JPH1151630A - Method for measuring film thickness of very small part - Google Patents

Method for measuring film thickness of very small part

Info

Publication number
JPH1151630A
JPH1151630A JP21905397A JP21905397A JPH1151630A JP H1151630 A JPH1151630 A JP H1151630A JP 21905397 A JP21905397 A JP 21905397A JP 21905397 A JP21905397 A JP 21905397A JP H1151630 A JPH1151630 A JP H1151630A
Authority
JP
Japan
Prior art keywords
film
thickness
film thickness
coating film
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21905397A
Other languages
Japanese (ja)
Other versions
JP3916100B2 (en
Inventor
Shunji Misawa
三沢  俊司
Motoko Ichihashi
素子 市橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP21905397A priority Critical patent/JP3916100B2/en
Publication of JPH1151630A publication Critical patent/JPH1151630A/en
Application granted granted Critical
Publication of JP3916100B2 publication Critical patent/JP3916100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film thickness measuring method by which the film thickness of the very small part of a coating film which covers a molded plastic product having a sharp knife edge or recessing and projecting sections of several to several tens μm in size can be measured directly. SOLUTION: In a method for measuring film thickness, an electron beam (e) is projected upon a chromium film formed on the knife edge of a razor as a base material from the electron gun 2 of a film thickness measuring instrument 1 by narrowing down the diameter of the beam (e) to about 1 μm and the intensity of characteristic X-rays (CrKα rays) generated from the chromium film is measured. Then the film thickness of the chromium film is directly measured by comparing the measured intensity with the intensity of characteristic X-rays from standard samples made of the same chromium film and having known thicknesses.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は微小部分の膜厚測定
方法に関するものであり、更に詳しくは微小部分のコー
ティング膜に対して電子線を入射させ、発生する特性X
線の強度を測定して膜厚を測定する方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a film thickness of a minute portion, and more particularly, to a characteristic X which is generated by irradiating an electron beam to a coating film of a minute portion.
The present invention relates to a method for measuring a film thickness by measuring a line intensity.

【0002】[0002]

【従来の技術】ドリルの耐久性の向上、旋盤用バイトの
切削性の向上、カミソリの肌触り感の向上のために、鋭
い刃先面に対して目的に応じたコーティング膜を形成さ
せたり、また、数μmから数十μm単位の凹凸を有する
プラスチック成形品の表面にコーティング膜を形成させ
ることは広く行なわれている。しかし、この鋭い刃先面
や微小な凹凸を有する表面へのコーティング膜における
微小部分の膜厚を直接に測定することは困難であり、実
際には行われていない。
2. Description of the Related Art In order to improve the durability of a drill, the cutting performance of a turning tool, and the feel of a razor, a coating film can be formed on a sharp cutting edge according to the purpose. It is widely practiced to form a coating film on the surface of a plastic molded product having irregularities of several μm to several tens μm. However, it is difficult to directly measure the film thickness of a minute portion in a coating film on the sharp blade tip surface or a surface having minute irregularities, and the measurement is not actually performed.

【0003】平坦で広い面積を有する母材に施されたコ
ーティング膜の膜厚を直接に測定することは比較的容易
であり従来から行われている。コーティング膜と母材の
種類や材質によって異なるが、例えば、膜のある箇所と
無い箇所との段差部分に針の先端を接触させて移動させ
る触針式表面粗さ計を使用する機械的な方法、コーティ
ング膜による干渉縞を利用する光学的な方法、コーティ
ング膜の抵抗値や静電容量を測定する電気的な方法、コ
ーティング膜によるX線の干渉を利用するX線回折方
法、その他の方法が適宜選択されて適用されている。し
かし、鋭い刃先面や数μmから数十μm単位の凹凸を有
する表面へのコーティング膜の微小部分の膜厚は従来の
方法で直接に測定することは困難であるために、平坦で
広い面積を有するダミー板を用いて希望の膜厚のコーテ
ィング膜を形成させ得るコーティング条件を設定し、そ
の条件下に目的の微小部分へコーティング膜を形成させ
るか、または微小部分へのコーティング膜の形成と同時
にダミー板にもコーティング膜を形成させ、ダミー板に
おけるコーティング膜の膜厚を従来の方法で測定して、
目的とする微小部分のコーティング膜の膜厚を間接的に
求める方法が採用されている。
It is relatively easy to measure directly the thickness of a coating film applied to a base material having a flat and large area, and it has been conventionally performed. A mechanical method using a stylus-type surface roughness meter that moves the tip of the needle in contact with the step between the part with and without the film, depending on the type and material of the coating film and the base material. , An optical method using interference fringes by a coating film, an electrical method for measuring the resistance value and capacitance of the coating film, an X-ray diffraction method using X-ray interference by the coating film, and other methods. It is selected and applied as appropriate. However, it is difficult to directly measure the thickness of the coating film on a sharp edge or a surface having irregularities of several μm to several tens of μm by a conventional method. Set the coating conditions that can form the coating film of the desired thickness using the dummy plate that has, and under the conditions, form the coating film on the target minute part, or at the same time as forming the coating film on the minute part A coating film is formed on the dummy plate, and the thickness of the coating film on the dummy plate is measured by a conventional method.
A method of indirectly obtaining the thickness of a coating film of a target minute portion is employed.

【0004】[0004]

【発明が解決しようとする課題】微小部分のコーティン
グ膜についての従来の間接的な測定方法による膜厚はあ
くまで推測値であり直接的な測定値ではない。また、微
小部分のコーティング膜に対して従来のX線回折方法に
よるX線を絞って直接に照射することも考えられるが、
X線を細く絞るには限度があり、例えば、松村訳、「X
線回折要論」、アグネ社(1961)やW.T.スプロ
ール著、「X線の実務」、マックグローヒル社(196
4)[ W .T .Sproul 、 X−Rays
inPractice;McGraw Hill、
N.Y.(1964)]によっても、絞ったX線のビー
ム径はたかだか数100μmであって、鋭い刃先面や数
μmから数十μm単位の凹凸を有する表面へのコーティ
ング膜の微小部分に照射して膜厚の測定に適用すること
はできない。更には、X線は電子線と比較して透過力が
大きく、薄膜の膜厚を測定するには本質的に適していな
い。
The thickness of a coating film in a minute portion by a conventional indirect measurement method is an estimated value and not a direct measurement value. It is also conceivable to directly irradiate the X-rays by the conventional X-ray diffraction method on the coating film of a minute part,
There is a limit in narrowing down X-rays. For example,
An Introduction to X-Ray Diffraction ", Agne (1961) and W.W. T. Sprawl, Practical X-ray Practice, McGraw-Hill (196
4) [W. T. Sproul, X-Rays
inPractice; McGraw Hill,
N. Y. According to (1964)], the beam diameter of the focused X-ray is at most several hundred μm, and the film is formed by irradiating a minute portion of the coating film on a sharp edge surface or a surface having irregularities of several μm to several tens μm. It cannot be applied to thickness measurements. Furthermore, X-rays have a higher penetrating power than electron beams and are essentially not suitable for measuring the thickness of thin films.

【0005】本発明は上記の問題に鑑みてなされ、鋭い
刃先部分や数μmから数十μm単位の凹凸面のような微
小部分に対するコーティング膜の膜厚を直接的に測定し
得る膜厚測定方法を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a method for directly measuring the thickness of a coating film on a minute portion such as a sharp edge portion or an uneven surface of several μm to several tens μm. The task is to provide

【0006】[0006]

【課題を解決するための手段】上記の課題は請求項1の
構成によって解決されるが、その解決手段を実施の形態
によって例示すれば、本発明の微小部分の膜厚測定方法
は図2に示すように測定試料としてのカミソリの刃先で
ある母材11の表面に形成させたクロム膜12に対し
て、図1に示す膜厚測定装置1によってビーム径を約1
μmに絞った電子線eを入射させ、クロム膜12から発
生される特性X線(CrKα線)xの強度をX線検出器
6で測定し、同じクロム膜で膜厚既知の標準試料からの
特性X線の強度と比較することによって、クロム膜12
の膜厚を測定する。
Means for Solving the Problems The above-mentioned problems are solved by the structure of claim 1. If the means for solving the problems is exemplified by an embodiment, the method for measuring the film thickness of a minute portion of the present invention is shown in FIG. As shown in FIG. 1, a beam diameter of the chromium film 12 formed on the surface of a base material 11 which is a razor blade as a measurement sample is reduced to about 1 by a film thickness measuring apparatus 1 shown in FIG.
An electron beam e narrowed down to μm is made incident, and the intensity of characteristic X-rays (CrKα rays) x generated from the chromium film 12 is measured by the X-ray detector 6. By comparing with the intensity of the characteristic X-ray,
Is measured.

【0007】このような測定方法を採用することによっ
て、カミソリの刃先面や数μmから数十μmの凹凸を有
するプラスチック成形品の表面へのコーティング膜の微
小部分の膜厚を測定することができる。
By employing such a measuring method, it is possible to measure the film thickness of a minute portion of a coating film on the razor blade surface or the surface of a plastic molded product having irregularities of several μm to several tens μm. .

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態による
膜厚測定方法について、図面を参照し、具体的に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for measuring a film thickness according to an embodiment of the present invention will be specifically described with reference to the drawings.

【0009】本発明の微小部分の膜厚測定方法の原理
は、測定試料の微小部分に電子線を入射させ、発生する
特性X線の強度を測定することによるものである。すな
わち、入射される電子のエネルギーがコーティング膜の
原子の例えばK軌道電子の結合エネルギー以上である場
合には衝突によってK軌道電子ははじき出されて空席が
でき、その空席へL軌道の電子が落ち込む。その時、L
軌道電子とK軌道電子とのエネルギー準位の差に相当す
る電磁波、X線が発生するが、軌道エネルギーはそれぞ
れの原子に固有であるから、そのX線は特性X線または
固有X線、示性X線と称される。本発明の膜厚測定方法
はこの特性X線の強度によってコーティング膜の膜厚を
測定するので、電子線源とX線検出器とを備えた装置を
使用する。
The principle of the method for measuring the film thickness of a minute portion according to the present invention is based on measuring the intensity of a characteristic X-ray generated by irradiating an electron beam on a minute portion of a measurement sample. That is, when the energy of the incident electrons is equal to or higher than the binding energy of the K-orbital electrons of the atoms of the coating film, the K-orbital electrons are repelled by collision to form a vacant seat, and the L-orbital electrons fall into the vacant seat. At that time, L
Electromagnetic waves and X-rays corresponding to the energy level difference between orbital electrons and K-orbital electrons are generated. Since the orbital energies are unique to each atom, the X-rays are characteristic X-rays or intrinsic X-rays. X-rays. Since the film thickness measuring method of the present invention measures the film thickness of the coating film based on the characteristic X-ray intensity, an apparatus equipped with an electron beam source and an X-ray detector is used.

【0010】図1は実施の形態において使用される膜厚
測定装置1の基本的な構成を示す図であり、この装置構
成はX線マイクロアナライザ(EMPA)の創始者であ
るフランスのカスティン(Castaing)によって
1949年に発表された装置と同様である。すなわち、
膜厚測定装置1は電子銃2と呼ばれる電子線源、電子線
eを細く絞る電子レンズ3、測定試料S上で電子線eを
走査させる走査コイル4、測定試料Sを水平方向、上下
方向に動かしたり、回転、傾斜させる試料微動装置5、
X線検出器6、電子検出器7が真空容器8内に設置さ
れ、この真空容器8に排気用の真空ポンプ9が取り付け
られている。X線検出器6には波長分散形とエネルギー
分散形とがあるが、本実施の形態においては波長分散形
を使用する場合について説明する。すなわち、波長分散
形X線検出器6はX線を波長で分光するための分光結晶
を備えたX線分光器と各波長域におけるX線強度を検出
するためのシンチレーション計数管、光電子増倍管から
なっている。
FIG. 1 is a diagram showing a basic configuration of a film thickness measuring apparatus 1 used in the embodiment. This apparatus configuration is based on Casting, a founder of an X-ray microanalyzer (EMPA). ) In 1949. That is,
The film thickness measuring device 1 includes an electron beam source called an electron gun 2, an electron lens 3 for narrowing an electron beam e, a scanning coil 4 for scanning the electron beam e on a measurement sample S, and a measurement sample S in horizontal and vertical directions. Moving, rotating and tilting sample fine movement device 5,
An X-ray detector 6 and an electronic detector 7 are installed in a vacuum container 8, and a vacuum pump 9 for exhaust is attached to the vacuum container 8. The X-ray detector 6 includes a wavelength dispersion type and an energy dispersion type. In the present embodiment, the case where the wavelength dispersion type is used will be described. That is, the wavelength dispersive X-ray detector 6 includes an X-ray spectrometer provided with a spectral crystal for dispersing X-rays by wavelength, a scintillation counter for detecting X-ray intensity in each wavelength range, and a photomultiplier. Consists of

【0011】測定試料Sの膜厚の測定に際しては、電子
銃2内のフィラメントから出た熱電子は加速されて電子
銃2から電子線eとして放射され、電子レンズ3で直径
数μmから0.2μmまでの範囲内、通常的には直径約
1μmに絞られて測定試料S上に真円に照射される。電
子線eは必要に応じ走査コイル4で測定試料Sの面上を
任意に走査される。そして、その照射によって発生する
測定試料固有の特性X線xがX線検出器6に入り、その
強度が測定される。なお、電子検出器7は発生する二次
電子e’を参考的に観測するためのものであり、本発明
の目的とする膜厚の測定に直接の関連はない。勿論、こ
の電子検出器6を別途付設する電子顕微鏡の作像用とし
てもよい。
In measuring the film thickness of the measurement sample S, the thermoelectrons emitted from the filament in the electron gun 2 are accelerated and emitted as an electron beam e from the electron gun 2, and the electron lens 3 reduces the diameter from a few μm to 0.1 μm. The measurement sample S is irradiated onto the measurement sample S in a perfect circle within a range of up to 2 μm, usually about 1 μm in diameter. The electron beam e is arbitrarily scanned on the surface of the measurement sample S by the scanning coil 4 as needed. Then, characteristic X-rays x unique to the measurement sample generated by the irradiation enter the X-ray detector 6 and the intensity thereof is measured. Note that the electron detector 7 is for observing the generated secondary electrons e ′ for reference, and is not directly related to the measurement of the film thickness intended for the present invention. Of course, the electronic detector 6 may be used for image formation with an electron microscope separately provided.

【0012】図2は微小部分のコーティング膜の一例を
示し、母材11としてのカミソリの刃先の表面に形成さ
せたクロム(Cr)膜12とを示す断面図である。刃先
のCr膜12に径1μmに絞った例えば加速電圧15k
Vの電子線eを照射し、発生する特性X線の強度を測定
して、その膜厚を求めることができる。すなわち、図3
は膜厚既知のCr膜について加速電圧15kVの電子線
で測定されたCrの特性X線であるCrKα線の強度と
膜厚との関係を示す図であるが、測定試料のCr膜12
についてのCrKα線の強度を測定し、その強度を図3
と対照することによって測定試料Cr膜12の膜厚を求
めることができる。すなわち、膜厚測定装置1で測定し
て得られるCrKα線の強度が250カウント/秒であ
れば、そのCr膜12の膜厚は20nmであるというこ
とが分かる。
FIG. 2 is a sectional view showing an example of a coating film of a minute portion, showing a chromium (Cr) film 12 formed on the surface of a razor blade as a base material 11. For example, an acceleration voltage of 15 k narrowed to a diameter of 1 μm on the Cr film 12 of the cutting edge
The film thickness can be obtained by irradiating an electron beam e of V and measuring the intensity of the generated characteristic X-ray. That is, FIG.
FIG. 3 is a diagram showing the relationship between the film thickness and the thickness of a CrKα ray, which is a characteristic X-ray of Cr, measured with an electron beam at an accelerating voltage of 15 kV for a Cr film having a known thickness.
The intensity of the CrKα ray was measured for
By comparing with, the thickness of the measurement sample Cr film 12 can be obtained. That is, if the intensity of the CrKα ray obtained by measurement with the film thickness measuring device 1 is 250 counts / second, it can be understood that the film thickness of the Cr film 12 is 20 nm.

【0013】図3は特性X線の強度からCr膜厚を求め
るための補正曲線ないしは検量線の図に相当するが、そ
の線は原点を通る直線であり、膜厚が0の時はCrKα
線の強度も0であるので、補正曲線を作成するための標
準試料には膜厚既知の一試料があればよいことを示して
いる。
FIG. 3 corresponds to a diagram of a correction curve or a calibration curve for determining the Cr film thickness from the intensity of the characteristic X-ray. The curve is a straight line passing through the origin, and when the film thickness is 0, CrKα is obtained.
Since the intensity of the line is also 0, it indicates that one sample having a known film thickness may be used as the standard sample for creating the correction curve.

【0014】上記の例は単一元素の膜であるが、これ以
外に化合物膜の膜厚の測定も可能である。図4はプラス
チック成形品の表面に形成させた酸化アルミニウム(A
23 )膜について、加速電圧15kVの電子線で測
定されたAlの特性X線であるAlKα線の強度と膜厚
との関係を示す図であるが、図2のCrの場合と同様
に、その関係を示す線は原点を通る直線であり、化合物
においても補正曲線を作成するための標準試料には膜厚
既知の一試料があればよいことを示す。ただ、電子線の
照射はnA単位の電流が流れることを前提としているの
で、Al23 のような電気絶縁物については、コーテ
ィング母材が導電性でない場合、表面層あるいはそのご
く近傍を導電性にする工夫が必要であり、例えば、その
表面に炭素(C)や金(Au)などの導電性コーティン
グを行うこともその手段である。表面のみを導電性とす
るだけで膜厚は十分に測定される。
Although the above example is a single element film, the thickness of a compound film can also be measured. FIG. 4 shows aluminum oxide (A) formed on the surface of a plastic molded product.
FIG. 2 is a diagram showing the relationship between the intensity of AlKα radiation, which is a characteristic X-ray of Al, measured with an electron beam at an accelerating voltage of 15 kV, and the film thickness of the l 2 O 3 ) film. In addition, the line indicating the relationship is a straight line passing through the origin, and it is shown that a standard sample for preparing a correction curve for a compound only needs to be one sample with a known film thickness. However, since electron beam irradiation is based on the assumption that a current of nA units flows, for an electric insulator such as Al 2 O 3 , if the coating base material is not conductive, the surface layer or a very close portion thereof is conductive. It is necessary to devise a method to make the surface conductive, and for example, a conductive coating such as carbon (C) or gold (Au) may be applied to the surface. The film thickness is sufficiently measured only by making the surface conductive only.

【0015】本発明の膜厚測定方法によって測定するこ
とができる厚さの薄い方の限界は1nm(10Å)程度
であるが、厚い方の限界は加速電圧によっても異なる。
すなわち、電子銃で加速されて測定試料へ入射される電
子の最大侵入深さRを求めるモデル式、ないしは入射電
子の散乱深さを求めるモデル式が種々提案されているな
かで、副島は入射電子が侵入する実効深さRs(μm)
として経験的に次式を提案している。[副島啓義著、
「電子線マイクロアナリシス」、日刊工業新聞社(19
87)]。
The lower limit of the thickness which can be measured by the film thickness measuring method of the present invention is about 1 nm (10 °), but the upper limit of the thickness differs depending on the acceleration voltage.
That is, while various model formulas for calculating the maximum penetration depth R of electrons that are accelerated by the electron gun and incident on the measurement sample or model formulas for calculating the scattering depth of incident electrons have been proposed, the sub-island has the incident electron. Effective depth Rs (μm)
The following formula is empirically proposed. [Hiroyoshi Soejima,
"Electron Beam Micro-Analysis", Nikkan Kogyo Shimbun (19
87)].

【0016】 Rs=(1/40)(A/ρZ)V1.7 (式1) ここにおいて A;原子量、 ρ;密度 Z;原子番号 V;加速電圧(V) そして、(式1)の加速電圧V1.7 を(V1.7
E 1.7)に置き換えて、特性X線が発生する深さの実効
値Rsx(μm)は次式で求められるとしている。 Rsx=(1/40)(A/ρZ)(V1.7 −VE 1.7)(式2) ここにおいて VE ;特性X線の最小励起電圧(V)
Rs = (1/40) (A / ρZ) V 1.7 (Equation 1) where A: Atomic weight, ρ; Density Z; Atomic number V; Acceleration voltage (V) And acceleration voltage of (Equation 1) V 1.7 (V 1.7
V E 1.7 ), the effective value Rsx (μm) of the depth at which characteristic X-rays are generated is determined by the following equation. Rsx = (1/40) (A / ρZ) (V 1.7 −V E 1.7 ) (Equation 2) where V E ; minimum excitation voltage of characteristic X-ray (V)

【0017】しかし、特性X線の発生領域の深いところ
では入射電子のエネルギーの吸収効果が大きいので、膜
厚と特性X線の強度との間に直接関係が成立するのは
(式2)で示される特性X線が発生する深さの実効値R
sxの40%に相当する深さ迄である。図5は広い膜厚
範囲の金(Au)膜について、加速電圧25kVの電子
線で測定した特性X線であるAuLα線の強度と膜厚と
の関係を示す図であり、図中の矢印は測定条件を(式
2)に代入して得られる上記の実効値Rsxを示す。
However, since the effect of absorbing the energy of incident electrons is large in the deep part of the region where the characteristic X-rays are generated, a direct relationship holds between the film thickness and the characteristic X-ray intensity (Equation 2). The effective value R of the depth at which the indicated characteristic X-ray is generated
Up to a depth corresponding to 40% of sx. FIG. 5 is a diagram showing the relationship between the intensity and the film thickness of AuLα rays, which are characteristic X-rays measured with an electron beam at an acceleration voltage of 25 kV, for a gold (Au) film in a wide film thickness range. The above effective value Rsx obtained by substituting the measurement conditions into (Equation 2) is shown.

【0018】以上に説明したようにして、膜厚未知の測
定試料と膜厚既知の標準試料との特性X線の強度を比較
することにより、微小部分の膜厚を直接に測定すること
ができる。なお、市販の波長分散形X線検出器は元素の
周期表において原子番号4のベリウム(Be)から原子
番号92のウラン(U)までのすべての元素の検出が可
能となっている。また、前述したAl23 はその一例
であるが、上記の多数の元素の中の2種以上の組み合わ
せからなる化合物のコーティング膜の膜厚の測定も可能
である。そのほか、母材の材質(元素)とコーティング
膜の材質(元素)との組み合わせについては、化合物材
質(元素)の種類をA、B、Cで表示して、母材A/コ
ーティング膜Aの組み合わせについては、コーティング
膜Aの膜厚は測定不能であるが、母材A/化合物コーテ
ィング膜ABCの組み合わせについては、Aを除くB、
C元素による膜厚の測定は可能であり、化合物母材AB
C/コーティング膜Bの組み合わせについては、母材の
なかでAが主成分でありBが副成分である場合に、コー
ティング膜Bの膜厚の測定は可能である。
As described above, by comparing the characteristic X-ray intensities of the measurement sample with unknown thickness and the standard sample with known thickness, the thickness of the minute portion can be directly measured. . A commercially available wavelength-dispersive X-ray detector can detect all elements from beryllium (Be) having an atomic number of 4 to uranium (U) having an atomic number of 92 in the periodic table of elements. Although the above-mentioned Al 2 O 3 is one example, it is also possible to measure the thickness of a coating film of a compound composed of a combination of two or more of the above-mentioned many elements. In addition, regarding the combination of the material (element) of the base material and the material (element) of the coating film, the type of the compound material (element) is indicated by A, B, C, and the combination of the base material A / coating film A For, the thickness of the coating film A cannot be measured, but for the combination of the base material A / the compound coating film ABC, B, excluding A,
It is possible to measure the film thickness by the C element, and the compound base material AB
Regarding the combination of C / coating film B, when A is a main component and B is a subcomponent in the base material, the thickness of the coating film B can be measured.

【0019】本発明の実施の形態による膜厚測定方法は
以上のように構成され作用するが、勿論、本発明はこれ
に限られることなく本発明の技術的思想に基づいて種々
の変形が可能である。
The film thickness measuring method according to the embodiment of the present invention is constructed and operates as described above. Of course, the present invention is not limited to this, and various modifications can be made based on the technical idea of the present invention. It is.

【0020】例えば本実施の形態においては、特性X線
を分光結晶によって分光して検出する波長分散形X線検
出器(WDX、 Wavelength Disper
si−ve Xray Spectrometer)を
使用した膜厚測定装置1を説明したが、特性X線をエネ
ルギー的に分光して検出するエネルギー分散形X線検出
器(EDX、Energy Dispersive X
ray Spect−rometer)を使用しても
同様に膜厚の測定が可能である。すなわち、特性X線を
分光するのに波長を用いても、またエネルギーを用いて
も、両者は逆数の関係にあるので本質的には同じであ
る。エネルギー的な分光にはX線の検出が可能な半導体
が使用されるが、その半導体はP形シリコン(Si)に
リチウム(Li)を拡散させたものであり、ほかに計数
回路、および波形分離や定量計算を行なうコンピュータ
を組み合わせた検出システムが使用される。
For example, in the present embodiment, a wavelength-dispersive X-ray detector (WDX, Wavelength Disper) for detecting characteristic X-rays by spectrally dispersing them with a dispersive crystal.
Although the film thickness measuring apparatus 1 using the si-ve Xray Spectrometer has been described, an energy dispersive X-ray detector (EDX, Energy Dispersive X) for detecting a characteristic X-ray by energetically dispersing it is described.
The same method can be used to measure the thickness of the film even when using a ray spectrometer. That is, even if wavelength or energy is used to disperse the characteristic X-rays, they are essentially the same because they have a reciprocal relationship. For energy spectroscopy, a semiconductor capable of detecting X-rays is used. The semiconductor is made by diffusing lithium (Li) into P-type silicon (Si). And a detection system that combines a computer that performs quantitative calculation.

【0021】また本実施の形態においては、電子線のビ
ーム径を1μmに絞ったが、測定するコーティング膜の
面積によっては数μmから0.01μmまでの範囲内で
最も適したビーム径に選定されることは言うまでもな
い。
In this embodiment, the beam diameter of the electron beam is reduced to 1 μm. However, depending on the area of the coating film to be measured, the most suitable beam diameter is selected within the range of several μm to 0.01 μm. Needless to say.

【0022】また本実施の形態においては特に示さなか
ったが、膜厚測定装置1内における測定試料Sの位置決
めのために、一般的には電子顕微鏡ないしは光学顕微鏡
が付設される。
Although not particularly shown in the present embodiment, an electron microscope or an optical microscope is generally provided for positioning the measurement sample S in the film thickness measuring apparatus 1.

【0023】[0023]

【発明の効果】本発明の微小部分の膜厚測定方法は上記
のような形態で実施され、以下に述べるような効果を奏
する。
The method for measuring the film thickness of a minute portion according to the present invention is carried out in the above-described embodiment, and has the following effects.

【0024】鋭い刃先面や数μmから数十μm単位の凹
凸を有する表面へのコーティング膜の微小部分の膜厚
を、従来のように平坦性の良好なダミー板へのコーティ
ング膜の膜厚を測定して間接的に求めるのではなく、微
小部分へ絞った電子線を入射させて、コーティング膜の
膜厚を直接に測定することができる。
The film thickness of a minute portion of a coating film on a sharp edge surface or a surface having irregularities of several μm to several tens μm is determined by the thickness of a coating film on a dummy plate having good flatness as in the prior art. Rather than indirectly measuring and measuring the thickness, the thickness of the coating film can be directly measured by irradiating a focused electron beam to a minute portion.

【0025】また、コーティング膜の材質は 4Beから
92Uまでの元素が単独または化合物、混合物として測定
が可能であり、母材の材質は金属、セラミックからプラ
スチックスに至るまで材質に関係なく測定が可能であ
る。
The material of the coating film is from 4 Be.
The element up to 92 U can be measured alone or as a compound or a mixture, and the material of the base material can be measured regardless of the material, from metals, ceramics to plastics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態で使用する膜厚測定装置の基本構成
を示す図である。
FIG. 1 is a diagram showing a basic configuration of a film thickness measuring device used in an embodiment.

【図2】母材のカミソリの刃先に形成させたクロム膜を
示す断面図である。
FIG. 2 is a cross-sectional view showing a chromium film formed on a cutting edge of a razor as a base material.

【図3】クロム膜についての膜厚と特性X線の強度との
関係を示す図である。
FIG. 3 is a diagram showing the relationship between the thickness of a chromium film and the intensity of characteristic X-rays.

【図4】酸化アルミニウム膜についての膜厚と特性X線
の強度との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the thickness of an aluminum oxide film and the intensity of characteristic X-rays.

【図5】金膜についての膜厚と特性X線の強度との関係
を示す図である。
FIG. 5 is a diagram showing the relationship between the thickness of a gold film and the intensity of characteristic X-rays.

【符号の説明】[Explanation of symbols]

1 膜厚測定装置 2 電子銃 3 電子レンズ 6 X線検出器 8 真空容器 9 真空ポンプ 11 母材(カミソリの刃先) 12 クロム膜 S 測定試料 DESCRIPTION OF SYMBOLS 1 Film thickness measuring device 2 Electron gun 3 Electron lens 6 X-ray detector 8 Vacuum container 9 Vacuum pump 11 Base material (razor blade) 12 Chromium film S Measurement sample

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鋭い刃先面や数μmから数十μm単位の
凹凸を有する表面におけるコーティング膜の微小部分に
対し、細く絞った電子線を入射させることによって前記
コーティング膜の構成元素から発生する特性X線の強度
を測定し、 前記コーティング膜と同一の構成元素で厚さが既知の標
準試料からの特性X線の強度と比較して前記コーティン
グ膜の膜厚を求めることを特徴とする微小部分の膜厚測
定方法。
1. Characteristics generated from constituent elements of a coating film by making a finely focused electron beam incident on a minute portion of the coating film on a sharp blade tip surface or a surface having irregularities of several μm to several tens of μm. Measuring the X-ray intensity and comparing the intensity with the characteristic X-ray from a standard sample having the same constituent element as the coating film and having a known thickness to determine the thickness of the coating film; Thickness measurement method.
【請求項2】 前記数μmから数十μm単位の凹凸を有
する表面がプラスチック成形品の表面である請求項1に
記載の膜厚測定方法。
2. The film thickness measuring method according to claim 1, wherein the surface having irregularities of several μm to several tens μm is a surface of a plastic molded product.
【請求項3】 前記電子線ビーム径を約1μm、必要に
よっては数μmから0.2μmまでの範囲内の値に絞っ
て前記コーティング膜に入射させる請求項1または請求
項2に記載の微小部分の膜厚測定方法。
3. The minute portion according to claim 1, wherein the electron beam diameter is reduced to about 1 μm, and if necessary, to a value within a range of several μm to 0.2 μm, and then incident on the coating film. Thickness measurement method.
【請求項4】 下式 Rsx=(1/40)(A/ρZ)(V1.7 −VE 1.7) (但し、式においてAは原子量、ρは密度、Zは原子番
号、Vは加速電圧(V)、VE は特性X線の最小励起電
圧(V)を表わす。)で算出される特性X線が発生する
深さの実効値Rsx(μm)の40%に相当する深さま
でにおける前記コーティング膜の膜厚と発生する前記特
性X線の強度との間に直線関係が成立する範囲内におい
て前記膜厚の測定を行う請求項1から請求項3までの何
れかに記載の微小部分の膜厚測定方法。
4. The following equation: Rsx = (1/40) (A / ρZ) (V 1.7 −V E 1.7 ) (where A is atomic weight, ρ is density, Z is atomic number, and V is acceleration voltage ( V), V E above in to a depth equivalent to 40% represents a minimum excitation voltage characteristic X-ray (V).) characteristic X-rays to be calculated is generated in the depth of the effective value Rsx ([mu] m) coated 4. The microparticulate film according to claim 1, wherein the film thickness is measured within a range in which a linear relationship is established between the film thickness and the intensity of the generated characteristic X-ray. Thickness measurement method.
JP21905397A 1997-07-30 1997-07-30 Method for measuring film thickness of minute parts Expired - Fee Related JP3916100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21905397A JP3916100B2 (en) 1997-07-30 1997-07-30 Method for measuring film thickness of minute parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21905397A JP3916100B2 (en) 1997-07-30 1997-07-30 Method for measuring film thickness of minute parts

Publications (2)

Publication Number Publication Date
JPH1151630A true JPH1151630A (en) 1999-02-26
JP3916100B2 JP3916100B2 (en) 2007-05-16

Family

ID=16729535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21905397A Expired - Fee Related JP3916100B2 (en) 1997-07-30 1997-07-30 Method for measuring film thickness of minute parts

Country Status (1)

Country Link
JP (1) JP3916100B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109246A (en) * 2007-10-26 2009-05-21 Sharp Corp Film thickness measuring method
CN102205480A (en) * 2010-12-16 2011-10-05 北京首钢建设集团有限公司 Method for manufacturing spatial curved surface spiral box type component
CN103713002A (en) * 2013-12-27 2014-04-09 昆明贵研催化剂有限责任公司 Method for measuring coating thickness of automotive tail gas catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109246A (en) * 2007-10-26 2009-05-21 Sharp Corp Film thickness measuring method
CN102205480A (en) * 2010-12-16 2011-10-05 北京首钢建设集团有限公司 Method for manufacturing spatial curved surface spiral box type component
CN103713002A (en) * 2013-12-27 2014-04-09 昆明贵研催化剂有限责任公司 Method for measuring coating thickness of automotive tail gas catalyst

Also Published As

Publication number Publication date
JP3916100B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
US7680243B2 (en) X-ray measurement of properties of nano-particles
US6891158B2 (en) Nondestructive characterization of thin films based on acquired spectrum
Reuter Electron probe microanalysis
Reinhardt et al. Reference-free quantification of particle-like surface contaminations by grazing incidence X-ray fluorescence analysis
US20030080291A1 (en) System and method for characterization of thin films
US7449682B2 (en) System and method for depth profiling and characterization of thin films
Hayakawa et al. Fluorescence x‐ray absorption fine structure measurements using a synchrotron radiation x‐ray microprobe
EP3194941B1 (en) A method for measuring the mass thickness of a target sample for electron microscopy
KR100955434B1 (en) Nondestructive characterization of thin films using measured basis spectra and/or based on acquired spectrum
JPH1151630A (en) Method for measuring film thickness of very small part
Kowarik et al. A novel 3D printed radial collimator for x-ray diffraction
Procop et al. X-ray fluorescence as an additional analytical method for a scanning electron microscope
JPH08313244A (en) Method of measuring thickness of thin film
JP2592931B2 (en) X-ray fluorescence analyzer
JPH0798285A (en) X-ray evaluation apparatus
Tsuji et al. Surface studies by grazing‐exit electron probe microanalysis (GE‐EPMA)
Tsuji et al. Grazing-exit X-ray spectrometry for surface and thin-film analyses
JP2996210B2 (en) Sample absorption current spectroscopy
JP2507484B2 (en) Polarized total reflection X-ray fluorescence structure analyzer
Riedl et al. Preparation of high‐quality ultrathin transmission electron microscopy specimens of a nanocrystalline metallic powder
Orlikovsky et al. Image contrast in the backscattered electron mode in scanning electron microscopy and microtomography
JP3339267B2 (en) X-ray analysis method and X-ray analyzer
JPH0531724B2 (en)
JP2023107744A (en) Method and system for simultaneously executing x-ray absorption spectroscopy and fluorescent x-ray spectroscopic analysis
SU1755144A1 (en) Solid body x-ray spectrum analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees