JPH1144462A - Refrigerating circuit equipped with heat exchanger unit for controlling refrigerating capacity - Google Patents

Refrigerating circuit equipped with heat exchanger unit for controlling refrigerating capacity

Info

Publication number
JPH1144462A
JPH1144462A JP9215533A JP21553397A JPH1144462A JP H1144462 A JPH1144462 A JP H1144462A JP 9215533 A JP9215533 A JP 9215533A JP 21553397 A JP21553397 A JP 21553397A JP H1144462 A JPH1144462 A JP H1144462A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
condenser
pipe system
hot gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9215533A
Other languages
Japanese (ja)
Other versions
JP3456871B2 (en
Inventor
Tomokazu Adachi
智一 安達
Tsutomu Hirata
勉 平田
Takemasa Kandabashi
毅匡 神田橋
Hiroshi Iga
弘 伊賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tabai Espec Co Ltd
Original Assignee
Tabai Espec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabai Espec Co Ltd filed Critical Tabai Espec Co Ltd
Priority to JP21553397A priority Critical patent/JP3456871B2/en
Publication of JPH1144462A publication Critical patent/JPH1144462A/en
Application granted granted Critical
Publication of JP3456871B2 publication Critical patent/JP3456871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To permit the adjustment of a refrigerating capacity and improve heat exchanging performance as well as energy saving property by a method wherein an additional pipe system, branched from a branching part in a main pipe system from a compressor to a condenser and joining with a joining part, whose pressure is lower than a branching part between an evaporator and the condenser, is provided. SOLUTION: A refrigerating circuit is provided with a main pipe system 5, in which a compressor 1, a condenser 2, an expansion mechanism 3, an evaporator 4 and the like are connected, however, a hot gas system 6, branched from a branching part between the compressor 1 and the condenser 2 in the main pipe system 5 and joining with a joining part, positioned between the evaporator 4 and the condenser 2 and whose pressure is low, is provided. Further, a refrigerant heater 7, permitting heat exchange between hot gas in the refrigerant, which is turning from the main pipe system 5 and flowing through the hot gas system 6, and refrigerant solution, expanded in the expansion mechanism 3, as well as an electronic expansion valve 8, permitting the flow rate regulation of the hot gas, are provided. The refrigerant solution is evaporated partially by the heat exchange in the refrigerant heater 7 to adjust a refrigerating capacity whereby the cooling capacity of circulating air is regulated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒の流れ方向に
順次圧縮機と凝縮器と膨張機構と蒸発器とを結合した主
管系を備えた冷凍回路に関し、特に冷凍能力調整の容易
な冷凍回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration circuit having a main pipe system in which a compressor, a condenser, an expansion mechanism, and an evaporator are sequentially connected in the flow direction of a refrigerant, and more particularly, to a refrigeration circuit in which refrigeration capacity can be easily adjusted. About.

【0002】[0002]

【従来の技術】例えば環境試験装置のように、冷凍機と
共に加熱器又はこれに加えて加湿器を備えていて、温度
又はこれに加えて湿度を調整する装置に用いる冷凍機で
は、通常、台数等による段階的能力制御方式、インバー
タ方式、蒸発温度や蒸発圧力等を調整する自動膨張弁方
式、温湿度等によって開度調整する電子膨張弁方式、バ
イパス方式等によってその能力調整を行っている。
2. Description of the Related Art In general, a refrigerator used for an apparatus for adjusting a temperature or a humidity in addition to a heater or a humidifier in addition to the refrigerator, such as an environmental test apparatus, usually has a number of units. The capacity is adjusted by a stepwise capacity control method such as an inverter method, an automatic expansion valve method for adjusting the evaporation temperature and the evaporation pressure, an electronic expansion valve method for adjusting the opening degree by temperature and humidity, and a bypass method.

【0003】このような方式では、循環空気の温湿度条
件によって直接又は間接に冷媒流量を調整しているが、
通常の冷凍回路だけを利用した方式であるから、循環空
気の温度が高い条件においては、蒸発器での吸収熱及び
圧縮機での付加熱を一度凝縮器で取り去って低熱量の冷
媒にし、これによって循環空気を冷却した後、加熱器又
はこれに加えて加湿器によって再加熱して温湿度を調整
している。従って、いろいろ省エネ対策がされているも
のの、その効果は十分でない。又、冷媒流量を加減する
方式のものでは、冷凍機を流れる冷媒量が変動し、運転
状態の安定性に欠ける面がある。
In such a system, the flow rate of the refrigerant is directly or indirectly adjusted depending on the temperature and humidity conditions of the circulating air.
Because the system uses only a normal refrigeration circuit, under conditions where the temperature of the circulating air is high, the heat of absorption in the evaporator and the additional heat in the compressor are once removed by the condenser to produce a refrigerant with a low calorific value. After cooling the circulating air, the temperature or humidity is adjusted by reheating with a heater or a humidifier in addition to the heater. Therefore, although various energy-saving measures have been taken, the effects are not sufficient. In addition, in the system in which the flow rate of the refrigerant is adjusted, the amount of the refrigerant flowing through the refrigerator varies, and the stability of the operating state is lacking.

【0004】又、冷凍能力制御方式の1つとして、主冷
凍回路の圧縮機出口から再熱用の冷媒回路を分岐し、こ
れを流れるホットガスによって蒸発器で冷却された後の
循環空気を再熱することにより、その温湿度条件では過
大になっている冷凍能力を低減し、冷凍機の頻繁な発停
を防止するようにした再熱式冷凍能力制御方式が提案さ
れている(特開平6ー82122号公報参照)。
[0004] As one of refrigeration capacity control systems, a refrigerant circuit for reheating is branched from a compressor outlet of a main refrigeration circuit, and circulating air after being cooled by an evaporator by hot gas flowing through the circuit is re-used. A reheating type refrigerating capacity control method has been proposed in which a refrigerating capacity that is excessive under heat and humidity conditions is reduced by heating to prevent frequent starting and stopping of the refrigerating machine. -82122).

【0005】しかし、この再熱による方式では、ホット
ガスと循環空気との間で熱交換が行われるため、その効
率が悪く、従って省エネ効果が不十分である。又、バイ
パスしたホットガスが蒸発器に対して何ら直接的な作用
を及ぼさないため、ノンフロスト運転域の拡大というよ
うな蒸発器の特定の性能を向上させることはできない。
[0005] However, in the reheating method, heat is exchanged between hot gas and circulating air, so that the efficiency is low and the energy saving effect is insufficient. Also, specific performance of the evaporator, such as expansion of the non-frost operating range, cannot be improved because the bypassed hot gas has no direct effect on the evaporator.

【0006】[0006]

【発明が解決しようとする課題】本発明は従来技術に於
ける上記問題を解決し、冷凍能力を調整できると共に、
その調整において、熱交換性能及び省エネ性を向上さ
せ、圧縮機の運転状態を安定させ、蒸発器の特定の性能
を改善することができる冷凍回路を提供することを課題
とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art and can adjust the refrigeration capacity.
It is an object of the present invention to provide a refrigeration circuit capable of improving heat exchange performance and energy saving, stabilizing the operation state of a compressor, and improving specific performance of an evaporator in the adjustment.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するために、請求項1の発明は、冷媒の流れ方向に順次
圧縮機と凝縮器と膨張機構と蒸発器とを結合した主管系
を備えた冷凍回路において、前記主管系のうち前記圧縮
機から前記凝縮器に至る間の分岐部分から分岐して前記
蒸発器から前記凝縮器に至る間で前記分岐部分より圧力
の低い合流部分に合流する追加管系と、前記冷媒のうち
前記主管系から転向して前記追加管系を流れる分岐冷媒
と前記冷媒のうち前記膨張機構で膨張した主冷媒であっ
て少なくとも前記蒸発器内の上流側部分より上流側の主
冷媒との間の熱交換を可能にする熱交換手段と、前記分
岐冷媒の流量調整を可能にする流量調整手段と、を有す
ることを特徴とする。
In order to solve the above-mentioned problems, the present invention is directed to a main pipe system in which a compressor, a condenser, an expansion mechanism, and an evaporator are sequentially connected in the flow direction of a refrigerant. In the refrigeration circuit, a branch portion of the main pipe system from the branch from the compressor to the condenser and from the evaporator to the condenser at a junction lower in pressure than the branch portion from the evaporator to the condenser. An additional pipe system that merges, a main refrigerant expanded by the expansion mechanism among the refrigerant and a branch refrigerant that turns from the main pipe system and flows through the additional pipe system, and is at least an upstream side in the evaporator; It is characterized by having heat exchange means for enabling heat exchange with the main refrigerant upstream of the portion, and flow rate adjusting means for adjusting the flow rate of the branched refrigerant.

【0008】請求項2の発明は、上記に加えて、前記流
量調整手段は、制御対象によって制御可能な制御弁であ
ることを特徴とする。
According to a second aspect of the present invention, in addition to the above, the flow rate adjusting means is a control valve which can be controlled by a controlled object.

【0009】[0009]

【発明の実施の形態】図1は本発明を適用した冷凍回路
の構成例を示す。冷凍回路は、通常の構成として、冷媒
の流れ方向に順次、圧縮機1、凝縮器2、キャピラリー
チューブ等の膨張機構3、蒸発器4等を結合した主管系
5を備えている。なお、図示の凝縮器2は水冷式のもの
であるが、空冷式等であってもよいことは勿論である。
このような冷凍回路は、冷熱を利用する種々の装置に適
用されるが、以下では主として環境試験装置に用いた例
について説明する。
FIG. 1 shows a configuration example of a refrigeration circuit to which the present invention is applied. The refrigeration circuit includes, as a normal configuration, a main pipe system 5 in which a compressor 1, a condenser 2, an expansion mechanism 3 such as a capillary tube, an evaporator 4, and the like are sequentially connected in the flow direction of the refrigerant. Although the illustrated condenser 2 is a water-cooled type, it is needless to say that the condenser 2 may be an air-cooled type.
Such a refrigeration circuit is applied to various devices using cold heat, but an example mainly used for an environmental test device will be described below.

【0010】冷凍回路の特徴部分としては、主管系5の
うち圧縮機1から凝縮器2に至る間の分岐部分である上
流側5(51)から分岐して蒸発器4から凝縮器2に至
る間で上流側より圧力の低い合流部分である下流側5
(52)に合流した追加管系としてのホットガス系6、
上記冷媒のうち主管系5から転向してホットガス系6を
流れる分岐冷媒としての圧縮機1を出たホットガスと上
記冷媒のうち膨張機構3で膨張した主冷媒としての冷媒
液との間の熱交換を可能にする熱交換手段としての独立
した冷媒ヒータ7、ホットガスの流量調整を可能にする
流量調整手段としての電子膨張弁8等を有する。符号9
は、ホットガス系への分流を可能にする絞り弁であり、
下流側5(52)の圧力を上流側5(51)の圧力より
低くする作用をする。
The refrigeration circuit is characterized by branching from the upstream side 5 (51) of the main pipe system 5, which is a branch between the compressor 1 and the condenser 2, and extending from the evaporator 4 to the condenser 2. Downstream 5 which is a merging portion where the pressure is lower than the upstream between
Hot gas system 6 as an additional pipe system joined to (52),
Between the hot gas that has exited the compressor 1 as a branch refrigerant that is diverted from the main pipe system 5 and flows through the hot gas system 6 of the refrigerant, and the refrigerant liquid as the main refrigerant expanded by the expansion mechanism 3 of the refrigerant. It has an independent refrigerant heater 7 as heat exchange means for allowing heat exchange, an electronic expansion valve 8 as flow rate adjustment means for enabling flow rate adjustment of hot gas, and the like. Code 9
Is a throttle valve that enables the flow to the hot gas system,
It acts to make the pressure of the downstream side 5 (52) lower than the pressure of the upstream side 5 (51).

【0011】ホットガス系6は通常圧縮機1に近い部分
の配管系から分岐されるが、圧縮機自体の吐出管から分
岐されてもよい。又、冷凍回路が利用される環境試験装
置等で温湿度の高い条件がある場合には、圧縮機の圧縮
熱をできるだけ多く利用できるように、ホットガスを全
量バイパス可能な管サイズであることが望ましい。冷媒
ヒータ7は例えば通常のシェルアンドチューブ型の熱交
換器であり、その管内には低温の冷媒液が流され、管外
にはホットガスが導入される。そして、両者間で効率良
く熱交換を行わせることによって冷媒液を部分的に蒸発
させ、運転条件に応じてその保有する冷凍能力を調整
し、循環空気の冷却能力を調整することができる。
The hot gas system 6 is normally branched from a piping system near the compressor 1, but may be branched from a discharge pipe of the compressor itself. In addition, when there is a high temperature and humidity condition in an environmental test device or the like in which a refrigeration circuit is used, the pipe size should be such that all of the hot gas can be bypassed so that the compression heat of the compressor can be used as much as possible. desirable. The refrigerant heater 7 is, for example, a normal shell-and-tube type heat exchanger, in which a low-temperature refrigerant liquid flows in a tube, and a hot gas is introduced outside the tube. By efficiently exchanging heat between the two, the refrigerant liquid is partially evaporated, and the refrigeration capacity of the refrigerant liquid is adjusted according to the operating conditions, so that the cooling capacity of the circulating air can be adjusted.

【0012】図2は、本発明の冷凍回路を使用できる一
例である環境試験装置の概略構造を示す。環境試験装置
は通常の構造のものであり、試料Wの入れられる試験室
101、諸機器の配置される空調室102、循環空気の
流れ方向の順に設けられた前記蒸発器4、加湿器10
3、加熱器104、送風機105、試験室内の温度及び
湿度を検出する温度センサ106及び湿度センサ10
7、試験室内の試験すべき温湿度を設定する設定部10
8aを備えた制御装置108等を有する。加熱器104
及び加湿器103のヒータ出力は、蒸発器4で除湿及び
冷却された循環空気が設定部108aで設定した試験室
内の温湿度になるように制御装置108によって制御さ
れる。なお、環境試験装置としては、加湿器を備えず、
低温から高温まで温度条件だけを調整する形式のもので
あってもよい。
FIG. 2 shows a schematic structure of an environmental test apparatus as an example in which the refrigeration circuit of the present invention can be used. The environmental test apparatus has a normal structure, and includes a test chamber 101 in which a sample W is placed, an air-conditioning chamber 102 in which various devices are arranged, the evaporator 4 provided in the direction of flow of circulating air, and a humidifier 10.
3. Heater 104, blower 105, temperature sensor 106 for detecting temperature and humidity in the test chamber, and humidity sensor 10
7. Setting unit 10 for setting the temperature and humidity to be tested in the test room
8a, and the like. Heater 104
The controller 108 controls the heater output of the humidifier 103 so that the circulating air dehumidified and cooled by the evaporator 4 becomes the temperature and humidity in the test chamber set by the setting unit 108a. In addition, as an environmental test device, there is no humidifier,
A type in which only the temperature condition is adjusted from a low temperature to a high temperature may be used.

【0013】ホットガス用の電子膨張弁8は、例えばス
テッピングモータで駆動され、制御装置108からステ
ッピングモータにパルス信号を与えることにより、パル
ス数に応じた開度に制御される。パルス数は、制御対象
としての設定及び実測温湿度や加熱及び加湿ヒータの出
力等により、省エネ効果が大きく温湿度の制御性の良い
ように決められる。又、制御盤の図示しない操作部から
パルス数を与えることにより、電子膨張弁を手動操作す
ることもできる。
The electronic expansion valve 8 for hot gas is driven by, for example, a stepping motor, and is controlled to an opening corresponding to the number of pulses by giving a pulse signal from the control device 108 to the stepping motor. The number of pulses is determined such that the energy saving effect is large and the temperature / humidity controllability is good, depending on the setting as the control target, the measured temperature / humidity, the outputs of the heating and humidification heaters, and the like. The electronic expansion valve can also be manually operated by giving a pulse number from an operation unit (not shown) of the control panel.

【0014】図3は本発明を適用した他の冷凍回路の構
成例を示す。図4は図3と共に熱交換手段を内蔵する蒸
発器4の概略構造の一例を示し、図3のものを紙面に平
行の方向から見た図である。本例の冷凍回路は、図1の
ものと同様のホットガス系6及び電子膨張弁8と共に、
熱交換手段として図1の独立の冷媒ヒータ7に代えて蒸
発器4の一部分を構成するバランスゾーン10を有す
る。
FIG. 3 shows a configuration example of another refrigeration circuit to which the present invention is applied. FIG. 4 shows an example of a schematic structure of the evaporator 4 incorporating the heat exchange means together with FIG. 3, and is a view of FIG. 3 viewed from a direction parallel to the paper surface. The refrigeration circuit of this example includes a hot gas system 6 and an electronic expansion valve 8 similar to those of FIG.
As a heat exchange means, a balance zone 10 constituting a part of the evaporator 4 is provided instead of the independent refrigerant heater 7 of FIG.

【0015】蒸発器4は、矢印で示す循環空気の流れ方
向に平行に多数枚配列されたフィン41、図4において
多数の丸で示す位置でフィン41を貫通し拡管等によっ
て圧接するように取り付けられ実線及び破線で示すよう
に幅方向の両側で結合された蒸発管42、これらの配列
においてピッチ間隔の開いているバランスゾーン10に
おいて蒸発管42の間でこれらと同様に同じフィン41
に接合された加熱管10a、図を分かり易くするために
図において上方に分離して示す冷媒液入口の分流器43
及び分流管43a、冷媒の気化した冷媒ガス出口のヘッ
ダー44、ホットガス入口のヘッダー10b、液化した
ホットガス出口のヘッダー10c、等によって構成され
ている。
The evaporator 4 has a plurality of fins 41 arranged in parallel with the flow direction of the circulating air indicated by arrows, and is mounted so as to penetrate the fins 41 at positions indicated by many circles in FIG. Evaporating tubes 42 connected on both sides in the width direction as shown by solid lines and broken lines, likewise the same fins 41 between the evaporating tubes 42 in the balanced zone 10 which are spaced apart in their arrangement.
Pipe 10a joined to the refrigerant liquid inlet divider 43 shown separated upward in the figure for the sake of clarity
And a branch pipe 43a, a header 44 of a refrigerant gas outlet of a refrigerant, a header 10b of a hot gas inlet, a header 10c of a liquefied hot gas outlet, and the like.

【0016】このような蒸発器は、図1、2に示す通常
の蒸発器に較べて、バランスゾーン10が設けられてい
て、この部分で蒸発管42のピッチ間隔が広がっている
点が相違する。又、この蒸発器を有する図3に示す冷凍
回路も、図2の環境試験装置に適用することができるも
のである。
Such an evaporator is different from the ordinary evaporator shown in FIGS. 1 and 2 in that a balance zone 10 is provided and the pitch interval of the evaporator tubes 42 is widened in this portion. . Further, the refrigeration circuit shown in FIG. 3 having this evaporator can also be applied to the environmental test apparatus shown in FIG.

【0017】図5及び図6はそれぞれ図1及び図3に対
応した図で、本発明を適用した冷凍回路の更に他の例を
示す。これらの例では、ホットガス系6は、圧縮機1か
ら凝縮器2に至る間の分岐部分から分岐し、蒸発器4か
ら凝縮器2に至る間で分岐部分より圧力の低い合流部分
である圧縮機2の吸入側5(53)に合流するように設
けられている。この合流部分にはキャピラリーチューブ
等の膨脹機構61が設けられる。図1及び図3のホット
ガス系6では、圧縮機1や凝縮器2を含む主管系5の冷
媒流量が常に一定流量に維持され、冷凍回路の安定性が
良いが、電子膨脹弁8等の膨脹機構及び冷媒ヒータ7や
管系の抵抗によって凝縮器2の圧力が低下する。そのた
め、凝縮器2における冷媒飽和温度と冷却水や冷却空気
の温度との温度差を確保するために、圧縮機1の圧力を
高くしなければならない場合がある。これに対して図5
及び図6のホットガス系6では、ホットガスを圧縮機1
の吸入側に戻すので、必然的に大きな差圧が得られ、ホ
ットガス系6へ冷媒を容易に流すことができる。又、こ
の系の冷媒は冷媒ヒータ7によって冷却されて低温にな
るため、圧縮機を冷却したり、圧縮機の吐出ガス温度の
上昇を抑制する効果も生ずる。
FIGS. 5 and 6 correspond to FIGS. 1 and 3, respectively, and show still another example of a refrigeration circuit to which the present invention is applied. In these examples, the hot gas system 6 branches off from a branch part between the compressor 1 and the condenser 2 and is a condensed part having a lower pressure than the branch part between the evaporator 4 and the condenser 2. It is provided so as to join the suction side 5 (53) of the machine 2. An expansion mechanism 61 such as a capillary tube is provided at the junction. In the hot gas system 6 shown in FIGS. 1 and 3, the flow rate of the refrigerant in the main pipe system 5 including the compressor 1 and the condenser 2 is always maintained at a constant flow rate, and the stability of the refrigeration circuit is good. The pressure of the condenser 2 is reduced by the expansion mechanism and the resistance of the refrigerant heater 7 and the pipe system. Therefore, in order to secure a temperature difference between the refrigerant saturation temperature in the condenser 2 and the temperature of the cooling water or the cooling air, the pressure of the compressor 1 may need to be increased. In contrast, FIG.
In the hot gas system 6 shown in FIG.
Therefore, a large differential pressure is inevitably obtained, and the refrigerant can easily flow into the hot gas system 6. In addition, since the refrigerant of this system is cooled by the refrigerant heater 7 and has a low temperature, the effect of cooling the compressor and suppressing an increase in the discharge gas temperature of the compressor also occurs.

【0018】図7及び図8は、それぞれ、図5に示す冷
媒ヒータ7を備えた独立ヒータ方式の冷凍回路を持ち図
2の環境試験装置から加湿器103を省略した構造の環
境試験装置を用いて、手動操作によって電子膨張弁8に
与えるパルス数を変化させる実験を行ない、加熱及び加
湿ヒータの出力の変化状態を調べた結果の一部分を示
す。
FIGS. 7 and 8 each use an environmental test apparatus having a refrigeration circuit of the independent heater type provided with the refrigerant heater 7 shown in FIG. 5 and having a structure in which the humidifier 103 is omitted from the environmental test apparatus of FIG. An experiment was conducted in which the number of pulses applied to the electronic expansion valve 8 was changed by a manual operation, and a part of the result of examining the change in the output of the heating and humidifying heaters is shown.

【0019】図7(a)では、環境試験装置の試験室内
の運転温度を最低の−40°Cに設定して冷凍回路及び
諸機器を運転し、電子膨張弁8にパルス数として0、5
0及び100を与え、ホットガスライン6及び冷媒クー
ラ7にそれぞれのパルス数に応じたホットガス量を流
し、室内温度の安定したときの加熱器のヒータ出力を測
定している。その結果、0パルスでホットガス流量が0
のときには、冷媒ヒータ7における冷媒とホットガスと
の熱交換がなく、蒸発器を流れる冷媒の冷却熱量が最大
の状態に維持され、循環空気を冷却する効果が大きくこ
れを過剰に冷やすため、再加熱のために300Wのヒー
タ出力が必要になっている。
In FIG. 7A, the refrigeration circuit and various devices are operated by setting the operating temperature in the test chamber of the environmental test apparatus to the lowest -40 ° C.
By giving 0 and 100, hot gas amounts corresponding to the respective pulse numbers are passed through the hot gas line 6 and the refrigerant cooler 7, and the heater output of the heater when the indoor temperature is stabilized is measured. As a result, the hot gas flow rate becomes 0 at 0 pulse.
In this case, there is no heat exchange between the refrigerant and the hot gas in the refrigerant heater 7, the amount of cooling heat of the refrigerant flowing through the evaporator is maintained at the maximum, and the effect of cooling the circulating air is large, and this is excessively cooled. A heater output of 300 W is required for heating.

【0020】一方、パルス数を100まで上げると、冷
媒ヒータにおける熱交換量が多くなり、蒸発器を流れる
冷媒液がある程度蒸発してその冷却能力を下げ、循環空
気の温度低下量が減少し、加熱ヒータ出力は20Wまで
低下している。従ってこの例では、本発明の冷凍回路に
よってヒータ出力を300Wから20Wまで低下させる
ことができ、この程度の最低ヒータ出力で温度制御性を
維持できるとすれば、冷媒ヒータによって93%の省エ
ネ効果が得られることになる。
On the other hand, when the number of pulses is increased to 100, the amount of heat exchange in the refrigerant heater increases, the refrigerant liquid flowing through the evaporator evaporates to a certain extent, and its cooling capacity decreases, and the amount of decrease in the temperature of the circulating air decreases. The heater output has dropped to 20W. Therefore, in this example, if the refrigeration circuit of the present invention can reduce the heater output from 300 W to 20 W, and if the temperature controllability can be maintained at such a minimum heater output, a 93% energy saving effect can be obtained by the refrigerant heater. Will be obtained.

【0021】図7(b)は運転温度を−20°Cに設定
した例で、0パルスのときのヒータ出力970Wである
のに対して、パルス数を300にすることにより、ヒー
タ出力は20Wまで下がっている。従って、98%もの
省エネが可能である。同図(c)では、運転温度を最高
の80°Cに設定し、パルス数を0、50、100、2
00、300、400、及び490まで変化させてい
る。この例では、パルス数0の時の最大ヒータ出力18
00Wに対して、パルス490では750Wまで低下
し、出力値で1050W、低下率で58%の省エネが可
能である。
FIG. 7B shows an example in which the operating temperature is set to -20 ° C. The heater output is 970 W at the time of 0 pulse, and the heater output is 20 W by setting the number of pulses to 300. Down to. Therefore, energy saving of 98% is possible. In FIG. 3C, the operating temperature is set to the maximum of 80 ° C., and the number of pulses is set to 0, 50, 100, 2
00, 300, 400, and 490. In this example, when the number of pulses is 0, the maximum heater output 18
With respect to 00 W, the energy is reduced to 750 W with the pulse 490, and the energy can be saved by 1050 W in the output value and 58% in the decrease rate.

【0022】図8(a)は、図2のように加熱器及び加
湿器を備えた環境試験装置によって試験室内の運転温湿
度を低温高湿である10°C/相対湿度90%に設定
し、電子膨張弁8にパルス数として0、50、100、
及び200を与えた試験結果を示す。0パルスでは、蒸
発器を流れる冷媒の冷却熱量が多いために循環空気の冷
却効果及び除湿効果が大きく、再加熱及び再加湿のため
にそれぞれ410W及び750Wの加熱器及び加湿器の
ヒータ出力が必要になっている。パルス数を200にす
ると、前記ヒータ出力はそれぞれ130W及び260W
になった。従って、両ヒータの合計出力としての省エネ
効果は66%である。
FIG. 8 (a) shows an environment test apparatus equipped with a heater and a humidifier as shown in FIG. 2, in which the operating temperature and humidity in the test chamber are set to 10 ° C./90% relative humidity, which is low and high humidity. , The number of pulses to the electronic expansion valve 8 is 0, 50, 100,
And the test results giving 200. In the case of 0 pulse, since the cooling heat of the refrigerant flowing through the evaporator is large, the cooling effect of the circulating air and the dehumidifying effect are large, and the heater output of the heater and the humidifier of 410 W and 750 W are required for reheating and re-humidifying, respectively. It has become. When the number of pulses is 200, the heater outputs are 130 W and 260 W, respectively.
Became. Therefore, the energy saving effect as a total output of both heaters is 66%.

【0023】同図(b)は40°C/90%の運転条件
のときであり、0パルス、300パルスで加熱/加湿ヒ
ータ出力の合計値はそれぞれ1460W、320Wにな
り、出力で1140W、低減率で78%という大きな省
エネ効果が得られる。同図(c)は温湿度最大の80°
C/90%の運転条件のときであり、同様に0パルスと
300パルスで合計出力が1925Wと810Wにな
り、同様に1115W、58%という大きな省エネ効果
になっている。
FIG. 3B shows the condition under the operating condition of 40 ° C./90%, and the total value of the heating / humidifying heater output becomes 1460 W and 320 W at 0 pulse and 300 pulse, respectively, and the output is reduced by 1140 W. A large energy saving effect of 78% can be obtained. FIG. 8C shows the maximum temperature and humidity of 80 °.
Under the operating condition of C / 90%, similarly, the total output becomes 1925 W and 810 W with 0 pulse and 300 pulse, and the energy saving effect is 1115 W and 58% similarly.

【0024】次の表1は、図7及び図8の結果を含み実
験結果の全体を取りまとめた表である。又、図7及び図
8では示さなかったが、この表では、図6に示す蒸発器
のバランスゾーン10を用いた蒸発器利用方式の冷凍回
路の実験結果及び従来の循環空気再熱方式の参考実験結
果も示している。なお、表の出力最大値及び最小値は、
それぞれの実験毎に与えたパルス数の最小値及び最大値
のときにおける出力値である。
The following Table 1 summarizes the entire experimental results including the results of FIGS. 7 and 8. Although not shown in FIGS. 7 and 8, this table shows the experimental results of the refrigeration circuit using the evaporator using the balance zone 10 of the evaporator shown in FIG. 6 and the reference of the conventional circulating air reheating method. Experimental results are also shown. The output maximum and minimum values in the table are
This is the output value at the minimum and maximum values of the number of pulses given for each experiment.

【0025】[0025]

【表1】 [Table 1]

【0026】この表によれば、独立ヒータ方式では全て
の温湿度範囲において大きな省エネ効果が得られてい
る。又、蒸発器利用方式では、中間温度の40°C程度
以下の低温条件で省エネ効果があり、20°以下では特
に大きな省エネ効果が得られている。この省エネ効果
は、例えば同じ20°及び40°Cにおける従来型循環
空気再熱方式の43%及び31%より十分大きく、10
0%(実際には制御性から95%程度になる)及び51
%になっている。このような差は、本発明では、ホット
ガスによって蒸発器フィンを介して直接的に冷媒を加熱
しているため、循環空気を再熱するよりも大幅に熱交換
性能が向上していることに依る。なお、40°C、90
%では、ホットガス系を設けない場合の加熱/加湿合計
出力が1460Wであったため、この条件が省エネ効果
の生ずるほぼ上限である。
According to this table, in the independent heater system, a large energy saving effect is obtained in all temperature and humidity ranges. In the evaporator utilization system, an energy saving effect is obtained under low temperature conditions of about 40 ° C. or less of the intermediate temperature, and a particularly large energy saving effect is obtained when the temperature is 20 ° or less. This energy saving effect is sufficiently larger than 43% and 31% of the conventional circulating air reheating method at the same 20 ° and 40 ° C., for example.
0% (actually becomes about 95% from controllability) and 51
%It has become. Such a difference is that, in the present invention, since the refrigerant is directly heated by the hot gas through the evaporator fins, the heat exchange performance is significantly improved as compared with reheating the circulating air. It depends. In addition, 40 ° C, 90
%, The total output of heating / humidification when no hot gas system was provided was 1460 W, so this condition is almost the upper limit at which the energy saving effect occurs.

【0027】電子膨張弁8は、既述の如く運転すべき設
定温湿度等によって制御されるが、以上のような実験結
果が得られ諸特性が明らかになっている環境試験装置に
適用する場合には、制御装置108にそれぞれの運転温
湿度条件に対応して省エネ効果の大きくなるパルス数を
記憶させ、これを基準として設定温湿度条件等に基づい
て電子膨張弁8を介して冷凍能力を制御できる。その結
果、従来の種々の冷凍能力制御方式よりも大きな省エネ
効果を得ることができる。又、これと共に大きな冷凍能
力調整作用を得ることができる。なお、図1及び図3の
冷凍回路では、常に同程度の冷媒が循環されるので、運
転の安定性が良い。
The electronic expansion valve 8 is controlled by the set temperature and humidity to be operated as described above. However, when the electronic expansion valve 8 is applied to an environmental test apparatus in which the above experimental results are obtained and various characteristics are clarified. The controller 108 stores the number of pulses at which the energy saving effect increases in accordance with the respective operating temperature and humidity conditions, and uses this as a reference to set the refrigeration capacity via the electronic expansion valve 8 based on the set temperature and humidity conditions. Can control. As a result, it is possible to obtain a greater energy saving effect than in various conventional refrigeration capacity control systems. In addition, a large refrigeration capacity adjusting action can be obtained. In the refrigeration circuits of FIGS. 1 and 3, the same degree of refrigerant is always circulated, so that the operation stability is good.

【0028】又、本発明によれば、圧縮機のホットガス
で蒸発器に供給する冷媒を加熱するので、環境試験装置
等において温度保持のために必要な熱量が圧縮機の軸動
力以下の場合には、圧縮機における圧縮仕事の熱量で冷
媒を加熱すると共に、電子膨張弁のパルス数を室内の保
持温度に対応させて無段階に制御することにより、加熱
器を省略することが可能になる。この場合には、省エネ
と共に設備費用の低減が図られる。
According to the present invention, the refrigerant supplied to the evaporator is heated by the hot gas of the compressor. Therefore, when the amount of heat required to maintain the temperature in an environmental test device or the like is less than the shaft power of the compressor. By heating the refrigerant with the amount of heat of the compression work in the compressor and controlling the number of pulses of the electronic expansion valve in a stepless manner corresponding to the holding temperature in the room, the heater can be omitted. . In this case, energy saving and equipment cost reduction are achieved.

【0029】更に、冷媒加熱による冷却能力の低下によ
って蒸発器内の温度が上がるため、ノンフロスト運転域
を拡大することができる。又、蒸発管表面温度の上昇に
より、蒸発器における顕熱比を上げ、高湿条件等におけ
る無駄な除湿量を減らし、省エネに加えて加湿器の小型
化を図ることができる。
Further, since the temperature inside the evaporator rises due to the decrease in the cooling capacity due to the heating of the refrigerant, the non-frost operation range can be expanded. In addition, the rise in the surface temperature of the evaporator tube increases the sensible heat ratio in the evaporator, reduces the amount of waste dehumidification under high-humidity conditions and the like, and achieves energy saving and downsizing of the humidifier.

【0030】なお以上では、冷凍回路が環境試験装置に
適用される例を示したが、例えば冷蔵庫や他の空調設備
など、本発明は冷凍回路の冷熱源を用いて温度又は温湿
度調整をするような装置に広く適用できるものである。
又、環境試験装置等では運転状態が通常自動制御される
ため電子膨張弁の例を示したが、冷凍回路の利用される
装置によっては、手動もしくは遠隔手動の流量調整手段
を用いることも可能である。
In the above description, an example in which the refrigeration circuit is applied to an environmental test apparatus has been described. However, in the present invention, for example, a refrigerator or other air-conditioning equipment, the temperature or the temperature and humidity is adjusted by using a cold source of the refrigeration circuit. It can be widely applied to such devices.
Further, in the environmental test apparatus, etc., the operation state is usually automatically controlled, so the example of the electronic expansion valve has been shown. However, depending on the apparatus used for the refrigeration circuit, it is also possible to use manual or remote manual flow control means. is there.

【0031】[0031]

【発明の効果】以上の如く本発明によれば、請求項1の
発明においては、圧縮機と凝縮器との間の主管系から追
加管系を分岐し、この追加管系に、その中を流れる分岐
流体であるホットガスと膨張機構で膨張した低温の主冷
媒とを熱交換させる熱交換手段及びホットガスの流量調
整手段を設けるので、流量調整手段によってホットガス
流量を調整することにより、熱交換手段における熱交換
量を調整し、主冷媒の有する低熱源としての熱量を調整
することができる。
As described above, according to the present invention, according to the first aspect of the present invention, an additional pipe system is branched from the main pipe system between the compressor and the condenser, and the additional pipe system is divided into the additional pipe system. Since the heat exchange means for exchanging heat between the flowing hot gas as the branch fluid and the low-temperature main refrigerant expanded by the expansion mechanism and the hot gas flow rate adjusting means are provided, by adjusting the hot gas flow rate by the flow rate adjusting means, The amount of heat exchange in the exchange means can be adjusted, and the amount of heat as a low heat source of the main refrigerant can be adjusted.

【0032】この場合、再熱方式のように蒸発器を通過
する循環空気等の被冷却媒体のみを加熱するのではな
く、蒸発器の冷媒を直接的にホットガスで加熱するの
で、熱交換効率が良い。従って、冷凍能力の調整効果が
大きいと共に、過大な冷凍能力を削減し、被冷却気体等
の温湿度条件を調整するための再加熱や再加湿に要する
熱量を減少させ、大きな省エネ効果を得ることができ
る。
In this case, instead of heating only the medium to be cooled such as circulating air passing through the evaporator as in the reheating method, the refrigerant in the evaporator is directly heated by hot gas, so that the heat exchange efficiency is improved. Is good. Therefore, the effect of adjusting the refrigerating capacity is large, and the excessive refrigerating capacity is reduced, the amount of heat required for reheating and rehumidifying for adjusting the temperature and humidity conditions of the gas to be cooled is reduced, and a large energy saving effect is obtained. Can be.

【0033】更に、ホットガス供給において圧縮機の圧
縮仕事によって発生した熱量を利用できるので、この熱
量が環境試験装置等において温度保持のために必要な加
熱熱量以上である場合には、加熱器の省略が可能にな
る。その結果、装置や制御機構が簡素になり設備費用の
低減が図られる。そして更に、主冷媒を加熱することに
よって蒸発器内の温度が上がるため、無着霜運転の可能
な温湿度域を拡大することができる。又、湿度調整を行
う装置において、蒸発管表面温度の上昇により、蒸発器
における顕熱比を上げ、高湿条件等における無駄な除湿
量を減らし、省エネと共に加湿器の小型化も可能にな
る。
Further, since the amount of heat generated by the compression work of the compressor can be used in the supply of hot gas, if the amount of heat is equal to or more than the amount of heat required to maintain the temperature in an environmental test device or the like, the heating of the heater is performed. Omission is possible. As a result, the apparatus and the control mechanism are simplified, and the equipment cost is reduced. Further, since the temperature in the evaporator is increased by heating the main refrigerant, the temperature and humidity range in which the frost-free operation can be performed can be expanded. Further, in a device for adjusting humidity, the sensible heat ratio in the evaporator is increased by increasing the surface temperature of the evaporator tube, the amount of waste dehumidification under high-humidity conditions and the like is reduced, and energy saving and downsizing of the humidifier become possible.

【0034】又、以上のようにホットガスと主冷媒とが
効率良く熱交換することによってホットガスの保有熱量
が十分低下するため、追加管系を分岐部分より下流側で
凝縮器の前に合流させると、これを凝縮器で全て低熱量
の液冷媒にするときに冷却水等の冷却媒体の必要流量が
減少し、この点でも省エネ効果を得ることができる。一
方、このように分岐した追加管系でホットガスを熱交換
させても、これを再び主管系に合流させるので、冷凍回
路の冷媒循環量をほぼ同程度の流量に維持でき、冷凍回
路の動作状態の安定性を確保することができる。
Further, since the heat exchange between the hot gas and the main refrigerant is efficiently performed as described above, the amount of heat retained in the hot gas is sufficiently reduced. Therefore, the additional pipe system is joined downstream of the branch portion and before the condenser. When this is done, the required flow rate of a cooling medium such as cooling water is reduced when all the liquid refrigerant is converted into a liquid refrigerant having a low calorific value in the condenser, and an energy saving effect can be obtained also in this respect. On the other hand, even when the hot gas is heat-exchanged in the additional pipe system branched in this way, the hot gas is again joined to the main pipe system, so that the refrigerant circulation amount of the refrigeration circuit can be maintained at substantially the same flow rate, and the operation of the refrigeration circuit can be maintained. The stability of the state can be ensured.

【0035】一方、追加管系を圧縮機の入口側に合流さ
せると、追加管系における分岐部分と合流部分との差圧
が大きいので、このラインに冷媒を流すのが極めて容易
になる。又、追加管系の冷媒は熱交換手段によって冷却
されて低温になるため、圧縮機を冷却したり、圧縮機の
吐出ガス温度の上昇を抑制する効果がある。
On the other hand, when the additional piping is joined to the inlet side of the compressor, the pressure difference between the branch and the junction in the additional piping is large, so that it is extremely easy to flow the refrigerant through this line. Further, since the refrigerant in the additional pipe system is cooled by the heat exchange means to a low temperature, it has the effect of cooling the compressor and suppressing an increase in the temperature of the discharge gas of the compressor.

【0036】請求項2の発明においては、流量調整手段
を制御対象によって制御可能な制御弁にするので、例え
ば環境試験装置のように設定温湿度等の制御対象を与え
ることにより、自動的に流量調整手段の流量を調整し、
自動的に冷凍能力の調整と省エネ効果とが得られる自動
運転装置を実現できる。
According to the second aspect of the present invention, since the flow rate adjusting means is a control valve which can be controlled by the control target, the flow rate can be automatically controlled by giving a control target such as a set temperature and humidity as in an environmental test apparatus. Adjust the flow rate of the adjusting means,
It is possible to realize an automatic operation device capable of automatically adjusting the refrigerating capacity and achieving an energy saving effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した冷凍回路の一例を示す説明図
である。
FIG. 1 is an explanatory diagram showing an example of a refrigeration circuit to which the present invention is applied.

【図2】上記冷凍回路を適用できる環境試験装置の一例
を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of an environmental test apparatus to which the refrigeration circuit can be applied.

【図3】本発明を適用した他の冷凍回路を例を示す説明
図である。
FIG. 3 is an explanatory diagram showing an example of another refrigeration circuit to which the present invention is applied.

【図4】上記冷凍回路の熱交換手段であるバランスゾー
ンを備えた蒸発器の説明図である。
FIG. 4 is an explanatory view of an evaporator provided with a balance zone as a heat exchange means of the refrigeration circuit.

【図5】本発明を適用した冷凍回路の更に他の例を示す
説明図である。
FIG. 5 is an explanatory diagram showing still another example of a refrigeration circuit to which the present invention is applied.

【図6】本発明を適用した冷凍回路の更に他の例を示す
説明図である。
FIG. 6 is an explanatory view showing still another example of a refrigeration circuit to which the present invention is applied.

【図7】(a)乃至(c)は本発明を適用した装置を用
いた実験結果の一例を示すグラフである。
FIGS. 7A to 7C are graphs showing examples of experimental results using an apparatus to which the present invention is applied.

【図8】(a)乃至(c)は本発明を適用した装置を用
いた実験結果の他の例を示すグラフである。
FIGS. 8A to 8C are graphs showing other examples of the experimental results using the apparatus to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 膨張機構 4 蒸発器 5 主管系 6 ホットガス系(追加管系) 7 冷媒ヒータ(熱交換手段) 8 電子膨張弁(流量調整手段) 10 バランスゾーン(熱交換手段) DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Expansion mechanism 4 Evaporator 5 Main pipe system 6 Hot gas system (Additional pipe system) 7 Refrigerant heater (Heat exchange means) 8 Electronic expansion valve (Flow control means) 10 Balance zone (Heat exchange means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊賀 弘 大阪府大阪市北区天神橋3丁目5番6号 タバイエスペック株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hiroshi Iga 3-5-6 Tenjinbashi, Kita-ku, Osaka-shi, Osaka

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒の流れ方向に順次圧縮機と凝縮器と
膨張機構と蒸発器とを結合した主管系を備えた冷凍回路
において、 前記主管系のうち前記圧縮機から前記凝縮器に至る間の
分岐部分から分岐して前記蒸発器から前記凝縮器に至る
間で前記分岐部分より圧力の低い合流部分に合流する追
加管系と、前記冷媒のうち前記主管系から転向して前記
追加管系を流れる分岐冷媒と前記冷媒のうち前記膨張機
構で膨張した主冷媒であって少なくとも前記蒸発器内の
上流側部分より上流側の主冷媒との間の熱交換を可能に
する熱交換手段と、前記分岐冷媒の流量調整を可能にす
る流量調整手段と、を有することを特徴とする冷凍回
路。
1. A refrigeration circuit having a main pipe system in which a compressor, a condenser, an expansion mechanism, and an evaporator are sequentially connected in a flow direction of a refrigerant, wherein the main pipe system includes a main pipe system from the compressor to the condenser. An additional pipe system that branches off from the branch portion of the evaporator and merges into a confluence portion having a lower pressure than the branch portion from the evaporator to the condenser; Heat exchange means for allowing heat exchange between the branch refrigerant flowing through the main refrigerant expanded by the expansion mechanism and the main refrigerant at least upstream of the upstream portion in the evaporator, A refrigeration circuit, comprising: a flow rate adjusting unit configured to adjust a flow rate of the branch refrigerant.
【請求項2】 前記流量調整手段は、制御対象によって
制御可能な制御弁であることを特徴とする請求項1に記
載の冷凍回路。
2. The refrigeration circuit according to claim 1, wherein the flow rate adjusting means is a control valve that can be controlled by a control target.
JP21553397A 1997-05-30 1997-07-25 Refrigeration circuit with heat exchanger for refrigeration capacity control Expired - Lifetime JP3456871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21553397A JP3456871B2 (en) 1997-05-30 1997-07-25 Refrigeration circuit with heat exchanger for refrigeration capacity control

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15807897 1997-05-30
JP9-158078 1997-05-30
JP21553397A JP3456871B2 (en) 1997-05-30 1997-07-25 Refrigeration circuit with heat exchanger for refrigeration capacity control

Publications (2)

Publication Number Publication Date
JPH1144462A true JPH1144462A (en) 1999-02-16
JP3456871B2 JP3456871B2 (en) 2003-10-14

Family

ID=26485328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21553397A Expired - Lifetime JP3456871B2 (en) 1997-05-30 1997-07-25 Refrigeration circuit with heat exchanger for refrigeration capacity control

Country Status (1)

Country Link
JP (1) JP3456871B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097343A1 (en) * 2001-05-31 2002-12-05 Geoung-Su Yoo Cooling system having no cooling tower and being capable of purifying cooling water by oxidation/reduction method
KR101245875B1 (en) 2011-02-07 2013-03-20 김경규 Heat pump cooling and heating system having defrosting function
CN105571221A (en) * 2015-12-21 2016-05-11 珠海格力电器股份有限公司 Air conditioning system and control method thereof
JP2018501495A (en) * 2014-12-29 2018-01-18 蘇州蘇試試験儀器股▲ふん▼有限公司 Environmental test chamber evaporator
CN111023564A (en) * 2019-11-18 2020-04-17 Tcl空调器(中山)有限公司 Heat pump system, control method thereof and air source heat pump water heater
CN111065244A (en) * 2019-12-26 2020-04-24 广东百奥电气有限公司 Refrigeration equipment with local cooling function and local refrigeration method
WO2021012781A1 (en) * 2019-07-25 2021-01-28 青岛海尔空调器有限总公司 Air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097343A1 (en) * 2001-05-31 2002-12-05 Geoung-Su Yoo Cooling system having no cooling tower and being capable of purifying cooling water by oxidation/reduction method
KR101245875B1 (en) 2011-02-07 2013-03-20 김경규 Heat pump cooling and heating system having defrosting function
JP2018501495A (en) * 2014-12-29 2018-01-18 蘇州蘇試試験儀器股▲ふん▼有限公司 Environmental test chamber evaporator
CN105571221A (en) * 2015-12-21 2016-05-11 珠海格力电器股份有限公司 Air conditioning system and control method thereof
WO2021012781A1 (en) * 2019-07-25 2021-01-28 青岛海尔空调器有限总公司 Air conditioner
CN111023564A (en) * 2019-11-18 2020-04-17 Tcl空调器(中山)有限公司 Heat pump system, control method thereof and air source heat pump water heater
CN111023564B (en) * 2019-11-18 2022-05-06 Tcl空调器(中山)有限公司 Heat pump system control method and air source heat pump water heater
CN111065244A (en) * 2019-12-26 2020-04-24 广东百奥电气有限公司 Refrigeration equipment with local cooling function and local refrigeration method
CN111065244B (en) * 2019-12-26 2024-01-12 广东百奥电气有限公司 Refrigerating equipment with local cooling function and local refrigerating method

Also Published As

Publication number Publication date
JP3456871B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
JP4207166B2 (en) Dehumidifying air conditioner
JP2723953B2 (en) Air conditioner
JPH0518630A (en) Air conditioner
JP2006258343A (en) Air conditioning system
WO2022022642A1 (en) Air conditioner and dehumidification method
CA2999550C (en) Air-source heat pump air conditioner
JP2005069554A (en) Water heat source air conditioning system
KR20170070865A (en) Reheat control system for cooling and dehumidification of thermohygrostat using energy saving type
JP3456871B2 (en) Refrigeration circuit with heat exchanger for refrigeration capacity control
WO2010067539A1 (en) Air conditioning system
JP2960218B2 (en) Control method of absorption air conditioner
JP2000018766A (en) Air conditioner
JP2021014947A (en) Air conditioner and air conditioning system
JP4074422B2 (en) Air conditioner and its control method
KR102257544B1 (en) Energy enhanced air-conditioning system and control method thereof
JP5453795B2 (en) Air conditioning system
CN209877206U (en) Fresh air dehumidification reheating system
JP4097405B2 (en) Engine cooling method and apparatus and refrigeration apparatus
JP2001263857A (en) Cooling/heating water heater and its control method
JP2878240B2 (en) Heat supply equipment
KR100682718B1 (en) Air conditioner having refrigerants distributor for branch
KR100329472B1 (en) Multi-air conditioner for cooling and heating
CN115218310B (en) Temperature-humidity-division control multi-station air conditioning system based on single-machine double-evaporation heat pump unit
JPH09138024A (en) Air conditioner
JP3546102B2 (en) Engine driven air conditioner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term