常粉体、好ましくは、平均粒径
0.5〜50μm、特には0.5〜20μmの形状を用
いることが、触媒の圧壊強度や比表面積の向上のために
好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION It is preferable that the aluminum hydrated oxide having a boehmite structure is a so-called pseudo-boehmite in order to obtain high catalytic activity and sufficient crushing strength. However, when α-alumina or γ-alumina is used, for example, the crushing strength is lowered and monoclinic zirconia is mixed into the catalyst, which lowers the catalytic activity. The content of alumina in the total amount of zirconia and alumina in the catalyst is preferably from 10 to 90% by mass, particularly preferably from 20 to 80% by mass. When the content is less than 10% by mass, not only does the tetragonal stabilization effect of zirconia by the addition of the hydrated oxide of aluminum weaken, but also the crushing strength of the formed catalyst weakens. Also, 90
If the amount is more than mass%, the activity may decrease. Aluminum hydrated oxide is usually a powder, preferably an average particle size of 0.5 to 50 μm, particularly preferably 0.5 to 20 μm, in order to improve the crushing strength and specific surface area of the catalyst. .

【0014】ジルコニウムの水酸化物もしくは水和酸化
物はどのように製造しても構わないが、一般にはこれら
の塩や有機金属化合物、例えばオキシ塩化物、アルコラ
ート、塩化物、硫酸塩、硝酸塩、オキシ硫酸塩等を中和
もしくは加水分解することにより得ることができる。さ
らにこれらの水酸化物及び/又は水和酸化物は、複合金
属水酸化物及び/又は複合金属水和酸化物として用いて
も良い。ジルコニウムの水酸化物及び/又は水和酸化物
及び/又は塩には、他の金属の水酸化物及び/又は水和
酸化物及び/又は塩を加えても構わない。他の金属とし
ては、チタン、ハフニウム、バナジウム、クロム、マン
ガン、鉄、ケイ素、錫、アルミニウム、ガリウム、ホウ
素が好適に用いられる。これら他の金属の化合物は複合
金属化合物でも構わない。触媒中のジルコニアとアルミ
ナの合計量に占めるジルコニア含有量は、10〜90質
量%、特には20〜80質量%が好まい。10質量%を
切ると活性が低下してしまう。また、90質量%を超え
るとアルミニウムの水和酸化物の添加による活性向上効
果が弱まり、ジルコニアに単斜晶が混入してくることが
あるばかりでなく、成形触媒の圧壊強度が弱まる。ジル
コニウムの水酸化物もしくは水和酸化物をX線、電子線
の回折により明確な結晶構造を持たない無定形とするこ
とが、触媒の圧壊強度が向上し、また、ジルコニアが安
定化しやすいことから好ましい。ジルコニウムの水酸化
物もしくは水和酸化物は、通常粉体、好ましくは、平均
粒径0.5〜50μm、特には0.5〜20μmの形状
を用いことが、触媒の圧壊強度や比表面積の向上のため
に好ましい。
The hydroxide or hydrated oxide of zirconium may be produced in any manner, but in general, these salts and organometallic compounds such as oxychloride, alcoholate, chloride, sulfate, nitrate, etc. It can be obtained by neutralizing or hydrolyzing oxysulfate and the like. Further, these hydroxides and / or hydrated oxides may be used as composite metal hydroxides and / or composite metal hydrated oxides. A hydroxide and / or hydrated oxide and / or salt of another metal may be added to the hydroxide and / or hydrated oxide and / or salt of zirconium. As other metals, titanium, hafnium, vanadium, chromium, manganese, iron, silicon, tin, aluminum, gallium, and boron are preferably used. These other metal compounds may be complex metal compounds. The zirconia content in the total amount of zirconia and alumina in the catalyst is preferably from 10 to 90% by mass, particularly preferably from 20 to 80% by mass. If the amount is less than 10% by mass, the activity is reduced. On the other hand, if the content exceeds 90% by mass, the effect of improving the activity by the addition of the hydrated aluminum oxide is weakened, and not only monoclinic crystals may be mixed into zirconia, but also the crushing strength of the molded catalyst is weakened. Making the hydroxide or hydrated oxide of zirconium amorphous without having a clear crystal structure by X-ray and electron diffraction improves the crushing strength of the catalyst and also makes it easier to stabilize zirconia. preferable. The hydroxide or hydrated oxide of zirconium is usually powder, preferably having a shape having an average particle size of 0.5 to 50 μm, particularly 0.5 to 20 μm. Preferred for improvement.

【0015】次に混練であるが、これは一般に触媒調製
に用いられている混練機であればどのようなものを用い
ても構わないが、通常は原料に水を加え投入し、攪拌羽
根で混合するような方法が好適に用いられる。混練の際
には通常水を加えるが、加える液体としては、エタノー
ル、イソプロパノール等のアルコール、アセトン、メチ
ルエチルケトン、メチルイソプチルケトン等のケトンで
も良い。
Next, kneading is carried out. As long as it is a kneading machine generally used for catalyst preparation, any kneading machine may be used. Usually, water is added to the raw materials, and the raw materials are added and stirred. A method of mixing is suitably used. Water is usually added at the time of kneading, but the liquid to be added may be an alcohol such as ethanol or isopropanol, or a ketone such as acetone, methyl ethyl ketone or methyl isobutyl ketone.

【0016】また、同様に本発明の触媒性状が維持され
る範囲内であれば、硝酸などの酸やアンモニアなどの塩
基、有機化合物、バインダー、セラミックス繊維、界面
活性剤、ゼオライト等を加えて混練しても構わない。し
かし、本発明の触媒は混練時に特にこのような添加物を
加えなくても十分な強度と高い触媒活性を有する。
Similarly, as long as the catalytic properties of the present invention are maintained, an acid such as nitric acid, a base such as ammonia, an organic compound, a binder, a ceramic fiber, a surfactant, a zeolite and the like are added and kneaded. It does not matter. However, the catalyst of the present invention has sufficient strength and high catalytic activity even when such additives are not added during kneading.

【0017】混練後の成形は、スクリュー式押出機等公
知の装置を用いることができる。特に、ペレット状、ハ
ニカム状等の任意の形状に効率よく成形できるので、ス
クリュー式押出機等を用いた押し出し成形が好ましく用
いられる。成形物のサイズには特に制限はないが、通
常、その断面の長さが0.5mm以上の大きさに成形され
る。例えば円柱状のペレットであれば、通常直径0.5
〜10mm、長さ0.5〜15mm程度のものを容易に得
ることができる。焼成後の圧壊強度は混練による影響が
大きいため、上記混練時の水分、混練時間、電力量など
を予め決定しておくことが望ましい。
For molding after kneading, a known device such as a screw type extruder can be used. In particular, extrusion molding using a screw type extruder or the like is preferably used because it can be efficiently molded into an arbitrary shape such as a pellet shape or a honeycomb shape. Although the size of the molded product is not particularly limited, it is usually molded to have a cross-sectional length of 0.5 mm or more. For example, in the case of columnar pellets, the diameter is usually 0.5
Those having a length of about 10 to 10 mm and a length of about 0.5 to 15 mm can be easily obtained. Since the crushing strength after firing is greatly affected by kneading, it is desirable to previously determine the water content, kneading time, electric energy, and the like during the kneading.

【0018】このようにしてジルコニウムの水酸化物及
び/又は水和酸化物、ベーマイト構造を有するアルミニ
ウムの水和酸化物などを混練し成形を行った後、空気又
は窒素等のガス雰囲気中において焼成し、ジルコニアを
結晶化させる。通常、焼成温度を500℃より高く80
0℃より低い温度、焼成時間を0.5〜10時間とする
ことが、単斜晶ジルコニアの発生が少なく、ほとんどが
正方晶ジルコニアとなるので好ましい。一部に単斜晶構
造が存在してもよい。この結晶構造は、X線回折により
確認できる。具体的には、CuKα線による、2θ=2
8.2°と2θ=30.2°のX線回折ピーク面積比
(以下S28.2/S30.2比と略記する。S28.2は2θ=2
8.2°における単斜晶ジルコニアのピークの面積、S
30.2は2θ=30.2°における正方晶ジルコニアのピ
ークの面積)が、1.0以下、好ましくは、0.05以
下である。単斜晶構造がほとんど存在していない方が、
高い触媒活性が得られる。焼成温度が高すぎると、酸化
ジルコニウムの結晶構造中の単斜晶の割合が増え、2θ
=28.2゜と2θ=30.2゜のピーク面積比が1を
越えてしまう場合があり、触媒活性も低下するため好ま
しくない。また、焼成温度が低すぎると酸化ジルコニウ
ムが結晶化せず、触媒活性も低下するため好ましくな
い。通常、成形後、焼成前に、80℃〜200℃の温度
での乾燥を行う。
After kneading and molding the hydroxide and / or hydrated oxide of zirconium and the hydrated oxide of aluminum having a boehmite structure in this manner, the mixture is fired in a gas atmosphere such as air or nitrogen. And crystallize the zirconia. Usually, the firing temperature is higher than 500 ° C. and 80
A temperature lower than 0 ° C. and a calcination time of 0.5 to 10 hours are preferable because monoclinic zirconia is less generated and most of the zirconia becomes tetragonal zirconia. A monoclinic structure may partially exist. This crystal structure can be confirmed by X-ray diffraction. Specifically, 2θ = 2 by CuKα ray
X-ray diffraction peak area ratio between 8.2 ° and 2θ = 30.2 ° (hereinafter abbreviated as S28.2 / S30.2 ratio. S28.2 is 2θ = 2
Area of peak of monoclinic zirconia at 8.2 °, S
30.2 has an area of the peak of tetragonal zirconia at 2θ = 30.2 °) of 1.0 or less, preferably 0.05 or less. If there is almost no monoclinic structure,
High catalytic activity is obtained. If the firing temperature is too high, the proportion of monoclinic crystals in the crystal structure of zirconium oxide increases and 2θ
= 28.2 ° and 2θ = 30.2 °, the peak area ratio may exceed 1, which is not preferable because the catalytic activity is also reduced. On the other hand, if the firing temperature is too low, zirconium oxide does not crystallize, and the catalytic activity decreases, which is not preferable. Usually, after molding and before firing, drying is performed at a temperature of 80C to 200C.

【0019】硫酸分含有化合物としては硫酸、硫酸アン
モニウム、亜硫酸、亜硫酸アンモニウム、塩化チオニル
等が挙げられるが、硫酸アンモニウム、亜硫酸アンモニ
ウムが製造装置の腐食性も低く好ましい。硫酸分含有化
合物はそのままでも、又は水溶液のような溶液として用
いても構わない。さらに溶液の濃度に関しても特に限定
はない。硫酸分含有化合物の添加量は、最終的に得られ
る固体酸触媒中に占める硫黄量が0.5〜10%となる
ように添加することが好ましい。添加方法にも特に限定
はないが、スプレー、浸漬等による含浸法が好適に用い
られる。
Examples of the sulfuric acid-containing compound include sulfuric acid, ammonium sulfate, sulfurous acid, ammonium sulfite, thionyl chloride, and the like. Of these, ammonium sulfate and ammonium sulfite are preferable because of low corrosiveness of the production apparatus. The sulfuric acid-containing compound may be used as it is or as a solution such as an aqueous solution. There is no particular limitation on the concentration of the solution. The sulfuric acid-containing compound is preferably added such that the amount of sulfur in the finally obtained solid acid catalyst is 0.5 to 10%. The method of addition is not particularly limited, but an impregnation method such as spraying or dipping is preferably used.

【0020】固体酸触媒の用途によっては、第8族、第
9族、第10族から選ばれる1種以上の金属化合物を触
媒に加えることが好ましい。第8族、第9族、第10族
から選ばれる元素としては、特に白金、パラジウム、ル
テニウム等が異性化反応用の触媒として好適に用いられ
る。第8族、第9族、第10族から選ばれる1種以上の
金属は、金属そのものよりも化合物の形態になっている
ものを用いる方が好ましい。これらの金属化合物は、無
水物としても、水和物としても用いることができる。さ
らにこれらの金属化合物は1種でも、2種以上を混合し
たものでも良い。これらの金属化合物は、(c) 成形体に
硫酸分含有化合物を担持する際に担持すること、また
は、(a) 原料を混練する際に金属化合物を混練すること
で触媒に好ましく加えることができる。
[0020] Depending on the use of the solid acid catalyst, it is preferable to add one or more metal compounds selected from Group 8 to Group 9 to the catalyst. Platinum, palladium, ruthenium, and the like are particularly preferably used as the catalyst for the isomerization reaction as the element selected from Group 8, Group 9, and Group 10. As the one or more metals selected from Group 8, Group 9, and Group 10, it is preferable to use those in the form of a compound rather than the metals themselves. These metal compounds can be used both as anhydrides and hydrates. Further, these metal compounds may be used alone or as a mixture of two or more. These metal compounds can be preferably added to the catalyst by (c) supporting the sulfuric acid-containing compound on the molded article, or (a) kneading the metal compound when kneading the raw materials. .

【0021】これらの金属化合物の担持法には特に制限
はないが、スプレー、浸漬等による含浸法や、イオン交
換法等が好適に用いられる。第8族、第9族、第10族
から選ばれる1種以上の金属化合物と硫酸分含有化合物
の担持は、どちらを先に行っても構わない。また混合溶
液を用いて同時に行う方法も好適に用いられる。また、
これら化合物の担持と担持の間、或いは担持後には、8
0℃〜200℃の温度での乾燥や、300℃より高く7
00℃より低い温度での0.5〜10時間の焼成を行っ
ても差し支えない。さらに水素による還元処理を行って
も構わない。これら金属成分の添加量は、最終的に得ら
れる固体酸触媒中に占める第8族、第9族、第10族元
素の合計量が、0.05〜10重量%となるように添加
することが好ましい。
The method for supporting these metal compounds is not particularly limited, but an impregnation method such as spraying or immersion, or an ion exchange method is preferably used. Either one of the metal compounds selected from Group 8, Group 9, and Group 10 and the sulfuric acid-containing compound may be carried first. In addition, a method of simultaneously using a mixed solution is also suitably used. Also,
Between or after loading of these compounds, 8
Drying at a temperature of 0 ° C to 200 ° C or higher than 300 ° C
Baking at a temperature lower than 00 ° C. for 0.5 to 10 hours may be performed. Further, a reduction treatment with hydrogen may be performed. These metal components should be added so that the total amount of Group VIII, Group IX, and Group X elements in the finally obtained solid acid catalyst is 0.05 to 10% by weight. Is preferred.

【0022】最後に300℃より高く700℃より低い
温度で焼成して目的の固体酸触媒を得る。焼成時間は通
常0.5〜10時間である。
Finally, it is calcined at a temperature higher than 300 ° C. and lower than 700 ° C. to obtain a target solid acid catalyst. The firing time is usually 0.5 to 10 hours.

【0023】また、第8族、第9族、第10族から選ば
れる1種以上の金属化合物の担持は、前記製造法中の混
練の際に金属化合物を混合して行うこともできる。この
場合には混練し成形を行った後、空気又は窒素等のガス
雰囲気中において焼成し、ジルコニアを結晶化させた
後、硫酸分含有化合物を加えて乾燥後、300℃より高
く700℃より低い温度で焼成して、目的の固体酸触媒
を得る。
The loading of one or more metal compounds selected from Group VIII, Group IX and Group X may be carried out by mixing the metal compounds during the kneading in the above-mentioned production method. In this case, after kneading and molding, firing in a gas atmosphere such as air or nitrogen, crystallizing zirconia, adding a sulfuric acid-containing compound and drying, and then higher than 300 ° C and lower than 700 ° C Calcination at a temperature gives the desired solid acid catalyst.

【0024】このようにして得られた固体酸触媒は、ジ
ルコニアとアルミナを主成分としている。この触媒中に
占めるジルコニアとアルミナの合計量は、触媒活性、成
形物の強度の点等から70質量%以上、より好ましくは
80質量%以上になるようにすることが好ましい。また
その成形強度は直径1.5mmの円柱ペレットの側面圧
壊強度として3kg以上であることが実用上好ましい。
圧壊強度は混練による影響が大きいため、上記混練時の
水分、混練時間、電力量などを予め決定しておくことが
望ましい。
The solid acid catalyst thus obtained contains zirconia and alumina as main components. The total amount of zirconia and alumina in the catalyst is preferably 70% by mass or more, more preferably 80% by mass or more, from the viewpoints of catalytic activity and strength of the molded product. It is practically preferable that the molding strength is 3 kg or more as a side crushing strength of a cylindrical pellet having a diameter of 1.5 mm.
Since the crushing strength is greatly affected by kneading, it is desirable to previously determine the water content, kneading time, electric energy, and the like during the kneading.

【0025】本発明で得られた固体酸触媒は100%硫
酸より高い酸強度、酸強度Ho(ハメットの酸度関数)が
−11.93より強い酸性を示す固体超強酸である。異
性化、アルキル化、アシル化、エステル化、エーテル
化、アセタール化、水和、脱水、重合、分解、ニトロ化
等様々な酸触媒反応用触媒として利用できるが、特に
は、炭化水素の異性化に好ましく用いられる。また、こ
の触媒の製造方法の大きな特徴は、ジルコニアの結晶化
をもたらす焼成と、硫酸分による強い酸点の形成をもた
らす焼成を別個にした点にある。すなわち、その高い酸
強度と擬ベーマイトの添加効果により、特に炭化水素の
異性化反応に優れた触媒性能を示す。特に成形品として
使用できる十分な強度を有するため、触媒の取り扱いが
容易で固定床の反応にも使用できる。
The solid acid catalyst obtained in the present invention is a solid superacid having an acid strength higher than 100% sulfuric acid and an acid strength Ho (Hammet acidity function) higher than -11.93. It can be used as a catalyst for various acid-catalyzed reactions such as isomerization, alkylation, acylation, esterification, etherification, acetalization, hydration, dehydration, polymerization, decomposition, nitration, etc. It is preferably used. A major feature of this method for producing a catalyst is that calcination for crystallization of zirconia and calcination for formation of strong acid sites by sulfuric acid are separated. That is, due to its high acid strength and the effect of adding pseudo-boehmite, the catalyst exhibits excellent catalytic performance particularly in the isomerization reaction of hydrocarbons. In particular, the catalyst has sufficient strength to be used as a molded article, so that it is easy to handle the catalyst and can be used for fixed bed reaction.

【0026】本発明の触媒は、炭化水素化合物の異性化
に好ましく用いられる。特に、炭化水素化合物として沸
点範囲−20℃〜110℃程度の石油留分にある直鎖炭
化水素を、水素の存在下で分岐炭化水素に異性化する触
媒に好ましく用いられる。この場合の異性化条件として
は、反応温度:140〜240℃、反応圧力:1〜50
kgf/cm2、LHSV:0.2〜10hr-1、水素/
原料比:0.2〜10mol/molの範囲が好ましい。
The catalyst of the present invention is preferably used for isomerizing a hydrocarbon compound. In particular, it is preferably used as a catalyst for isomerizing a linear hydrocarbon in a petroleum fraction having a boiling point of about -20 ° C to 110 ° C as a hydrocarbon compound into a branched hydrocarbon in the presence of hydrogen. In this case, the isomerization conditions include a reaction temperature of 140 to 240 ° C. and a reaction pressure of 1 to 50.
kgf / cm 2 , LHSV: 0.2 to 10 hr −1 , hydrogen /
Raw material ratio: preferably in the range of 0.2 to 10 mol / mol.

【実施例】【Example】

【0027】以下、実施例により詳細に説明する。ま
ず、評価方法を説明する。
Hereinafter, the present invention will be described in detail with reference to examples. First, the evaluation method will be described.

【0028】[X線回折による結晶種比の算出方法]X
線回折チャートからジルコニアの正方晶と単斜晶のピー
ク分離を行い、2θ=28.2°における単斜晶ジルコ
ニアのピークの面積と、2θ=30.2°における正方
晶ジルコニアのピークの面積の比(S28.2/S30.2比)
を算出した。なお、S28.2/S30.2比が0.02以下で
は、単斜晶ピークが不明瞭となり検出不能であった。 広角X線測定装置;理学電機(株)製 RAD−1C
横型ゴニオメーター X線管球;封入管型Cu管球(出力30kV−20m
A、波長1.5406Å) 測定領域(2θ);3〜90゜ ステップ幅;0.02゜ スキャンスピード;4゜/min スリット幅;ダイバージェントスリット(DS)=1゜ スキャッタリングスリット(SS)=1゜ レシービングスリット(RS)=0.3mm スムージング条件;Savitzky, Golay の15点の重み付
き平滑化法 ピーク分離使用領域(2θ);26.5〜32.5゜ 分離対象ピーク数;4本(単斜晶2本、正方晶1本、非
晶質1本) 結晶種比算出使用ピーク; 単斜晶;2θ=28.2゜(d=3.163、hkl=
111) 正方晶;2θ=30.2゜(d=2.960、hkl=
111)
[Calculation method of crystal seed ratio by X-ray diffraction]
The peaks of tetragonal zirconia and monoclinic zirconia were separated from the line diffraction chart, and the peak area of monoclinic zirconia at 2θ = 28.2 ° and the peak area of tetragonal zirconia at 2θ = 30.2 ° were determined. Ratio (S28.2 / S30.2 ratio)
Was calculated. When the S28.2 / S30.2 ratio was 0.02 or less, the monoclinic peak was unclear and could not be detected. Wide-angle X-ray measuring device; RAD-1C manufactured by Rigaku Corporation
Horizontal goniometer X-ray tube; sealed tube type Cu tube (output 30kV-20m
A, wavelength 1.5406 °) Measurement area (2θ); 3 to 90 ° Step width; 0.02 ° Scan speed; 4 ° / min Slit width; divergent slit (DS) = 1 ° Scattering slit (SS) = 1 ゜ Receiving slit (RS) = 0.3 mm Smoothing condition; Savitzky, Golay's 15-point weighted smoothing method Peak separation use area (2θ); 26.5-32.5 ゜ Number of peaks to be separated; 4 ( (2 monoclinics, 1 tetragonal, 1 amorphous) Peak used for crystal seed ratio calculation; monoclinic; 2θ = 28.2 ゜ (d = 3.163, hkl =
111) tetragonal; 2θ = 30.2 ° (d = 2.960, hkl =
111)

【0029】[平均粒径の測定方法]日機装(株) MI
CROTRAC粒度分析計を用い、湿式測定法で測定した。こ
れは、流れる粉体群にレーザ光を照射し、その前方散乱
光により粒度分析を行うものである。
[Method of Measuring Average Particle Size] MI, Nikkiso Co., Ltd.
It was measured by a wet measurement method using a CROTRAC particle size analyzer. In this technique, a flowing powder group is irradiated with a laser beam, and a particle size analysis is performed using the forward scattered light.

【0030】(実施例1) 触媒の調製例 MEL社製水酸化ジルコニウムXZO631/01を乾
燥させ、平均粒径1.2μmの乾燥水和ジルコニアを得
た。この乾燥水和ジルコニア粉300gに平均粒径10
μmの水和アルミナ(擬ベーマイト)粉300gを加
え、攪拌羽根のついた混練機で水を加えながら2時間混
練を行った。得られた混練物を直径1.6mmの円形の
穴の開いた押出機より押し出し、乾燥後600℃で2時
間焼成してジルコニアアルミナ担体を得た。この担体中
のジルコニアの結晶種は正方晶で、単斜晶は全く認めら
れなかった。この担体50gに白金0.25gを含有す
る塩化白金酸水溶液125mlを添加した。これを乾燥
後、0.5mol/l硫酸水溶液125mlを添加し、
乾燥後、600℃で2時間焼成し、白金含有硫酸ジルコ
ニアアルミナ触媒(触媒A)を得た。
Example 1 Preparation Example of Catalyst Zirconium hydroxide XZO631 / 01 manufactured by MEL was dried to obtain dried hydrated zirconia having an average particle size of 1.2 μm. 300 g of this dried hydrated zirconia powder has an average particle size of 10
300 g of hydrated alumina (pseudo-boehmite) powder having a particle size of 300 μm was added, and kneading was performed for 2 hours while adding water using a kneader equipped with stirring blades. The obtained kneaded material was extruded from an extruder having a circular hole with a diameter of 1.6 mm, dried and fired at 600 ° C. for 2 hours to obtain a zirconia alumina carrier. The crystal seed of zirconia in this carrier was tetragonal, and no monoclinic crystal was observed. 125 ml of chloroplatinic acid aqueous solution containing 0.25 g of platinum was added to 50 g of this carrier. After drying, 125 ml of 0.5 mol / l sulfuric acid aqueous solution was added,
After drying, it was calcined at 600 ° C. for 2 hours to obtain a platinum-containing zirconia alumina sulfate catalyst (catalyst A).

【0031】(実施例2) 触媒の調製例 実施例1と同様にして得たジルコニアアルミナ担体50
gに白金0.25gと硫酸6.13gを含有する塩化白
金酸と硫酸の混合水溶液125mlを添加した。これを
乾燥後、0.5mol/l硫酸水溶液125mlを添加
し、乾燥後、600℃で2時間焼成し、白金含有硫酸ジ
ルコニアアルミナ触媒(触媒B)を得た。
(Example 2) Preparation example of catalyst Zirconia alumina carrier 50 obtained in the same manner as in Example 1
Then, 125 ml of a mixed aqueous solution of chloroplatinic acid and sulfuric acid containing 0.25 g of platinum and 6.13 g of sulfuric acid was added. After drying, 125 ml of a 0.5 mol / l sulfuric acid aqueous solution was added, followed by drying and firing at 600 ° C. for 2 hours to obtain a platinum-containing zirconia alumina sulfate catalyst (catalyst B).

【0032】(実施例3) 触媒の調製例 実施例1と同様にして得たジルコニアアルミナ担体50
gに白金0.25gを含有する塩化白金酸水溶液125
mlを添加した。これを乾燥後、0.5mol/l硫酸
水溶液125mlを添加し、乾燥後、550℃で2時間
焼成し、白金含有硫酸ジルコニアアルミナ触媒(触媒
C)を得た。
Example 3 Catalyst Preparation Example Zirconia alumina carrier 50 obtained in the same manner as in Example 1
chloroplatinic acid aqueous solution containing 0.25 g of platinum
ml was added. After drying, 125 ml of a 0.5 mol / l sulfuric acid aqueous solution was added, followed by drying and calcining at 550 ° C. for 2 hours to obtain a platinum-containing zirconia alumina sulfate catalyst (catalyst C).

【0033】(実施例4) 触媒の調製例 実施例1と同様にして得たジルコニアアルミナ担体50
gに白金0.25gを含有する塩化白金酸と塩酸の混合
水溶液を添加した。これを乾燥後、500℃で2時間焼
成して白金含有ジルコニアアルミナ担体を得た。この担
体に0.5mol/l硫酸水溶液750mlを加えて接
触させた後過剰硫酸を濾過により除去し、乾燥後、60
0℃で2時間焼成し、白金含有硫酸ジルコニアアルミナ
触媒(触媒D)を得た。
Example 4 Catalyst Preparation Example Zirconia alumina carrier 50 obtained in the same manner as in Example 1
A mixed aqueous solution of chloroplatinic acid and hydrochloric acid containing 0.25 g of platinum per g was added. After drying, this was fired at 500 ° C. for 2 hours to obtain a platinum-containing zirconia alumina support. After adding 750 ml of a 0.5 mol / l sulfuric acid aqueous solution to the carrier and bringing it into contact, excess sulfuric acid is removed by filtration, dried, and dried.
The mixture was calcined at 0 ° C. for 2 hours to obtain a platinum-containing zirconia alumina sulfate catalyst (catalyst D).

【0034】(実施例5) 触媒の調製例 実施例4と同様にして得た白金含有ジルコニアアルミナ
担体50gに0.5mol/l硫酸水溶液750mlを
加えて接触させた後過剰硫酸を濾過により除去し、乾燥
後、500℃で2時間焼成し、白金含有硫酸ジルコニア
アルミナ触媒(触媒E)を得た。
Example 5 Preparation Example of Catalyst A 750 ml of 0.5 mol / l sulfuric acid aqueous solution was added to 50 g of a platinum-containing zirconia alumina carrier obtained in the same manner as in Example 4, and the mixture was contacted. After drying, the mixture was calcined at 500 ° C. for 2 hours to obtain a platinum-containing zirconia alumina sulfate catalyst (catalyst E).

【0035】(比較例1) 触媒の調製例 実施例1と同じ乾燥水和ジルコニア粉300gに水和ア
ルミナ(擬ベーマイト)粉300gを加え、攪拌羽根の
ついた混練機で水を加えながら2時間混練を行った。得
られた混練物を直径1.6mmの円形の穴の開いた押出
機より押し出し、乾燥後400℃で2時間焼成してジル
コニアアルミナ担体を得た。この担体は非晶質であり、
正方晶、単斜晶のジルコニアは認められなかった。この
担体50gに白金0.25gを含有する塩化白金酸水溶
液125mlを添加した。これを乾燥後、0.5mol
/l硫酸水溶液125mlを添加し、乾燥後、600℃
で2時間焼成し、白金含有硫酸ジルコニアアルミナ触媒
(触媒F)を得た。
Comparative Example 1 Preparation Example of Catalyst 300 g of hydrated alumina (pseudo-boehmite) powder was added to 300 g of dry hydrated zirconia powder as in Example 1, and water was added for 2 hours using a kneader equipped with stirring blades. Kneading was performed. The obtained kneaded material was extruded from an extruder having a circular hole with a diameter of 1.6 mm, dried and calcined at 400 ° C. for 2 hours to obtain a zirconia alumina carrier. This carrier is amorphous,
No tetragonal or monoclinic zirconia was observed. 125 ml of chloroplatinic acid aqueous solution containing 0.25 g of platinum was added to 50 g of this carrier. After drying this, 0.5mol
/ L sulfuric acid aqueous solution (125 ml)
For 2 hours to obtain a platinum-containing zirconia sulfate alumina catalyst (catalyst F).

【0036】(比較例2) 触媒の調製例 比較例1と同様の方法で調製したジルコニアアルミナ担
体50gに白金0.25gを含有する塩化白金酸水溶液
125mlを添加した。これを乾燥後、0.5mol/
l硫酸水溶液125mlを添加し、乾燥後、500℃で
2時間焼成し、白金含有硫酸ジルコニアアルミナ触媒
(触媒G)を得た。
Comparative Example 2 Catalyst Preparation Example To 50 g of a zirconia alumina carrier prepared in the same manner as in Comparative Example 1, 125 ml of an aqueous chloroplatinic acid solution containing 0.25 g of platinum was added. After drying this, 0.5 mol /
After adding 125 ml of an aqueous solution of sulfuric acid, drying and calcining at 500 ° C. for 2 hours, a platinum-containing zirconia alumina sulfate catalyst (catalyst G) was obtained.

【0037】(比較例3) 触媒の調製例 実施例1と同様の方法で調製した乾燥水和ジルコニア粉
50gに、白金0.25gを含有する塩化白金酸水溶液
125mlを添加した。これを乾燥後、0.5mol/
l硫酸水溶液125mlを添加し、乾燥後、600℃で
2時間焼成して白金含有硫酸ジルコニア触媒(触媒H)
を得た。
Comparative Example 3 Catalyst Preparation Example To 50 g of dry hydrated zirconia powder prepared in the same manner as in Example 1, 125 ml of an aqueous chloroplatinic acid solution containing 0.25 g of platinum was added. After drying this, 0.5 mol /
After adding 125 ml of an aqueous sulfuric acid solution, drying and calcining at 600 ° C. for 2 hours, a platinum-containing zirconia sulfate catalyst (Catalyst H)
I got

【0038】異性化反応例(1) 16〜24meshの粒に成形した白金含有触媒4cc
を、長さ50cm、内径1cmの固定床流通式反応器中
でn-ヘキサンの異性化反応を行った。反応条件は次の通
りである。 水素還元(触媒前処理)条件:300℃、1時間 反応温度:200℃、反応圧力(ゲージ圧):10kg
f/cm2 LHSV=1.5hr-11、H2/Oil:5(mol
/mol)
Example of Isomerization Reaction (1) 4 cc of a platinum-containing catalyst formed into 16 to 24 mesh particles
Was subjected to an isomerization reaction of n-hexane in a fixed bed flow reactor having a length of 50 cm and an inner diameter of 1 cm. The reaction conditions are as follows. Hydrogen reduction (catalyst pretreatment) conditions: 300 ° C, 1 hour Reaction temperature: 200 ° C, reaction pressure (gauge pressure): 10 kg
f / cm 2 LHSV = 1.5 hr −1 1, H 2 / Oil: 5 (mol
/ Mol)

【0039】通油開始1.5時間後の反応管出口組成を
ガスクロマトグラフィーにより分析した結果を以下に示
す。 n-ヘキサン転化率 触媒A(実施例):82% 触媒B(実施例):82% 触媒C(実施例):85% 触媒D(実施例):80% 触媒F(比較例):65% 触媒H(比較例):76%
The result of analyzing the composition of the reaction tube outlet 1.5 hours after the start of oil passage by gas chromatography is shown below. n-hexane conversion rate Catalyst A (Example): 82% Catalyst B (Example): 82% Catalyst C (Example): 85% Catalyst D (Example): 80% Catalyst F (Comparative Example): 65% Catalyst H (comparative example): 76%

【0040】異性化反応例(2) 16〜24meshの粒に成形した白金含有触媒4cc
を、長さ50cm、内径1cmの固定床流通式反応器中
でパラフィン混合溶液(n-ヘキサン70質量%、n-ヘプ
タン15質量%、シクロヘキサン15質量%)の異性化
反応を行った。反応条件は次の通りである。 水素還元(触媒前処理)条件:300℃、1時間 反応温度:220℃、反応圧力(ゲージ圧):4.8k
gf/cm2 LHSV=5.0hr-1、H2/Oil:5(mol/
mol)
Example of isomerization reaction (2) 4 cc of platinum-containing catalyst formed into 16 to 24 mesh particles
Was subjected to an isomerization reaction of a paraffin mixed solution (n-hexane 70% by mass, n-heptane 15% by mass, cyclohexane 15% by mass) in a fixed-bed flow reactor having a length of 50 cm and an inner diameter of 1 cm. The reaction conditions are as follows. Hydrogen reduction (catalyst pretreatment) conditions: 300 ° C, 1 hour Reaction temperature: 220 ° C, reaction pressure (gauge pressure): 4.8k
gf / cm 2 LHSV = 5.0 hr −1 , H 2 / Oil: 5 (mol /
mol)

【0041】通油開始1.5時間後の反応管出口組成を
ガスクロマトグラフィーにより分析した結果を以下に示
す。 n-ヘキサン転化率 触媒E(実施例):55% 触媒G(比較例):33% 触媒H(比較例):50% n-ヘキサン転化率=[1−(生成油中に占めるn-ヘキサ
ンの質量%/原料油中に占めるn-ヘキサンの重量%)]
×100(%)
The composition of the outlet of the reaction tube 1.5 hours after the start of oil passage was analyzed by gas chromatography, and the results are shown below. n-hexane conversion rate Catalyst E (Example): 55% Catalyst G (comparative example): 33% Catalyst H (comparative example): 50% n-hexane conversion rate = [1- (n-hexane occupying in product oil) % By mass of n-hexane in feed oil)
× 100 (%)

【0042】本発明の触媒は、ジルコニアとアルミナを
組み合わせることにより、驚くべきことに粉体の白金含
有硫酸ジルコニア固体酸触媒(触媒H)と同等以上の活
性を示す。
By combining zirconia and alumina, the catalyst of the present invention surprisingly exhibits an activity equal to or higher than that of a powdery platinum-containing zirconia sulfate solid acid catalyst (catalyst H).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ジルコニウムの水酸化物及び/又は水和
酸化物とベーマイト構造を有するアルミニウムの水和酸
化物を混練して成形体に成形し、 その成形体を正方晶ジルコニアが得られる温度で焼成
し、その後、 成形体に硫酸分含有化合物を担持して、300℃より高
く700℃より低い温度で焼成することを特徴とする固
体酸触媒の製造方法。
A kneaded mixture of a hydroxide and / or hydrated oxide of zirconium and a hydrated oxide of aluminum having a boehmite structure is formed into a compact, and the compact is formed at a temperature at which tetragonal zirconia can be obtained. A method for producing a solid acid catalyst, characterized by firing, followed by supporting a sulfuric acid-containing compound on a molded body and firing at a temperature higher than 300 ° C and lower than 700 ° C.
【請求項2】 成形体に硫酸分含有化合物を担持する際
に、第8族、第9族、第10族から選ばれる1種以上の
金属化合物を担持することを特徴とする請求項1記載の
固体酸触媒の製造方法。
2. The method according to claim 1, wherein when the sulfuric acid-containing compound is supported on the molded body, at least one metal compound selected from Group 8, Group 9, and Group 10 is supported. The method for producing a solid acid catalyst of the above.
【請求項3】 ジルコニウムの水酸化物及び/又は水和
酸化物とベーマイト構造を有するアルミニウムの水和酸
化物を混練する際に、第8族、第9族、第10族から選
ばれる1種以上の金属化合物を混練することを特徴とす
る請求項1記載の固体酸触媒の製造方法。
3. When kneading a hydroxide and / or hydrated oxide of zirconium and a hydrated oxide of aluminum having a boehmite structure, one kind selected from Group 8, 9 and 10 is used. The method for producing a solid acid catalyst according to claim 1, wherein the metal compound is kneaded.
JP24352897A 1997-08-26 1997-08-26 Method for producing solid acid catalyst Expired - Fee Related JP3568372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24352897A JP3568372B2 (en) 1997-08-26 1997-08-26 Method for producing solid acid catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24352897A JP3568372B2 (en) 1997-08-26 1997-08-26 Method for producing solid acid catalyst

Publications (2)

Publication Number Publication Date
JPH1157478A true JPH1157478A (en) 1999-03-02
JP3568372B2 JP3568372B2 (en) 2004-09-22

Family

ID=17105252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24352897A Expired - Fee Related JP3568372B2 (en) 1997-08-26 1997-08-26 Method for producing solid acid catalyst

Country Status (1)

Country Link
JP (1) JP3568372B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001017860A (en) * 1999-05-18 2001-01-23 Total Raffinage Distrib Sa Catalyst carrier based on group ivb metal oxide of periodic table of elements and its production and use
JP2006199560A (en) * 2005-01-24 2006-08-03 Tosoh Corp New structure containing sulfated zirconia and its manufacturing method
CN100463718C (en) * 2005-10-21 2009-02-25 哈尔滨工业大学 Process of preparing magnetic solid acid catalyst in binary catalyst system for promoting esterification of ammonium lactate
WO2013137286A1 (en) 2012-03-13 2013-09-19 株式会社ダイキアクシス Solid acid catalyst, method for manufacturing same, and method for manufacturing a fatty acid alkyl ester using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001017860A (en) * 1999-05-18 2001-01-23 Total Raffinage Distrib Sa Catalyst carrier based on group ivb metal oxide of periodic table of elements and its production and use
JP2006199560A (en) * 2005-01-24 2006-08-03 Tosoh Corp New structure containing sulfated zirconia and its manufacturing method
CN100463718C (en) * 2005-10-21 2009-02-25 哈尔滨工业大学 Process of preparing magnetic solid acid catalyst in binary catalyst system for promoting esterification of ammonium lactate
WO2013137286A1 (en) 2012-03-13 2013-09-19 株式会社ダイキアクシス Solid acid catalyst, method for manufacturing same, and method for manufacturing a fatty acid alkyl ester using same

Also Published As

Publication number Publication date
JP3568372B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
KR100327891B1 (en) Solid acid catalyst and process for preparing the same
US7989386B2 (en) Multi-layer catalyst made from niobium for the catalytic conversion of hydrocarbons
JP3553878B2 (en) Solid acid catalyst, method for producing the same, and reaction method using the same
JP3989078B2 (en) Method for producing solid acid catalyst
KR100840446B1 (en) Solid acid catalyst containing platinum group metal component and method for preparation thereof
EP1491613B1 (en) Method of isomerizing hydrocarbon
JP3568372B2 (en) Method for producing solid acid catalyst
JP3730792B2 (en) Hydrocarbon isomerization process
JP3922681B2 (en) Hydrocarbon isomerization process and solid acid catalyst for isomerization
JP2001070795A (en) Solid acid catalyst, preparation thereof and method for isomerizing hydrocarbon using the catalyst
JP4191059B2 (en) Hydrocarbon isomerization process
JP3432694B2 (en) Method for producing solid acid catalyst for hydrocarbon conversion
JP3973176B2 (en) Acid-catalyzed reaction method
WO2000056447A1 (en) Solid acid catalyst, method for preparing the same and reaction using the same
JP2001070794A (en) Solid acid catalyst containing platinum group metal component
EP4135891A1 (en) Method for catalyst production for c5-c12 paraffin's isomerization

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040209

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees