JP3989078B2 - Method for producing solid acid catalyst - Google Patents

Method for producing solid acid catalyst Download PDF

Info

Publication number
JP3989078B2
JP3989078B2 JP06761598A JP6761598A JP3989078B2 JP 3989078 B2 JP3989078 B2 JP 3989078B2 JP 06761598 A JP06761598 A JP 06761598A JP 6761598 A JP6761598 A JP 6761598A JP 3989078 B2 JP3989078 B2 JP 3989078B2
Authority
JP
Japan
Prior art keywords
catalyst
zirconia
solid acid
powder
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06761598A
Other languages
Japanese (ja)
Other versions
JPH11244701A (en
Inventor
康次郎 相木
憲治 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP06761598A priority Critical patent/JP3989078B2/en
Publication of JPH11244701A publication Critical patent/JPH11244701A/en
Application granted granted Critical
Publication of JP3989078B2 publication Critical patent/JP3989078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

【0001】
【産業上の利用分野】
本発明は、酸触媒を必要とする反応に有用な固体酸触媒を製造する方法であって、使用により活性が低下した廃触媒を用いて固体酸触媒を製造する方法に関する。
【0002】
【従来の技術】
化学工業においては、アルキル化反応、エステル化反応、異性化反応等の酸触媒を必要とする反応が多数知られている。従来この種の反応には、硫酸、塩化アルミニウム、フッ化水素、リン酸、パラトルエンスルホン酸等の酸触媒が使用されている。しかしこれらの酸触媒は金属を腐食させる性質があり、高価な耐食材料を使用するかあるいは耐食処理を施す必要があった。また通常、反応後の反応物質との分離が困難な上に廃酸処理が必要であり、アルカリ洗浄などの煩雑な工程を経なければならず、環境面にも大きな問題があった。さらに触媒を再利用することも非常に困難であった。
【0003】
このような問題に対して、周期律表第IV族金属水酸化物もしくは水和酸化物を硫酸分含有溶液と接触させた後、350〜800℃で焼成した硫酸根含有固体酸触媒が提案された(特公昭59−6181号公報)。この固体酸触媒は、100%硫酸(ハメットの酸度関数H0は−11.93)より強い酸強度を示す。これらの固体酸触媒は、その強い酸強度により様々な酸触媒反応に対し高い触媒性能を有する。しかも腐食性が低く、反応物質との分離が容易で廃酸処理も不要で、触媒の再利用も可能といった長所を有しており、様々な工業的反応において、従来の酸触媒の代替が期待されている。
【0004】
また、周期律表第IV族以外の元素でも、硫酸分を含有させた酸化物が100%硫酸よりも強い酸強度を示すことが知られている。例えば、アルミニウムの水酸化物もしくは酸化物に硫酸分含有化合物を添加し、それを焼成して得られる固体酸触媒は、100%硫酸よりも強い酸強度を示す(特開平5−96171号報、荒田、Trends in Physical Chemistry 2巻、1項(1991年))。アルミナの場合は、一旦700℃程度でか焼し結晶化させたものを硫酸処理する方法が最も活性が高いと報告されている。また、これらの固体酸触媒に水素化能を有する金属を添加した触媒も、良好な炭化水素異性化活性を示すことは自明である。しかし、これらの酸強度は硫酸ジルコニア系固体酸触媒に比べて弱いことも明らかになっている。
【0005】
上記の触媒に白金族金属を担持させ、異性化を主な目的とした触媒の製造法が特公平5−29503号公報、特公平5−29504号公報、特公平5−29505号公報および特公平5−29506号公報に開示されている。これらは、IV族金属またはIII族金属の水酸化物、硫酸根を含有する処理剤、VIII族金属を主な原料とする硫酸根含有固体酸触媒の製造方法である。得られる触媒は、直鎖炭化水素の異性化反応、炭化水素のアルキル化反応等において触媒安定性に優れ、それまでの固体酸触媒よりも分解反応が少ない触媒であるとされている。しかしながらこれら硫酸分含有固体酸触媒は粉体で製造されており、通常の工業的反応装置、例えば固定床流通式反応器に充填して使用する場合適当な大きさに成形する必要がある。
【0006】
特開平9−38494号公報には硫酸根処理金属酸化物触媒成形体の製造法が開示されている。これは、金属水酸化物とベーマイトを用いて成形し、成形体を300℃以上500℃以下の温度で前焼成した後、硫酸根処理を行うことを特徴とする触媒成形方法である。しかしながらその触媒活性はベーマイトを加えて成形したために、ベーマイトを加えない粉体触媒に比べて活性が低下している。このように、アルミナを加えた触媒は加えないものに比べて活性が低下するとされている。また、白金担持硫酸ジルコニア触媒粉末をベーマイト粉末と混合し、水を添加して練った後成形し、焼成した触媒は、さらに大幅に触媒活性が低下することも開示されている。
【0007】
【発明が解決しようとする課題】
本発明はこのような課題を解決するもので、硫酸分を含有する固体酸触媒の成形物でありながら、粉体触媒と同等以上の高い活性を有する成形された固体酸触媒の製造方法を提供することにある。
【0008】
また、固体酸触媒は、使用にともない活性が低下して使用できなくなるが、この使用できなくなった廃触媒を再度利用することが望まれている。本発明は、このような廃触媒から高い活性を有する固体酸触媒を製造する方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者が鋭意検討した結果、水酸化ジルコニウムとアルミナ水和物(擬ベーマイト)を混練して成形し、600℃で焼成した場合、触媒の活性発現に好ましい正方晶のジルコニアが容易に生成し、この焼成された成形体に硫酸分を担持した触媒が粉末状ジルコニアの固体酸触媒と同等以上の触媒活性を有することを見出し、本発明を完成させた。
【0010】
すなわち、本発明による固体酸触媒の製造方法は、正方晶の結晶構造を有するジルコニアおよび/または含水ジルコニアからなる部分(以下、ジルコニア部分ともいう)と、アルミナおよび/または含水アルミナからなる部分(以下、アルミナ部分ともいう)で構成された担体に硫酸分含有化合物を接触させ、300℃より高く800℃より低い温度で焼成する固体酸触媒の製造方法であって、前記担体として、ジルコニア粉体、アルミナ粉体および硫酸分含有化合物を混練し、成形した後、焼成した固体酸触媒を使用し、活性が低下したものを用いるものである。
【0011】
さらに、前記固体酸触媒が第8族、第9族、第10族から選ばれる1種以上の金属成分を含むことが好ましい。
【0012】
【発明の作用・効果】
本発明は、アルミナ部分と正方晶の結晶構造を有するジルコニア部分とで構成された担体に硫酸分含有化合物を接触させて焼成するものであり、高い触媒活性が得られる正方晶ジルコニアの生成と、焼成された成形体への硫酸分による強い酸点の形成を別個に行うことができる。これが、本発明の硫酸分含有固体酸触媒の高い活性の発現をもたらしていると考えられる。これにより、本発明は成形物でありながら高い活性を持った固体酸触媒を製造することができる。
【0013】
したがって、アルミナ部分と正方晶の結晶構造を有するジルコニア部分とで構成された担体を含む触媒、使用により活性低下して廃触媒となった場合、その廃触媒を硫酸分含有化合物と接触させて焼成することにより、使用前と同等の高い活性を持った固体酸触媒へ再生することができ、廃触媒の再利用が可能となる。
【0014】
【発明の実施の形態】
[担体]固体酸触媒に用いられる担体は、アルミナおよび/または含水アルミナからなる部分(アルミナ部分)と、正方晶の結晶構造を有するジルコニアおよび/または含水ジルコニアからなる部分(ジルコニア部分)とで構成された担体が用いられる。担体は、粉体でなく、成形された形状であり、0.5〜20mmの大きさのものを容易に得ることができ、通常、平均粒径として、0.2〜50mm、特には、0.5〜20mmが好ましく用いられる。アルミナ部分、ジルコニア部分は、担体中に0.01〜100μmの粒子として存在している。
【0015】
担体中に含まれるアルミナ部分の重量は、触媒中のジルコニアとアルミナの合計量に占めるアルミナの含有量が、5〜90重量%、特には10〜50重量%となるように設定することが好ましい。この範囲未満では、アルミナ部分の存在によるジルコニアの正方晶安定化効果が弱まるばかりでなく、成形触媒の圧壊強度が弱まる。また、この範囲を超えると、活性が相対的に低下する。
【0016】
[正方晶の結晶構造]
ジルコニア部分は、正方晶の結晶構造を有する。この構造はX線回折により確認でき、具体的には、CuKα線による、2θ=28.2°と2θ=30.2°のX線回折ピーク面積比(以下S28.2/S30.2比と略記する。S28.2は2θ=28.2°における単斜晶ジルコニアのピークの面積、S30.2は2θ=30.2°における正方晶ジルコニアのピークの面積)が、1.0以下、好ましくは、0.05以下であることが好ましく、単斜晶構造がほとんど存在していないことで、高い触媒活性が得られる。
【0017】
[硫酸分の担持]
担体に接触させる硫酸分含有化合物としては、硫酸、硫酸アンモニウム、亜硫酸、亜硫酸アンモニウム、塩化チオニルなどが好ましく用いられる。硫酸分含有化合物の濃度に関しては特に制限はない。硫酸分含有化合物の添加量は、得られる固体酸触媒中に占める硫黄量が0.2〜10重量%、特には1〜10重量%となるようにすることが好ましい。
【0018】
硫酸分含有化合物は、担体との接触が十分行えるならば、どのような形態、例えばガス状あるいは水溶液のような形態で用いてもかまわないが、液体状であることが取り扱いやすく好ましい。接触させる方法についても特に制限はないが、スプレー、浸漬等による含浸法や、ガス状にして触媒層を通過させる方法が好適に使用される。硫酸分含有化合物に接触させた後、300℃〜800℃、好ましくは400℃〜800℃で焼成して目的の固体酸触媒を得る。焼成時間は通常0.5〜10時間である。
【0019】
[担体の作成]固体酸触媒に用いる担体は、ジルコニウム水酸化物および/または水和酸化物(以下、ジルコニア粉体ともいう)、アルミニウム水和物および/または水和酸化物(以下、アルミナ粉体ともいう)を混し、成形した成形物を正方晶構造のジルコニアが得られる温度で焼成することで好ましく作成できる。
【0020】
ジルコニア粉体は、X線、電子線の回折により明確な結晶構造を持たない無定形とすることで、触媒の圧壊強度が向上し、またジルコニアが安定しやすい。また、凝集粒子、すなわち、1次粒子が凝集した2次粒子の平均粒径が0.2〜20μm、特には0.2〜5μmのものを用いることが、触媒の活性および機械的強度向上のために好ましい。
【0021】
ジルコニア粉体は、どのように製造してもかまわないが、一般にはジルコニウム塩や有機金属化合物、例えばオキシ塩化物、アルコラート、塩化物、硫酸塩、硝酸塩、オキシ硫酸塩などを中和もしくは加水分解することにより得ることができる。ジルコニア粉体の主成分は、ジルコニウム水酸化物とジルコニウム水和酸化物の混合物、ジルコニウム水酸化物、または、ジルコニウム水和酸化物である。
【0022】
さらに、ジルコニア粉体は、複合金属水酸化物および/または複合金属水和酸化物として用いることもできる。ジルコニウムの水酸化物および/または水和酸化物に、他の金属の水酸化物、水和酸化物などを加えてもかまわない。他の金属としては、チタン、ハフニウム、バナジウム、クロム、マンガン、鉄、ケイ素、錫、ガリウムなどが好適に用いられる。これら他の金属の化合物は複合金属化合物でもかまわない。しかし、ジルコニア粉体としては、金属成分としてジルコニウムを主成分とするもの、具体的には、ジルコニア粉体中の全金属重量のうち、ジルコニアをその金属重量として70重量%以上、特には90重量%以上のものが好ましく用いられる。しかし、アルカリ金属やアルカリ土類金属は、少量含有されても、触媒活性が低下するので、実質的に含まないことが好ましい。
【0023】
アルミナ粉体は、凝集粒子の平均粒径が0.5〜50μm、特には0.5〜20μmのものを用いることが好ましい。アルミナ粉体としては、いろいろな製法により得られたものを用いることができるが、特に、擬ベーマイトなどのベーマイト構造を有するアルミニウム水和酸化物を用いることが触媒活性を向上できるので好ましい。アルミナ粉体としてα−アルミナやγ−アルミナを用いると、相対的に、触媒成形体の機械的強度が低下し、また、触媒活性が低下する。
【0024】
次に、ジルコニウム粉体とアルミナ粉体を混練するが、混練には、一般に触媒調製に用いられている混練機を用いることができる。通常は原料粉体を投入し、水を加えて攪拌羽根で混合するような方法が好適に用いられるが、原料の投入順序など特に限定はない。混練の際には通常水を加えるが、原料粉体がスラリー状の場合などには特に水を加える必要はない。また、加える液体としては、エタノール、イソプロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトンなどの有機溶媒でもよい。混練時の温度や混練時間は、原料となるジルコニア粉体、アルミナ粉体の特性により異なる。硝酸などの酸やアンモニアなどの塩基、有機化合物、バインダー、セラミックス繊維、界面活性剤、ゼオライトなどを加えて混練してもかまわない。
【0025】
混練後の成形は、一般に触媒調製に用いられている成形方法を用いることができる。特に、ペレット状、ハニカム状等の任意の形状に効率よく成形できるので、スクリュー式押出機などを用いた押出成形が好ましく用いられる。成形物のサイズは特に制限はないが、通常、その断面の長さが0.5mm以上の大きさに成形される。例えば円柱状のペレットであれば、通常直径0.5〜10mm、長さ0.5〜15mm程度のものを容易に得ることができる。
【0026】
成形後の焼成は、空気または窒素などのガス雰囲気中において行われる。通常、焼成温度を450〜800℃、特に500〜800℃とし、焼成時間を0.5〜10時間とすることが、単斜晶ジルコニアの発生が少なく、ほとんどが正方晶ジルコニアとなるので好ましい。なお、通常、成形後、焼成前に、80℃〜200℃の温度で乾燥を行う。
【0027】
[廃触媒]本発明に用いる担体として、活性が低下した使用済の固体酸触媒を用いる。使用前における固体酸触媒は、正方晶の結晶構造を有するジルコニア部分とアルミナ部分で構成された担体と、この担体に担持された硫酸分とを含むものである。使用後においても、正方晶の結晶構造を有するジルコニア部分とアルミナ部分で構成された担体が残存することが必要である。使用条件によっては、硫酸分を含んでいない場合もある。
【0028】
この使用前の固体酸触媒は、他の方法で製造することもできる。他の方法としては、ジルコニア粉体、アルミナ粉体および硫酸分含有化合物を混練し、成形した後、焼成することでの製造が好ましい。この場合、混練、成形は、上述の担体の作成と同様にして行うことができる。この場合、硫酸分含有化合物の重量を、焼成前の全重量の3〜40重量%、特には、10〜30重量%とすることが、触媒活性の点から好ましい。焼成は、正方晶構造の酸化ジルコニウムが得られる温度で焼成する。
【0029】
[金属成分]
固体酸触媒の用途によっては、必要に応じて、例えば、異性化などの転化反応に用いられる場合には、第8族、第9族、第10族から選ばれる1種以上の金属成分を触媒に加えることが好ましい。第8族、第9族、第10族から選ばれる金属元素としては、特に白金、パラジウム、ルテニウム等が好適に用いられる。第8族、第9族、第10族から選ばれる1種以上の金属成分は、金属そのものよりも化合物の形態になっているものを用いる方が好ましい。これらの金属化合物は、無水物としても、水和物としても用いることができる。さらにこれらの金属化合物は1種でも、2種以上を混合したものでもよい。これらの金属化合物は、担体に硫酸分含有化合物を担持する際に担持する、または、担体原料粉を混練する際に金属化合物を混練することで触媒に含有させることが好ましい。
【0030】
担持方法としては、スプレー、浸漬等による含浸法や、イオン交換法等が好適に用いられる。第8族、第9族、第10族から選ばれる1種以上の金属化合物と硫酸分含有化合物の担持は、どちらを先に行ってもかまわない。また混合溶液を用いて同時に行う方法も好適に用いられる。また、これら化合物の担持と担持の間、あるいは担持後に、80℃〜200℃の温度での乾燥や、300℃より高く800℃より低い温度での0.5〜10時間の焼成を行っても差し支えない。さらに水素による還元処理を行ってもかまわない。これら金属成分の添加量は、最終的に得られる固体酸触媒中に占める第8族、第9族、第10族元素の合計量が、0.05〜10重量%となるように添加することが好ましい。
【0031】
[得られる固体酸触媒]
本発明で得られる固体酸触媒は100%硫酸より高い酸強度、酸強度Ho(ハメットの酸度関数)が−11.93より強い酸性を示す固体超強酸である。触媒の機械的強度は、直径1.5mmの円柱ペレットの側面圧壊強度として2kg以上、より好ましくは3kg以上、さらに好ましくは4kg以上が得られる。
【0032】
本発明による固体酸触媒が適用される酸触媒反応としては、異性化、不均化、ニトロ化、分解や、アルキル化、エステル化、アシル化、エーテル化、重合などの増炭反応など様々な反応が挙げられる。主な反応対象は、炭化水素類、すなわち、炭化水素、および、その炭化水素に置換基を付与したような炭化水素誘導体である。
【0033】
本発明の触媒は、炭化水素化合物の異性化に好ましく用いられる。特に、炭化水素化合物として沸点範囲−20℃〜110℃程度の石油留分にある直鎖炭化水素を、水素の存在下で分岐炭化水素に異性化する触媒に好ましく用いられる。特に直鎖パラフィンが分岐パラフィンに異性化され、オレフィンや芳香族化合物が水素化されて鎖状あるいは環状のパラフィンになり、さらに異性化される反応に好ましく用いられる。炭化水素化合物の異性化の反応条件としては、好ましい反応温度の範囲が100〜300℃、特には120〜240℃であり、好ましい反応圧力の範囲が1〜50kgf/cm2、好ましいLHSVの範囲が0.2〜10/hr、好ましい水素/原料比の範囲が0.2〜10mol/molである。
【0034】
触媒は反応前に水素による還元処理を行ってもよい。この場合の処理温度は300℃よりも低い温度が好ましく、特には250℃よりも低い温度が好ましい。処理温度が高すぎると触媒中の硫酸分が還元され、触媒活性が低下する。しかしこれらの還元処理は必須ではなく、反応が水素雰囲気下で行えさえすれば、特に還元処理を行う必要はない。
【0035】
【実施例】
以下、実施例により詳細に説明する。まず、評価方法を説明する。
【0036】
[X線回折による結晶種比の算出方法]
X線回折チャートからジルコニアの正方晶と単斜晶のピーク分離を行い、2θ=28.2°における単斜晶ジルコニアのピークの面積と、2θ=30.2°における正方晶ジルコニアのピークの面積の比(S28.2/S30.2比)を算出した。なお、S28.2/S30.2比が0.02以下では、単斜晶ピークが不明瞭となり検出不能であった。
【0037】
X線回折は、次の条件で行った。

Figure 0003989078
【0038】
[平均粒径の測定方法]
日機装(株) MICROTRAC粒度分析計を用い、湿式測定法で測定した。これは、粉体を水に分散し、流れる粉体群にレーザ光を照射し、その前方散乱光により粒度分析を行うものである。
【0039】
[炭化水素転化反応活性の評価]
固体酸触媒の活性評価法として、水素気流中での炭化水素の転化反応を行った。反応に用いた炭化水素は、n-ヘキサンもしくはn-ヘプタンである。n-ヘキサンの転化反応では、その生成物は、主としてヘキサンの分枝異性体であった。n-ヘプタンの転化反応の生成物は、ヘプタンの分枝異性体とヘプタンより分子量の小さい炭化水素の混合物であった。
【0040】
ヘキサン転化反応は、16〜24メッシュの粒に成形した4ccの触媒を、長さ50cm、内径1cmの固定床流通式反応器に充填し、n-ヘキサンの転化反応を反応温度:200℃、反応圧力:10kg/cm2-G、LHSV:1.5/h、水素原料比(H2/Oil):5mol/molの条件で行った。触媒の前処理として、300℃、1時間の水素還元を転化反応前に行った。反応の開始から1.5時間後のn-ヘキサン転化率をガスクロマトグラフィーにより分析して、ヘキサン転化活性を評価した。なお、n-ヘキサン転化率は、[1−(生成油中に占めるn-ヘキサンの重量%/原料油中に占めるn-ヘキサンの重量%)]×100(%)の式により求めた。
【0041】
ヘプタン転化反応は、16〜24メッシュの粒に成形した1gの触媒を、長さ50cm、内径1cmの固定床流通式反応器中に充填し、n-ヘプタンの転化反応を、反応温度:200℃、反応圧力:4kg/cm2-G、WHSV:3.4/h、水素原料比(H2/Oil):5mol/molの条件で行った。触媒の前処理として、300℃、1時間の水素還元を転化反応前に行った。反応の開始から2時間後のn-ヘプタンの転化率をガスクロマトグラフィーにより分析して、ヘプタン転化活性を評価した。なお、n-ヘプタン転化率は、[1−(生成油中に占めるn-ヘプタンの重量%/原料油中に占めるn-ヘプタンの重量%)]×100(%)の式により求めた。
【0042】
[触媒A]
市販の乾燥水和ジルコニアのうち、平均粒径1.2μmの粉体をジルコニア粉体として用いた。また、市販の水和アルミナ(擬ベーマイト)粉のうち、平均粒径10μmの粉体をアルミナ粉体として用いた。このジルコニア粉体300gとアルミナ粉体300gを加え、さらに硫酸アンモニウム115gを加え、攪拌羽根のついた混練機で水を加えながら2時間混練を行った。得られた混練物を直径1.6mmの円形開口を有する押出機より押し出して円柱状のペレットを成形し、110℃で乾燥して乾燥ペレットを得た。続いて、この乾燥ペレットを650℃で2時間焼成した。さらに、触媒中の白金量が0.5重量%になるように塩化白金酸の水溶液125mlを添加した。これを乾燥後、550℃で2時間焼成して触媒Aを得た。
【0043】
成形された触媒Aは、平均直径1.5mm、平均長さ5mmの円柱状であった。触媒Aのヘキサン転化活性は85%であり、S28.2/S30.2比は0.02以下であり、単斜晶構造はほとんど存在していない。
【0044】
[触媒B]
市販の乾燥水和ジルコニアのうち、平均粒径1.2μmの粉体をジルコニア粉体として用いた。また、市販の水和アルミナ(擬ベーマイト)粉のうち、平均粒径10μmの粉体をアルミナ粉体として用いた。このジルコニア粉体300gとアルミナ粉体300gを加え、攪拌羽根のついた混練機で水を加えながら2時間混練を行った。得られた混練物を直径1.6mmの円形開口を有する押出機より押し出して円柱状のペレットを成形し、110℃で乾燥して乾燥ペレットを得た。続いてこの乾燥ペレットを650℃で2時間焼成して担体Bを得た。
【0045】
この担体Bに、触媒中の白金量が0.5重量%になるように塩化白金酸の水溶液125mlを添加した。これを乾燥後、0.5mol/l硫酸水溶液125mlを添加し、再び乾燥し、600℃で2時間焼成して触媒Bを得た。成形された触媒Bは、平均直径1.5mm、平均長さ5mmの円柱状であった。担体Bおよび触媒BのS28.2/S30.2比は0.02以下であり、単斜晶構造はほとんど存在していない。触媒Bのヘプタン転化活性は67%であった。
【0046】
[劣化触媒C]
触媒Aを用いて炭化水素の異性化反応を長時間行い、劣化触媒Cを得た。この劣化触媒Cのヘキサン転化活性は30%であり、S28.2/S30.2比は0.02以下であった。
【0047】
[処理触媒D]
10gの劣化触媒Cを400℃、1時間窒素気流中で処理し、処理触媒Dを得た。この処理触媒Dのヘキサン転化活性は28%であり、S28.2/S30.2比は0.02以下であった。
【0048】
[処理触媒E]
10gの劣化触媒Cを400℃、1時間空気気流中で処理し、処理触媒Eを得た。この処理触媒Eのヘキサン転化活性は35%であり、S28.2/S30.2比は0.02以下であった。
【0049】
[再生触媒F]
10gの劣化触媒Cに0.5mol/l硫酸水溶液150mlを加えて接触させた後、過剰な硫酸水溶液を濾過により除去し、乾燥後、550℃で2時間焼成して再生触媒Fを得た。この再生触媒Fのヘキサン転化活性は84%であり、S28.2/S30.2比は0.02以下であった。
【0050】
[再生触媒G]
10gの劣化触媒Cに0.5mol/l硫酸アンモニウム水溶液150mlを加えて接触させた後、過剰な硫酸アンモニウム水溶液を濾過により除去し、乾燥後、550℃で2時間焼成して再生触媒Gを得た。この再生触媒Gのヘキサン転化活性は83%であり、S28.2/S30.2比は0.02以下であった。
【0051】
[劣化触媒H]
40gの触媒Bを10kg/cm2-G、600ml/分の水素気流中で450℃、24時間処理して劣化触媒Hを得た。劣化触媒Hのヘプタン転化活性は3%であり、S28.2/S30.2比は0.02以下であった。
【0052】
[処理触媒I]
10gの劣化触媒Hを550℃、2時間、空気中で焼成し、処理触媒Iを得た。処理触媒Iのヘプタン転化活性は10%であり、S28.2/S30.2比は0.02以下であった。
【0053】
[再生触媒J]
10gの劣化触媒Hに0.5mol/l硫酸水溶液150mlを加えて接触させた後、過剰な硫酸水溶液を濾過により除去し、乾燥後、550℃で2時間焼成して再生触媒Jを得た。再生触媒Jのヘプタン転化活性は67%であり、S28.2/S30.2比は0.02以下であった。
【0054】
[再生触媒K]
10gの劣化触媒Hに0.5mol/l硫酸アンモニウム水溶液150mlを加えて接触させた後、過剰な硫酸アンモニウム水溶液を濾過により除去し、乾燥後、550℃で2時間焼成して再生触媒Kを得た。再生触媒Kのヘプタン転化活性は66%であり、S28.2/S30.2比は0.02以下であった。
【0055】
[触媒L]
触媒Aで用いたと同様のジルコニア粉体50gに、触媒中の白金量が0.5重量%になるように塩化白金酸の水溶液125mlを添加した。これを乾燥後、0.5mol/l硫酸水溶液125mlを添加し、乾燥後、625℃で2時間焼成して粉体の触媒Lを得た。触媒Lの分解活性は62%であり、S28.2/S30.2比は0.07であった。
【0056】
[劣化触媒M]
40gの触媒Lを10kg/cm2-G、600ml/分の水素気流中で450℃、24時間処理して劣化触媒Mを得た。劣化触媒Mのヘプタン転化活性は2%であり、S28.2/S30.2比は1.5であった。
【0057】
[再生触媒N]
10gの劣化触媒Mに0.5mol/l硫酸水溶液150mlを加えて接触させた後、過剰な硫酸を濾過により除去し、乾燥後、550℃で2時間焼成して再生触媒Nを得た。再生触媒Nのヘプタン転化活性は20%であり、S28.2/S30.2比は1.6であった。[0001]
[Industrial application fields]
The present invention relates to a method for producing a solid acid catalyst useful for a reaction that requires an acid catalyst, and a method for producing a solid acid catalyst using a waste catalyst whose activity is reduced by use.
[0002]
[Prior art]
In the chemical industry, there are many known reactions that require an acid catalyst such as an alkylation reaction, an esterification reaction, and an isomerization reaction. Conventionally, an acid catalyst such as sulfuric acid, aluminum chloride, hydrogen fluoride, phosphoric acid, and paratoluenesulfonic acid is used for this type of reaction. However, these acid catalysts have the property of corroding metals, and it is necessary to use expensive corrosion resistant materials or to perform corrosion resistance treatment. In addition, it is usually difficult to separate the reactants after the reaction, and a waste acid treatment is required, and a complicated process such as alkali washing is required, resulting in a serious environmental problem. Furthermore, it was very difficult to reuse the catalyst.
[0003]
To solve this problem, a sulfate group-containing solid acid catalyst obtained by bringing a Group IV metal hydroxide or hydrated oxide into contact with a sulfuric acid-containing solution and calcining at 350 to 800 ° C. has been proposed. (Japanese Patent Publication No. 59-6181). This solid acid catalyst exhibits an acid strength stronger than 100% sulfuric acid (Hammett's acidity function H 0 is −11.93). These solid acid catalysts have high catalytic performance for various acid-catalyzed reactions due to their strong acid strength. In addition, it has the advantages of low corrosivity, easy separation from reactants, no waste acid treatment, and the ability to reuse the catalyst, and is expected to replace conventional acid catalysts in various industrial reactions. Has been.
[0004]
In addition, it is known that an oxide containing sulfuric acid exhibits an acid strength stronger than 100% sulfuric acid even for elements other than Group IV of the periodic table. For example, a solid acid catalyst obtained by adding a sulfuric acid-containing compound to aluminum hydroxide or oxide and calcining it exhibits an acid strength stronger than 100% sulfuric acid (Japanese Patent Laid-Open No. 5-96171, Arata, Trends in Physical Chemistry, Volume 2, Item 1 (1991)). In the case of alumina, it has been reported that the method of treating the material once calcined and crystallized at about 700 ° C. with sulfuric acid has the highest activity. It is also obvious that catalysts obtained by adding a metal having hydrogenation ability to these solid acid catalysts also show good hydrocarbon isomerization activity. However, it has also been clarified that these acid strengths are weaker than those of the zirconia sulfate solid acid catalyst.
[0005]
A method for producing a catalyst mainly for isomerization by supporting a platinum group metal on the above-mentioned catalyst is disclosed in Japanese Patent Publication Nos. 5-29503, 5-29504, 5-29505 and No. 5-29506. These are methods for producing a group IV metal or group III metal hydroxide, a treatment agent containing a sulfate group, and a sulfate group-containing solid acid catalyst using a group VIII metal as a main raw material. The obtained catalyst is said to be excellent in catalyst stability in linear hydrocarbon isomerization reaction, hydrocarbon alkylation reaction, etc., and has a lower decomposition reaction than conventional solid acid catalysts. However, these sulfuric acid-containing solid acid catalysts are produced in powder form, and need to be molded to an appropriate size when used in ordinary industrial reaction equipment such as a fixed bed flow reactor.
[0006]
JP-A-9-38494 discloses a method for producing a sulfate group-treated metal oxide catalyst molded body. This is a catalyst molding method characterized by molding using a metal hydroxide and boehmite, pre-baking the molded body at a temperature of 300 ° C. or higher and 500 ° C. or lower, and then performing a sulfate radical treatment. However, since the catalyst activity is formed by adding boehmite, the activity is lower than that of the powder catalyst without adding boehmite. Thus, it is said that the activity is reduced as compared with the catalyst without addition of alumina. It is also disclosed that the catalyst activity of a platinum-supported zirconia sulfate catalyst powder mixed with boehmite powder, kneaded with water and then molded and calcined is further greatly reduced in catalytic activity.
[0007]
[Problems to be solved by the invention]
The present invention solves such problems, and provides a method for producing a molded solid acid catalyst having a high activity equal to or higher than that of a powder catalyst while being a molded product of a solid acid catalyst containing sulfuric acid. There is to do.
[0008]
In addition, the solid acid catalyst cannot be used because its activity decreases with use, but it is desired to reuse the waste catalyst that has become unusable. The present invention is to provide a method for producing a solid acid catalyst having high activity from such a waste catalyst.
[0009]
[Means for Solving the Problems]
As a result of intensive studies by the present inventor, when zirconium hydroxide and alumina hydrate (pseudo boehmite) are kneaded and molded and calcined at 600 ° C., tetragonal zirconia preferred for the activity of the catalyst is easily formed. The present invention has been completed by finding that the catalyst in which sulfuric acid is supported on the calcined molded body has a catalytic activity equal to or higher than that of the powdered zirconia solid acid catalyst.
[0010]
That is, the method for producing a solid acid catalyst according to the present invention comprises a part composed of zirconia and / or hydrated zirconia having a tetragonal crystal structure (hereinafter also referred to as zirconia part), and a part composed of alumina and / or hydrated alumina (hereinafter referred to as hereafter). , Also referred to as an alumina portion), a method for producing a solid acid catalyst in which a sulfuric acid-containing compound is brought into contact with a support composed of a carrier and calcined at a temperature higher than 300 ° C. and lower than 800 ° C. The alumina powder and the sulfuric acid-containing compound are kneaded and molded, and then a calcined solid acid catalyst is used, and the one with reduced activity is used .
[0011]
Furthermore, it is preferable that the solid acid catalyst includes one or more metal components selected from Group 8, Group 9, and Group 10.
[0012]
[Operation and effect of the invention]
The present invention is a method in which a sulfuric acid-containing compound is brought into contact with a support composed of an alumina portion and a zirconia portion having a tetragonal crystal structure and calcined, and the production of tetragonal zirconia with high catalytic activity is obtained. Strong acid spots can be separately formed on the fired molded article by sulfuric acid. This is considered to bring about the high activity expression of the solid acid catalyst containing sulfuric acid of the present invention. Thereby, although this invention is a molded object, it can manufacture the solid acid catalyst with high activity.
[0013]
Accordingly, the catalyst comprising a carrier composed of a zirconia portion having an alumina portion and a tetragonal crystal structure, when a decrease in activity to the spent catalyst by using, the spent catalyst is contacted with a sulfuric acid content containing compound By calcination, the catalyst can be regenerated into a solid acid catalyst having the same high activity as before use, and the waste catalyst can be reused.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
[Support] The support used for the solid acid catalyst is composed of a part composed of alumina and / or hydrous alumina (alumina part) and a part composed of zirconia and / or hydrous zirconia having a tetragonal crystal structure (zirconia part). Used carriers are used. The carrier is not a powder but has a molded shape, and a carrier having a size of 0.5 to 20 mm can be easily obtained. Usually, the average particle size is 0.2 to 50 mm, particularly 0. .5 to 20 mm is preferably used. The alumina part and the zirconia part are present as 0.01-100 μm particles in the carrier.
[0015]
The weight of the alumina part contained in the support is preferably set so that the content of alumina in the total amount of zirconia and alumina in the catalyst is 5 to 90% by weight, particularly 10 to 50% by weight. . Below this range, not only does the tetragonal crystal stabilization effect of zirconia due to the presence of the alumina portion weaken, but also the crushing strength of the molded catalyst weakens. Moreover, when this range is exceeded, activity will fall relatively.
[0016]
[Crystal structure of tetragonal crystal]
The zirconia portion has a tetragonal crystal structure. This structure can be confirmed by X-ray diffraction. Specifically, the X-ray diffraction peak area ratio of 2θ = 28.2 ° and 2θ = 30.2 ° (hereinafter referred to as S28.2 / S30.2 ratio) by CuKα ray. S28.2 is a monoclinic zirconia peak area at 2θ = 28.2 °, and S30.2 is a tetragonal zirconia peak area at 2θ = 30.2 °, preferably 1.0 or less. Is preferably 0.05 or less, and high catalytic activity can be obtained by having almost no monoclinic structure.
[0017]
[Sulfate loading]
As the sulfuric acid-containing compound to be brought into contact with the carrier, sulfuric acid, ammonium sulfate, sulfurous acid, ammonium sulfite, thionyl chloride and the like are preferably used. There is no particular limitation on the concentration of the sulfuric acid-containing compound. The amount of the sulfuric acid-containing compound added is preferably such that the amount of sulfur in the resulting solid acid catalyst is 0.2 to 10% by weight, particularly 1 to 10% by weight.
[0018]
The sulfuric acid-containing compound may be used in any form, for example, in the form of a gas or an aqueous solution, as long as the compound can be sufficiently contacted with the carrier. Although there is no restriction | limiting in particular also about the method of making it contact, The impregnation method by spraying, immersion, etc., and the method of making it pass in a gaseous state and a catalyst layer are used suitably. After making it contact with a sulfuric acid content compound, it is calcined at 300 ° C-800 ° C, preferably 400 ° C-800 ° C, and the target solid acid catalyst is obtained. The firing time is usually 0.5 to 10 hours.
[0019]
[Preparation of Support] The support used for the solid acid catalyst is zirconium hydroxide and / or hydrated oxide (hereinafter also referred to as zirconia powder), aluminum hydrate and / or hydrated oxide (hereinafter referred to as alumina powder). is also referred to as body) were mixed kneaded, a molded product obtained by molding can be created preferably by firing at a temperature at which zirconia is obtained of tetragonal structure.
[0020]
By making the zirconia powder amorphous with no clear crystal structure due to diffraction of X-rays and electron beams, the crushing strength of the catalyst is improved, and zirconia is easily stabilized. Further, the use of aggregated particles, that is, secondary particles in which primary particles are aggregated has an average particle size of 0.2 to 20 μm, in particular 0.2 to 5 μm, improves catalyst activity and mechanical strength. Therefore, it is preferable.
[0021]
Zirconia powders may be produced in any way, but generally neutralize or hydrolyze zirconium salts and organometallic compounds such as oxychlorides, alcoholates, chlorides, sulfates, nitrates, oxysulfates, etc. Can be obtained. The main component of the zirconia powder is a mixture of zirconium hydroxide and zirconium hydrated oxide, zirconium hydroxide, or zirconium hydrated oxide.
[0022]
Furthermore, the zirconia powder can also be used as a composite metal hydroxide and / or a composite metal hydrated oxide. Other metal hydroxides and hydrated oxides may be added to the zirconium hydroxide and / or hydrated oxide. As other metals, titanium, hafnium, vanadium, chromium, manganese, iron, silicon, tin, gallium and the like are preferably used. These other metal compounds may be composite metal compounds. However, the zirconia powder is mainly composed of zirconium as a metal component. Specifically, of the total metal weight in the zirconia powder, zirconia is the metal weight of 70% by weight or more, particularly 90%. % Or more is preferably used. However, even if a small amount of alkali metal or alkaline earth metal is contained, it is preferable that the alkali activity or alkaline earth metal is not substantially contained since the catalytic activity is lowered.
[0023]
As the alumina powder, it is preferable to use an aggregated particle having an average particle size of 0.5 to 50 μm, particularly 0.5 to 20 μm. As the alumina powder, those obtained by various production methods can be used. In particular, it is preferable to use an aluminum hydrated oxide having a boehmite structure such as pseudoboehmite because the catalytic activity can be improved. When α-alumina or γ-alumina is used as the alumina powder, the mechanical strength of the catalyst molded body is relatively lowered, and the catalytic activity is lowered.
[0024]
Next, the zirconium powder and the alumina powder are kneaded. For kneading, a kneader generally used for catalyst preparation can be used. Usually, a method of adding raw material powder, adding water and mixing with a stirring blade is preferably used, but there is no particular limitation on the order of starting raw materials. Water is usually added at the time of kneading, but it is not particularly necessary to add water when the raw material powder is in the form of a slurry. The liquid to be added may be an organic solvent such as ethanol, isopropanol, acetone, methyl ethyl ketone, methyl isobutyl ketone. The temperature and kneading time at the time of kneading vary depending on the characteristics of the zirconia powder and the alumina powder as raw materials. An acid such as nitric acid or a base such as ammonia, an organic compound, a binder, ceramic fibers, a surfactant, zeolite, or the like may be added and kneaded.
[0025]
For molding after kneading, a molding method generally used for catalyst preparation can be used. In particular, extrusion molding using a screw type extruder or the like is preferably used because it can be efficiently molded into an arbitrary shape such as a pellet or honeycomb. Although there is no restriction | limiting in particular in the size of a molded object, Usually, the length of the cross section is shape | molded by the magnitude | size of 0.5 mm or more. For example, in the case of a cylindrical pellet, one having a diameter of about 0.5 to 10 mm and a length of about 0.5 to 15 mm can be easily obtained.
[0026]
Firing after molding is performed in a gas atmosphere such as air or nitrogen. Usually, it is preferable to set the firing temperature to 450 to 800 ° C., particularly 500 to 800 ° C., and to set the firing time to 0.5 to 10 hours, since there is little generation of monoclinic zirconia and almost all become tetragonal zirconia. In general, drying is performed at a temperature of 80 ° C. to 200 ° C. after molding and before firing.
[0027]
[Waste catalyst] As the carrier used in the present invention, a spent solid acid catalyst having reduced activity is used. The solid acid catalyst before use includes a support composed of a zirconia portion having a tetragonal crystal structure and an alumina portion, and a sulfuric acid content supported on the support. Even after use, it is necessary that a carrier composed of a zirconia portion having a tetragonal crystal structure and an alumina portion remain. Depending on the conditions of use, it may not contain sulfuric acid.
[0028]
This solid acid catalyst before use can also be produced by other methods. As another method, it is preferable to knead the zirconia powder, the alumina powder, and the sulfuric acid-containing compound, and then mold and then calcinate. In this case, kneading and molding can be performed in the same manner as in the preparation of the carrier. In this case, the weight of the sulfuric acid-containing compound is preferably 3 to 40% by weight, particularly 10 to 30% by weight of the total weight before firing, from the viewpoint of catalyst activity. Firing is performed at a temperature at which tetragonal zirconium oxide is obtained.
[0029]
[Metal component]
Depending on the use of the solid acid catalyst, for example, when used in a conversion reaction such as isomerization, one or more metal components selected from Group 8, Group 9 and Group 10 are catalyzed. It is preferable to add to. In particular, platinum, palladium, ruthenium, or the like is preferably used as the metal element selected from Group 8, Group 9, and Group 10. It is preferable to use one or more metal components selected from Group 8, Group 9, and Group 10 in the form of a compound rather than the metal itself. These metal compounds can be used both as anhydrides and as hydrates. Furthermore, these metal compounds may be used alone or as a mixture of two or more. These metal compounds are preferably supported when the sulfate-containing compound is supported on the support, or are preferably included in the catalyst by kneading the metal compound when kneading the carrier raw material powder.
[0030]
As the supporting method, an impregnation method such as spraying or dipping, an ion exchange method, or the like is preferably used. The loading of one or more metal compounds selected from Group 8, Group 9, and Group 10 and the sulfate-containing compound may be carried out first. Moreover, the method of performing simultaneously using a mixed solution is also used suitably. In addition, during or after the loading of these compounds, after drying, drying at a temperature of 80 ° C. to 200 ° C. or baking for 0.5 to 10 hours at a temperature higher than 300 ° C. and lower than 800 ° C. There is no problem. Further, reduction treatment with hydrogen may be performed. These metal components should be added so that the total amount of Group 8, 9 and 10 elements in the finally obtained solid acid catalyst is 0.05 to 10% by weight. Is preferred.
[0031]
[Obtained solid acid catalyst]
The solid acid catalyst obtained by the present invention is a solid superacid having an acid strength higher than 100% sulfuric acid and an acid strength Ho (Hammett's acidity function) having an acidity stronger than -11.93. The mechanical strength of the catalyst is 2 kg or more, more preferably 3 kg or more, and still more preferably 4 kg or more as the side crushing strength of a cylindrical pellet having a diameter of 1.5 mm.
[0032]
Examples of acid catalyzed reactions to which the solid acid catalyst according to the present invention is applied include various reactions such as isomerization, disproportionation, nitration, decomposition, and carbon increase reactions such as alkylation, esterification, acylation, etherification, and polymerization. Reaction. The main reaction targets are hydrocarbons, that is, hydrocarbons and hydrocarbon derivatives such as those obtained by adding substituents to the hydrocarbons.
[0033]
The catalyst of the present invention is preferably used for isomerization of hydrocarbon compounds. In particular, it is preferably used as a catalyst for isomerizing a linear hydrocarbon in a petroleum fraction having a boiling point range of about −20 ° C. to 110 ° C. as a hydrocarbon compound into a branched hydrocarbon in the presence of hydrogen. In particular, straight-chain paraffins are isomerized to branched paraffins, and olefins and aromatic compounds are hydrogenated to form chain or cyclic paraffins. As the reaction conditions for the isomerization of the hydrocarbon compound, a preferable reaction temperature range is 100 to 300 ° C., particularly 120 to 240 ° C., a preferable reaction pressure range is 1 to 50 kgf / cm 2 , and a preferable LHSV range is. The range of 0.2-10 mol / mol and a preferable hydrogen / raw material ratio is 0.2-10 mol / mol.
[0034]
The catalyst may be subjected to a reduction treatment with hydrogen before the reaction. In this case, the treatment temperature is preferably lower than 300 ° C, and particularly preferably lower than 250 ° C. If the treatment temperature is too high, the sulfuric acid content in the catalyst is reduced and the catalytic activity is lowered. However, these reduction treatments are not essential, and as long as the reaction can be performed in a hydrogen atmosphere, it is not necessary to perform the reduction treatment.
[0035]
【Example】
Hereinafter, the embodiment will be described in detail. First, the evaluation method will be described.
[0036]
[Calculation method of crystal seed ratio by X-ray diffraction]
The zirconia tetragonal and monoclinic peaks were separated from the X-ray diffraction chart, and the monoclinic zirconia peak area at 2θ = 28.2 ° and the tetragonal zirconia peak area at 2θ = 30.2 °. Ratio (S28.2 / S30.2 ratio) was calculated. When the S28.2 / S30.2 ratio was 0.02 or less, the monoclinic peak was unclear and could not be detected.
[0037]
X-ray diffraction was performed under the following conditions.
Figure 0003989078
[0038]
[Measurement method of average particle diameter]
Measurement was performed by a wet measurement method using a Nikkiso Co., Ltd. MICROTRAC particle size analyzer. In this method, powder is dispersed in water, a flowing powder group is irradiated with laser light, and particle size analysis is performed using the forward scattered light.
[0039]
[Evaluation of hydrocarbon conversion reaction activity]
As a method for evaluating the activity of the solid acid catalyst, a hydrocarbon conversion reaction was performed in a hydrogen stream. The hydrocarbon used in the reaction is n-hexane or n-heptane. In the n-hexane conversion reaction, the product was mainly the branched isomer of hexane. The product of the n-heptane conversion reaction was a mixture of branched isomers of heptane and hydrocarbons having a lower molecular weight than heptane.
[0040]
In the hexane conversion reaction, a 4cc catalyst molded into 16-24 mesh particles is packed in a fixed bed flow reactor with a length of 50cm and an inner diameter of 1cm, and the n-hexane conversion reaction is performed at a reaction temperature of 200 ° C. The pressure was 10 kg / cm 2 -G, LHSV was 1.5 / h, and the hydrogen raw material ratio (H 2 / Oil) was 5 mol / mol. As a pretreatment of the catalyst, hydrogen reduction at 300 ° C. for 1 hour was performed before the conversion reaction. The n-hexane conversion rate 1.5 hours after the start of the reaction was analyzed by gas chromatography to evaluate the hexane conversion activity. In addition, the n-hexane conversion rate was calculated | required by the formula of [1- (weight% of n-hexane in the product oil / weight% of n-hexane in raw material oil)] × 100 (%).
[0041]
In the heptane conversion reaction, 1 g of the catalyst formed into 16-24 mesh particles is packed into a fixed bed flow reactor having a length of 50 cm and an inner diameter of 1 cm, and the conversion reaction of n-heptane is performed at a reaction temperature of 200 ° C. , Reaction pressure: 4 kg / cm 2 -G, WHSV: 3.4 / h, hydrogen source ratio (H 2 / Oil): 5 mol / mol. As a pretreatment of the catalyst, hydrogen reduction at 300 ° C. for 1 hour was performed before the conversion reaction. Two hours after the start of the reaction, the conversion rate of n-heptane was analyzed by gas chromatography to evaluate the heptane conversion activity. The n-heptane conversion was determined by the formula [1-(% by weight of n-heptane in the produced oil /% by weight of n-heptane in the raw material oil)] × 100 (%).
[0042]
[Catalyst A]
Among commercially available dry hydrated zirconia, powder having an average particle size of 1.2 μm was used as zirconia powder. Further, among commercially available hydrated alumina (pseudo boehmite) powder, a powder having an average particle size of 10 μm was used as the alumina powder. 300 g of this zirconia powder and 300 g of alumina powder were added, 115 g of ammonium sulfate was further added, and kneading was carried out for 2 hours while adding water with a kneader equipped with a stirring blade. The obtained kneaded product was extruded from an extruder having a circular opening with a diameter of 1.6 mm to form a cylindrical pellet, and dried at 110 ° C. to obtain a dried pellet. Subsequently, the dried pellet was fired at 650 ° C. for 2 hours. Further, 125 ml of an aqueous solution of chloroplatinic acid was added so that the amount of platinum in the catalyst was 0.5% by weight. This was dried and then calcined at 550 ° C. for 2 hours to obtain Catalyst A.
[0043]
The molded catalyst A had a cylindrical shape with an average diameter of 1.5 mm and an average length of 5 mm. Catalyst A has a hexane conversion activity of 85%, an S28.2 / S30.2 ratio of 0.02 or less, and almost no monoclinic structure.
[0044]
[Catalyst B]
Among commercially available dry hydrated zirconia, powder having an average particle size of 1.2 μm was used as zirconia powder. Further, among commercially available hydrated alumina (pseudo boehmite) powder, a powder having an average particle size of 10 μm was used as the alumina powder. 300 g of this zirconia powder and 300 g of alumina powder were added, and kneading was performed for 2 hours while adding water with a kneader equipped with a stirring blade. The obtained kneaded product was extruded from an extruder having a circular opening with a diameter of 1.6 mm to form a cylindrical pellet, and dried at 110 ° C. to obtain a dried pellet. Subsequently, this dried pellet was calcined at 650 ° C. for 2 hours to obtain carrier B.
[0045]
To this carrier B, 125 ml of an aqueous solution of chloroplatinic acid was added so that the amount of platinum in the catalyst was 0.5% by weight. This was dried, 125 ml of 0.5 mol / l sulfuric acid aqueous solution was added, dried again, and calcined at 600 ° C. for 2 hours to obtain Catalyst B. The molded catalyst B had a cylindrical shape with an average diameter of 1.5 mm and an average length of 5 mm. The S28.2 / S30.2 ratio of Support B and Catalyst B is 0.02 or less, and there is almost no monoclinic structure. Catalyst B had a heptane conversion activity of 67%.
[0046]
[Deteriorated catalyst C]
Hydrocarbon isomerization reaction was carried out for a long time using the catalyst A to obtain a deteriorated catalyst C. The hexane conversion activity of this deteriorated catalyst C was 30%, and the S28.2 / S30.2 ratio was 0.02 or less.
[0047]
[Treatment catalyst D]
10 g of the deteriorated catalyst C was treated in a nitrogen stream at 400 ° C. for 1 hour to obtain a treated catalyst D. The treated catalyst D had a hexane conversion activity of 28%, and the S28.2 / S30.2 ratio was 0.02 or less.
[0048]
[Treatment catalyst E]
10 g of the deteriorated catalyst C was treated in an air stream at 400 ° C. for 1 hour to obtain a treated catalyst E. The treated catalyst E had a hexane conversion activity of 35% and an S28.2 / S30.2 ratio of 0.02 or less.
[0049]
[Regenerated catalyst F]
After adding 150 ml of a 0.5 mol / l sulfuric acid aqueous solution to 10 g of the deteriorated catalyst C and bringing them into contact with each other, the excess sulfuric acid aqueous solution was removed by filtration, dried, and calcined at 550 ° C. for 2 hours to obtain a regenerated catalyst F. The regenerated catalyst F had a hexane conversion activity of 84% and an S28.2 / S30.2 ratio of 0.02 or less.
[0050]
[Regenerated catalyst G]
After adding 150 ml of 0.5 mol / l ammonium sulfate aqueous solution to 10 g of the deteriorated catalyst C and bringing into contact therewith, the excess ammonium sulfate aqueous solution was removed by filtration, dried and then calcined at 550 ° C. for 2 hours to obtain a regenerated catalyst G. The regenerated catalyst G had a hexane conversion activity of 83%, and the S28.2 / S30.2 ratio was 0.02 or less.
[0051]
[Deteriorated catalyst H]
Deteriorated catalyst H was obtained by treating 40 g of catalyst B at 450 ° C. for 24 hours in a hydrogen stream of 10 kg / cm 2 -G and 600 ml / min. The degradation catalyst H had a heptane conversion activity of 3%, and the S28.2 / S30.2 ratio was 0.02 or less.
[0052]
[Treatment catalyst I]
10 g of the deteriorated catalyst H was calcined in the air at 550 ° C. for 2 hours to obtain a treated catalyst I. The treatment catalyst I had a heptane conversion activity of 10% and an S28.2 / S30.2 ratio of 0.02 or less.
[0053]
[Regenerated catalyst J]
After adding 150 ml of 0.5 mol / l sulfuric acid aqueous solution to 10 g of the deteriorated catalyst H and bringing into contact therewith, the excess sulfuric acid aqueous solution was removed by filtration, dried and then calcined at 550 ° C. for 2 hours to obtain a regenerated catalyst J. The regenerated catalyst J had a heptane conversion activity of 67% and an S28.2 / S30.2 ratio of 0.02 or less.
[0054]
[Regenerated catalyst K]
After adding 150 ml of 0.5 mol / l ammonium sulfate aqueous solution to 10 g of the deteriorated catalyst H and bringing into contact therewith, the excess ammonium sulfate aqueous solution was removed by filtration, dried and calcined at 550 ° C. for 2 hours to obtain a regenerated catalyst K. The heptane conversion activity of the regenerated catalyst K was 66%, and the S28.2 / S30.2 ratio was 0.02 or less.
[0055]
[Catalyst L]
To 50 g of the same zirconia powder as used in catalyst A, 125 ml of an aqueous solution of chloroplatinic acid was added so that the amount of platinum in the catalyst was 0.5% by weight. This was dried, 125 ml of 0.5 mol / l sulfuric acid aqueous solution was added, dried, and calcined at 625 ° C. for 2 hours to obtain powdered catalyst L. The decomposition activity of catalyst L was 62%, and the S28.2 / S30.2 ratio was 0.07.
[0056]
[Deteriorated catalyst M]
A deteriorated catalyst M was obtained by treating 40 g of the catalyst L at 450 ° C. for 24 hours in a hydrogen stream of 10 kg / cm 2 -G and 600 ml / min. The degradation catalyst M had a heptane conversion activity of 2% and an S28.2 / S30.2 ratio of 1.5.
[0057]
[Regenerated catalyst N]
After adding 150 ml of 0.5 mol / l sulfuric acid aqueous solution to 10 g of the deteriorated catalyst M and bringing them into contact, excess sulfuric acid was removed by filtration, dried, and calcined at 550 ° C. for 2 hours to obtain a regenerated catalyst N. The heptane conversion activity of the regenerated catalyst N was 20%, and the S28.2 / S30.2 ratio was 1.6.

Claims (2)

正方晶の結晶構造を有するジルコニアおよび/または含水ジルコニアからなる部分と、アルミナおよび/または含水アルミナからなる部分で構成された担体に硫酸分含有化合物を接触させ、300℃より高く800℃より低い温度で焼成する固体酸触媒の製造方法であって、前記担体が、ジルコニア粉体、アルミナ粉体および硫酸分含有化合物を混し、成形した後、焼成した固体酸触媒を使用し、活性が低下したものである固体酸触媒の製造方法。A sulfuric acid-containing compound is brought into contact with a support composed of a part composed of zirconia and / or hydrous zirconia having a tetragonal crystal structure and a part composed of alumina and / or hydrous alumina, and the temperature is higher than 300 ° C. and lower than 800 ° C. in a method for producing a sintered to a solid acid catalyst, wherein the support is zirconia powder, alumina powder and a sulfureous component-containing compound is mixed kneaded, after molding, by using the calcined solid acid catalyst, reduced activity A method for producing a solid acid catalyst. 前記固体酸触媒が第8族、第9族、第10族から選ばれる1種以上の金属成分を含む請求項1記載の固体酸触媒の製造方法。  The method for producing a solid acid catalyst according to claim 1, wherein the solid acid catalyst contains one or more metal components selected from Group 8, Group 9, and Group 10.
JP06761598A 1998-03-04 1998-03-04 Method for producing solid acid catalyst Expired - Fee Related JP3989078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06761598A JP3989078B2 (en) 1998-03-04 1998-03-04 Method for producing solid acid catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06761598A JP3989078B2 (en) 1998-03-04 1998-03-04 Method for producing solid acid catalyst

Publications (2)

Publication Number Publication Date
JPH11244701A JPH11244701A (en) 1999-09-14
JP3989078B2 true JP3989078B2 (en) 2007-10-10

Family

ID=13350056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06761598A Expired - Fee Related JP3989078B2 (en) 1998-03-04 1998-03-04 Method for producing solid acid catalyst

Country Status (1)

Country Link
JP (1) JP3989078B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083585A1 (en) * 2000-04-28 2001-11-08 Japan Energy Corporation Process for producing polyoxyalkylene glycol and catalyst for use in acid-catalyzed reaction
US6706659B2 (en) * 2001-08-29 2004-03-16 Uop Llc High-activity isomerization catalyst and process
JP4906207B2 (en) * 2001-09-28 2012-03-28 東レ・ダウコーニング株式会社 Method for producing polyorganosiloxane using solid acidic zirconia oxide catalyst
AU2003213408A1 (en) 2002-03-27 2003-10-08 Japan Energy Corporation Method of isomerizing hydrocarbon
JP4976016B2 (en) * 2006-01-17 2012-07-18 Jx日鉱日石エネルギー株式会社 Process for producing ester by transesterification
KR101044393B1 (en) * 2007-12-27 2011-06-27 주식회사 엘지화학 Catalyst composition comprising zirconium compounds for esterfication reaction and method for preparing ester compounds
WO2013005849A1 (en) 2011-07-01 2013-01-10 Toyota Jidosha Kabushiki Kaisha Exhaust Purification System for Internal Combustion Engine
JP5655961B2 (en) * 2011-07-01 2015-01-21 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US20150018572A1 (en) 2012-03-13 2015-01-15 Benefuel Inc. Solid Acid Catalyst, Method of Manufacturing the Same and Method of Manufacturing Fatty Acid Alkyl Ester Using the Same
CN114984978B (en) * 2022-07-28 2022-11-04 浙江晟格生物科技有限公司 Solid acid catalyst for preparing D-galactose and preparation method thereof

Also Published As

Publication number Publication date
JPH11244701A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
KR100327891B1 (en) Solid acid catalyst and process for preparing the same
JP3553878B2 (en) Solid acid catalyst, method for producing the same, and reaction method using the same
RU2595341C1 (en) Catalyst for isomerisation of paraffin hydrocarbons and preparation method thereof
JP3989078B2 (en) Method for producing solid acid catalyst
CA2439194C (en) Solid acid catalyst containing platinum group metal component, and method for preparation thereof
KR100939608B1 (en) Method of isomerizing hydrocarbon
US7026268B2 (en) Solid acid catalyst containing platinum group metal component and method for preparation thereof
JP3730792B2 (en) Hydrocarbon isomerization process
JPH0529504B2 (en)
JP3568372B2 (en) Method for producing solid acid catalyst
JP3922681B2 (en) Hydrocarbon isomerization process and solid acid catalyst for isomerization
JP2001070794A (en) Solid acid catalyst containing platinum group metal component
JP3973176B2 (en) Acid-catalyzed reaction method
JP2001070795A (en) Solid acid catalyst, preparation thereof and method for isomerizing hydrocarbon using the catalyst
WO2000056447A1 (en) Solid acid catalyst, method for preparing the same and reaction using the same
JPH0529506B2 (en)
JP4191059B2 (en) Hydrocarbon isomerization process
JPS6168138A (en) Manufacture of solid acid catalyst
JP2003277769A (en) Method for isomerization of hydrocarbon
JP2001040367A (en) Isomerization method for hydrocarbon, solid acid catalyst used therein, and isomerization apparatus
MXPA99005091A (en) Process for the preparation of a catalytic composition based on sulfated metallic oxides for the isomerization of paraffins and final product

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040209

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees