JP4207166B2 - Dehumidifying air conditioner - Google Patents

Dehumidifying air conditioner Download PDF

Info

Publication number
JP4207166B2
JP4207166B2 JP2006271338A JP2006271338A JP4207166B2 JP 4207166 B2 JP4207166 B2 JP 4207166B2 JP 2006271338 A JP2006271338 A JP 2006271338A JP 2006271338 A JP2006271338 A JP 2006271338A JP 4207166 B2 JP4207166 B2 JP 4207166B2
Authority
JP
Japan
Prior art keywords
outside air
hot water
cold
air
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006271338A
Other languages
Japanese (ja)
Other versions
JP2008070097A (en
Inventor
恵一 木村
信雄 長島
満津雄 森田
和行 笠原
Original Assignee
木村工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 木村工機株式会社 filed Critical 木村工機株式会社
Priority to JP2006271338A priority Critical patent/JP4207166B2/en
Priority to KR1020060114442A priority patent/KR100891581B1/en
Priority to CN2007100054158A priority patent/CN101126530B/en
Publication of JP2008070097A publication Critical patent/JP2008070097A/en
Application granted granted Critical
Publication of JP4207166B2 publication Critical patent/JP4207166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • F24F12/003Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid using a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type

Description

本発明は除湿空調機に関するものである。   The present invention relates to a dehumidifying air conditioner.

従来の外気混合形の空調機では外気と還気を混合した後、冷温水コイルで冷却や除湿、加熱などを行っている。ところが、このような方式の空調機では、例えば夏期の冷房運転の場合、冷却減湿後に再熱しなければ給気の湿度制御ができないため、還気風量分の空気を余分に冷却、再熱するエネルギーが必要なうえに、冷水と温水を同時に流す4管式の熱源水回路が必要となり設備コストと運転コストが高くなる。一方、冷水のみの2管式では、再熱ができないために湿度が成り行きとなり除湿不足や冷え過ぎとなる問題がある。   In a conventional outside air-mixing type air conditioner, outside air and return air are mixed, and then cooling, dehumidification, heating, and the like are performed with a cold / hot water coil. However, in this type of air conditioner, for example, in the case of a cooling operation in summer, the humidity of the supply air cannot be controlled unless it is reheated after cooling and dehumidification. In addition to energy, a four-pipe heat source water circuit that allows cold water and hot water to flow simultaneously is required, resulting in high equipment costs and operating costs. On the other hand, in the two-tube type only with cold water, since reheating cannot be performed, the humidity becomes conspicuous and there is a problem that dehumidification is insufficient or too cold.

特開平4−174225号公報JP-A-4-174225

また、冬期でも冷房運転し加湿を必要とする場合、空調用空気を一旦加熱し、加湿してから冷却しなければならないため、4管式の熱源水回路が必要となり、設備コストと運転コストが高くなる問題がある。   In addition, when air conditioning operation is required even in winter, humidification is required, because the air for air conditioning must be heated once, humidified, and then cooled, so a four-pipe heat source water circuit is required. There is a problem of getting higher.

本発明は上記課題を解決するため、還気を熱交換する還気処理用冷温水コイルと、外気を熱交換する外気処理用冷温水コイル及び水熱源ヒートポンプの外気処理用直膨式コイルと、外気を加湿する加湿器と、前記還気処理用冷温水コイルを通った還気と前記外気処理用冷温水コイル、前記外気処理用直膨式コイル及び前記加湿器を通った外気とを混合して給気する吸込み式の送風機と、を備えたことを最も主要な特徴とする。   In order to solve the above-mentioned problems, the present invention provides a return-air treatment cold / hot water coil for exchanging return air, an outside-air treatment cold / hot water coil for exchanging heat from the outside air, and a direct expansion coil for outside air treatment of a water heat source heat pump, A humidifier that humidifies the outside air, the return air that has passed through the cold / hot water coil for return air treatment, the cold / hot water coil for outside air treatment, the direct expansion coil for outside air treatment, and the outside air that has passed through the humidifier are mixed. The main feature is that it is equipped with a suction-type blower that supplies air.

請求項1の発明によれば、夏期の冷房運転の場合、外気を外気処理用冷温水コイル2と外気処理用直膨式コイル9で冷却減湿した除湿空気と、還気を還気処理用冷温水コイル1で乾き冷却した(前記除湿空気より高温の)空気と、を所定比率で混合することで再熱せずに給気の温湿度制御ができる。外気負荷と室内負荷(冷房負荷)を個別に処理するので、還気を余分に冷却、再熱するエネルギーが不要で省エネとなり、冷水を流すだけでよいので2管式ですみ、設備コストと運転コストを削減できる。また、冷水でも水熱源ヒートポンプAは加熱を行えるため、冬期でも冷房が必要な場合、熱源水として冷水のみを流すだけで、還気を還気処理用冷温水コイル1で冷却しかつすくなくとも外気処理用直膨式コイル9で外気を加熱し、この加熱した空気に加湿器5で加湿できる。そのため、2管式の熱源水回路ですみ、ボイラーなどの加熱装置を必要とせず、設備コストと運転コストを削減でき、しかも、冷却と加熱を同時に行うので熱源水に対しての熱移動が相殺されて熱源装置の負担が減り、運転コストを削減できる。
外気処理用冷温水コイル2の水量を変化させても第2流量制御機構10によって熱源水がバイパスするので還気処理用冷温水コイル1や水熱源ヒートポンプAの水量が変化することがなく、能力むらの無い安定した運転を行える。同様に、還気処理用冷温水コイル1の水量を変化させても第1流量制御機構4によって熱源水がバイパスするので外気処理用冷温水コイル2や水熱源ヒートポンプAの水量が変化することがなく、能力むらの無い安定した運転を行える。
水熱源ヒートポンプAの運転・停止と第2流量制御機構10により、外気処理用冷温水コイル2と水熱源ヒートポンプAの外気処理用直膨式コイル9のいずれか一方又は両方で、細かく能力制御できて、強力な冷却・加熱能力を得られる。外気処理用冷温水コイル2の能力を超える負荷変動を水熱源ヒートポンプAの外気処理用直膨式コイル9にて処理でき、水熱源ヒートポンプAの分、熱源装置の能力規模を小さくし設備コストを削減できる。還気処理用冷温水コイル1、外気処理用冷温水コイル2及び水熱源ヒートポンプAに1つずつ連続して通水させて熱交換しているので熱源水の温度変化を通常よりも拡大できる。そのため、空調システム全体における熱源水の往きと還りの温度差が大きくて、熱源装置の運転効率が良くなり省エネとなる。
送風機3を挟むようにして、還気処理用冷温水コイル1と、外気処理用冷温水コイル2、外気処理用直膨式コイル9及び加湿器5と、を対向配置したことにより、還気処理用冷温水コイル1からの還気と、外気処理用冷温水コイル2、外気処理用直膨式コイル9及び加湿器5からの外気と、が逆方向から接触するので混ざりやすくて給気温度むらが出ず、快適な空調を行える。
給気口18と還気取入口16と外気取入口17と熱源水出入口配管をケーシング6の上面に設けたので、ダクトや配管の施工が容易で周囲に余分なスペースを取らずに済み、省スペース化を図れる。
According to the first aspect of the present invention, in the case of the cooling operation in summer, dehumidified air in which the outside air is cooled and dehumidified by the outside air treatment cold / hot water coil 2 and the outside air treatment direct expansion coil 9 and the return air is used for the return air treatment. The temperature and humidity of the supply air can be controlled without reheating by mixing the air that has been dried and cooled by the cold / hot water coil 1 (higher than the dehumidified air) at a predetermined ratio. Since the outside air load and the indoor load (cooling load) are handled separately, the energy required for extra cooling and reheating of the return air is not required and energy is saved. Cost can be reduced. In addition, since the water heat source heat pump A can be heated even in cold water, when cooling is required even in winter, only the cold water is allowed to flow as the heat source water, and the return air is cooled by the cold air hot water coil 1 for the return air treatment and at least the outside air treatment. The outside air is heated by the direct expansion coil 9 and the heated air can be humidified by the humidifier 5. For this reason, a two-pipe heat source water circuit is not required, which eliminates the need for a heating device such as a boiler, reducing equipment costs and operating costs. In addition, since cooling and heating are performed simultaneously, heat transfer to the heat source water is offset. Thus, the burden on the heat source device is reduced, and the operating cost can be reduced.
Since the heat source water is bypassed by the second flow rate control mechanism 10 even when the amount of water in the outside air processing cold / hot water coil 2 is changed, the amount of water in the return air processing cold / hot water coil 1 and the water heat source heat pump A is not changed. A stable operation without unevenness can be performed. Similarly, since the heat source water is bypassed by the first flow rate control mechanism 4 even if the amount of water in the return air treatment cold / hot water coil 1 is changed, the amount of water in the outside air treatment cold / hot water coil 2 and the water heat source heat pump A may change. And stable operation without uneven performance.
With the operation / stop of the water heat source heat pump A and the second flow rate control mechanism 10, it is possible to finely control the capacity by either one or both of the cold / hot water coil 2 for external air treatment and the direct expansion coil 9 for external air treatment of the water heat source heat pump A. Powerful cooling and heating capability can be obtained. Load fluctuations exceeding the capacity of the cold / hot water coil 2 for treating the outside air can be treated by the direct expansion coil 9 for treating the outside air of the water heat source heat pump A, and the capacity of the heat source device is reduced by the amount of the water heat source heat pump A, thereby reducing the equipment cost. Can be reduced. Since the cold air supply / cooling water coil 1 for return air treatment, the cold / hot water coil 2 for external air treatment, and the water heat source heat pump A are continuously passed through one by one for heat exchange, the temperature change of the heat source water can be expanded more than usual. Therefore, the temperature difference between the return and return of the heat source water in the entire air conditioning system is large, so that the operation efficiency of the heat source device is improved and energy saving is achieved.
The return air treatment cold / hot water coil 1, the outside air treatment cold / hot water coil 2, the outside air treatment direct expansion coil 9, and the humidifier 5 are arranged opposite to each other so as to sandwich the blower 3. The return air from the water coil 1 and the outside air treatment cold / hot water coil 2, the outside air treatment direct expansion coil 9 and the outside air from the humidifier 5 come in contact in the opposite direction, so they are easy to mix and cause uneven supply air temperature. Therefore, comfortable air conditioning can be performed.
Since the air supply port 18, the return air intake port 16, the outside air intake port 17, and the heat source water inlet / outlet piping are provided on the upper surface of the casing 6, the construction of the duct and the piping is easy and it is not necessary to take up an extra space. Space can be achieved.

請求項2の発明によれば、夏期の冷房運転の場合、外気を外気処理用冷温水コイル2で冷却減湿した除湿空気と、還気を還気処理用冷温水コイル1で乾き冷却した(前記除湿空気より高温の)空気と、を所定比率で混合することで再熱せずに給気の温湿度制御ができる。外気負荷と室内負荷(冷房負荷)を個別に処理するので、還気を余分に冷却、再熱するエネルギーが不要で省エネとなり、冷水を流すだけでよいので2管式ですみ、設備コストと運転コストを削減できる。According to the invention of claim 2, in the case of the cooling operation in summer, the dehumidified air obtained by cooling and dehumidifying the outside air with the outside air processing cold / hot water coil 2 and the return air are dried and cooled with the return air processing cold / hot water coil 1 ( The temperature and humidity of the supply air can be controlled without reheating by mixing the air with a temperature higher than that of the dehumidified air at a predetermined ratio. Since the outside air load and the indoor load (cooling load) are handled separately, the energy required for extra cooling and reheating of the return air is not required and energy is saved. Cost can be reduced.
還気処理用冷温水コイル1の水量を変化させても第1流量制御機構4によって熱源水がバイパスするので外気処理用冷温水コイル2の水量が変化することがなく、能力むらの無い安定した運転を行える。  Even if the amount of water in the return air treatment cold / hot water coil 1 is changed, the heat source water is bypassed by the first flow rate control mechanism 4, so the amount of water in the outside air treatment cold / hot water coil 2 does not change, and there is no unevenness in performance. Can drive.
外気処理用冷温水コイル2及び還気処理用冷温水コイル1に1つずつ連続して通水させて熱交換しているので熱源水の温度変化を通常よりも拡大できる。そのため、空調システム全体における熱源水の往きと還りの温度差が大きくて、熱源装置の運転効率が良くなり省エネとなる。第1流量制御機構4で還気処理用冷温水コイル1と外気処理用冷温水コイル2を能力制御して負荷変動に容易に対応できる。  Since the outside air treatment cold / hot water coil 2 and the return air treatment cold / hot water coil 1 are continuously passed through one by one to exchange heat, the temperature change of the heat source water can be expanded more than usual. Therefore, the temperature difference between the return and return of the heat source water in the entire air conditioning system is large, so that the operation efficiency of the heat source device is improved and energy saving is achieved. The first flow control mechanism 4 can easily cope with load fluctuations by controlling the capacities of the return air treatment cold / hot water coil 1 and the outside air treatment cold / hot water coil 2.
送風機3を挟むようにして、還気処理用冷温水コイル1と、外気処理用冷温水コイル2及び加湿器5と、を対向配置したことにより、還気処理用冷温水コイル1からの還気と、外気処理用冷温水コイル2及び加湿器5からの外気と、が逆方向から接触するので混ざりやすくて給気温度むらが出ず、快適な空調を行える。  The return air from the cold / hot water coil 1 for return air treatment is disposed by opposing the cold air / hot water coil 1 for return air treatment, the cold / hot water coil 2 for outside air treatment, and the humidifier 5 so as to sandwich the blower 3. The outside air treatment cold / hot water coil 2 and the outside air from the humidifier 5 are in contact with each other in the opposite direction, so that they are easy to mix and the air supply temperature does not vary, and comfortable air conditioning can be performed.
給気口18と還気取入口16と外気取入口17と熱源水出入口配管をケーシング6の上面に設けたので、ダクトや配管の施工が容易で周囲に余分なスペースを取らずに済み、省スペース化を図れる。  The air supply port 18, the return air intake port 16, the outside air intake port 17, and the heat source water inlet / outlet pipe are provided on the upper surface of the casing 6, so that ducts and pipes can be easily constructed and no extra space is required. Space can be achieved.

請求項3の発明によれば、送風機3に入る還気と外気の圧力バランスがとれて、風量混合比が安定化し、精度良く給気の温湿度制御ができる。According to the invention of claim 3, the pressure balance between the return air entering the blower 3 and the outside air is balanced, the air volume mixture ratio is stabilized, and the temperature and humidity control of the supply air can be performed with high accuracy.

請求項4の発明によれば、例えば中間期で室内冷房負荷が大きな場合などに外気ダンパ30を開いて、屋外から取入れたままで熱交換をしていない生外気を全給気風量分まで室内に供給することにより、還気を冷却せずに外気だけで冷房ができ省エネとなる。また、外気処理用コイルで冷却した外気と、外気ダンパ30からの生外気と、を所定比率で混合することで温湿度制御も可能となる。還気側にダンパを余分に設けなくとも、外気ダンパ30の開放で生じる外気側と還気側の圧力差によって、全給気風量に対する外気風量の割合を増やすことができるので、ダンパなどの設備コストの削減を図れる。According to the invention of claim 4, for example, when the indoor cooling load is large in the intermediate period, the outdoor air damper 30 is opened, and the raw outdoor air that has been taken in from the outside and is not heat-exchanged is kept indoors up to the total supply air volume. By supplying the air, the return air can be cooled only by the outside air without being cooled, thereby saving energy. Further, the temperature and humidity can be controlled by mixing the outside air cooled by the outside air processing coil and the raw outside air from the outside air damper 30 at a predetermined ratio. Even if an extra damper is not provided on the return air side, the ratio of the outside air volume to the total supply air volume can be increased by the pressure difference between the outside air side and the return air side generated by opening the outside air damper 30. Cost can be reduced.

図1は、本発明の除湿空調機の第1の実施例を示しており、この除湿空調機は、ケーシング6内に、還気を熱交換する還気処理用冷温水コイル1と、外気を熱交換する外気処理用冷温水コイル2及び水熱源ヒートポンプAの外気処理用直膨式コイル9と、外気を加湿する加湿器5と、還気処理用冷温水コイル1を通った還気と外気処理用冷温水コイル2、外気処理用直膨式コイル9及び加湿器5を通った外気とを混合して給気する吸込み式の送風機3と、を備えている。図例では、風上から風下に向かって順に外気処理用冷温水コイル2、外気処理用直膨式コイル9、再熱器15、加湿器5を設けているが配置順序の変更は自由である。この還気処理用冷温水コイル1と、外気処理用冷温水コイル2、外気処理用直膨式コイル9及び加湿器5と、を隔てて対向配置し、その間に、送風機3を配置して、還気と外気を混合し易くする。ケーシング6の上面には、還気取入口16と外気取入口17と給気口18と熱源水出入口配管とを設ける。外気取入口17は屋外とダクト等を介して連通させ、還気取入口16と給気口18は室内とダクト等を介してそれぞれ連通させる。実線及び点線の白抜き矢印は送風方向を示す。   FIG. 1 shows a first embodiment of a dehumidifying air conditioner according to the present invention. This dehumidifying air conditioner includes a return air treatment cold / hot water coil 1 for exchanging the return air in a casing 6 and outside air. Cooling / heating water coil 2 for outside air treatment for heat exchange and direct expansion coil 9 for outside air treatment of water source heat pump A, humidifier 5 for humidifying outside air, and return air and outside air passing through cooling / heating water coil 1 for return air treatment A cooling / hot water coil 2 for processing, a direct expansion coil 9 for processing outside air, and a suction type blower 3 that mixes and supplies the outside air that has passed through the humidifier 5 are provided. In the illustrated example, a cold / hot water coil 2 for outside air treatment, a direct expansion coil 9 for outside air treatment, a reheater 15 and a humidifier 5 are provided in order from the windward to the leeward, but the arrangement order can be changed freely. . The return air treatment cold / hot water coil 1, the outside air treatment cold / hot water coil 2, the outside air treatment direct expansion coil 9 and the humidifier 5 are arranged opposite to each other, and the blower 3 is arranged therebetween. Make it easy to mix return air and outside air. A return air intake port 16, an outside air intake port 17, an air supply port 18, and a heat source water inlet / outlet pipe are provided on the upper surface of the casing 6. The outside air intake port 17 communicates with the outside through a duct or the like, and the return air intake port 16 and the air supply port 18 communicate with the room through a duct or the like. Solid and dotted white arrows indicate the blowing direction.

また、熱源水が還気処理用冷温水コイル1、外気処理用冷温水コイル2及び水熱源ヒートポンプAに任意の順序で1つずつ通水されるように構成すると共に、外気処理用冷温水コイル2への熱源水の一部又は全部をバイパスさせて外気処理用冷温水コイル2の熱源水流量を制御する第2流量制御機構10と、還気処理用冷温水コイル1への熱源水の一部又は全部をバイパスさせて還気処理用冷温水コイル1の熱源水流量を制御する第1流量制御機構4と、を設ける。これにより、外気処理用冷温水コイル2の水量を変化させても第2流量制御機構10によって熱源水がバイパスするので還気処理用冷温水コイル1や水熱源ヒートポンプAの水量が変化することがなく、能力むらの無い安定した運転を行える。同様に、還気処理用冷温水コイル1の水量を変化させても第1流量制御機構4によって熱源水がバイパスするので外気処理用冷温水コイル2や水熱源ヒートポンプAの水量が変化することがなく、能力むらの無い安定した運転を行える。図例では、還気処理用冷温水コイル1に通水後の熱源水を外気処理用冷温水コイル2に通水し、外気処理用冷温水コイル2に通水後の熱源水を水熱源ヒートポンプAの水熱交換器11に通水するように直列に配管して構成すると共に、第2流量制御機構10は外気処理用冷温水コイル2の熱源水出入口をバイパスするバイパス流路13と三方弁などの流量調整弁14などにて構成し、第1流量制御機構4は還気処理用冷温水コイル1の熱源水出入口をバイパスするバイパス流路7と三方弁などの流量調整弁8などにて構成しているが、通水順序や流量制御機構の構成の変更は自由である。   The heat source water is configured to be passed through the return air treatment cold / hot water coil 1, the outside air treatment cold / hot water coil 2 and the water heat source heat pump A one by one in an arbitrary order, and the outside air treatment cold / hot water coil. A second flow rate control mechanism 10 for controlling the heat source water flow rate of the cold / hot water coil 2 for external air treatment by bypassing part or all of the heat source water to the heat source water 2 and one of the heat source water to the cold air hot water coil 1 for return air treatment And a first flow rate control mechanism 4 that controls the heat source water flow rate of the cool / warm water coil 1 for return air treatment by bypassing some or all of them. Thereby, even if the amount of water in the outside air processing cold / hot water coil 2 is changed, the heat source water is bypassed by the second flow rate control mechanism 10, so the amount of water in the return air processing cold / hot water coil 1 and the water heat source heat pump A may change. And stable operation without uneven performance. Similarly, since the heat source water is bypassed by the first flow rate control mechanism 4 even if the amount of water in the return air treatment cold / hot water coil 1 is changed, the amount of water in the outside air treatment cold / hot water coil 2 and the water heat source heat pump A may change. And stable operation without uneven performance. In the illustrated example, the heat source water after passing through the cold / hot water coil 1 for return air treatment is passed through the cold / hot water coil 2 for outside air treatment, and the heat source water after passing through the cold / hot water coil 2 for outside air treatment is used as the water heat source heat pump. The second flow rate control mechanism 10 has a bypass flow path 13 and a three-way valve that bypasses the heat source water inlet / outlet of the cold / hot water coil 2 for outside air treatment. The first flow rate control mechanism 4 includes a bypass flow path 7 that bypasses the heat source water inlet / outlet of the return air processing cold / hot water coil 1 and a flow rate adjustment valve 8 such as a three-way valve. Although it is configured, it is possible to change the order of water flow and the configuration of the flow rate control mechanism.

図1の除湿空調機では、室内負荷に応じて第1流量制御機構4を作動させ還気処理用冷温水コイル1にて還気を冷却又は加熱し、外気負荷に応じて第2流量制御機構10を作動させ外気処理用冷温水コイル2と外気処理用直膨式コイル9の一方又は両方にて外気を冷却又は加熱した後、両空気を混合し、室内に給気して空調する。冷水又は温水の熱源水は配管等から成る熱源水回路を循環し、熱源装置で温度調整される(図示省略)。送風機3の空気入口において、還気と外気の圧力差がなくなるように還気側(還気処理用冷温水コイル1)と外気側(外気処理用冷温水コイル2と外気処理用直膨式コイル9)のいずれか一方のコイルの伝熱管を丸管にしかつ他方のコイルの伝熱管を前記丸管より低圧損の楕円管にするのが好ましいが、還気処理用冷温水コイル1と外気処理用冷温水コイル2と外気処理用直膨式コイル9の伝熱管を適宜、楕円管や円形管にするも自由である。   In the dehumidifying air conditioner of FIG. 1, the first flow rate control mechanism 4 is operated according to the indoor load, the return air is cooled or heated by the cold / hot water coil 1 for return air treatment, and the second flow rate control mechanism according to the outside air load. 10 is operated and the outside air is cooled or heated by one or both of the outside air processing cold / hot water coil 2 and the outside air processing direct expansion coil 9, and then both the air are mixed and supplied to the room for air conditioning. The heat source water of cold water or hot water circulates in a heat source water circuit composed of piping or the like, and the temperature is adjusted by a heat source device (not shown). At the air inlet of the blower 3, the return air side (return air treatment cold / hot water coil 1) and the outside air side (outside air treatment cold / hot water coil 2 and the outside air treatment direct expansion coil so as to eliminate the pressure difference between the return air and the outside air. 9) It is preferable that the heat transfer tube of one of the coils is a round tube and the heat transfer tube of the other coil is an elliptical tube having a lower pressure loss than the round tube. The heat transfer tubes of the cold / hot water coil 2 and the direct expansion coil 9 for treating the outside air can be freely changed to elliptical tubes or circular tubes as appropriate.

水熱源ヒートポンプAは、循環冷媒に対して蒸発・圧縮・凝縮・膨張の工程順を繰返し、この循環冷媒と熱交換する空気や熱源水などに対して冷媒蒸発工程で吸熱を冷媒凝縮工程で放熱を各々行うもので、循環冷媒の蒸発工程と凝縮工程であって互いに異なる工程を行う外気処理用直膨式コイル9及び熱源水が通水される水熱交換器11と、循環冷媒を圧縮する圧縮機12と、循環冷媒を膨張させる膨張弁等の減圧機構31と、外気処理用直膨式コイル9及び水熱交換器11の蒸発工程と凝縮工程を切換えるバルブ等の切換機構32と、を少なくとも備え、これらを冷媒が循環するように配管接続して成る。この水熱源ヒートポンプAにより、たとえば45℃の温水を水熱交換器11に流して外気処理用直膨式コイル9で空気を冷却したり、たとえば10℃の冷水を水熱交換器11に流して外気処理用直膨式コイル9で空気を加熱したりすることができる。図例では、水熱源ヒートポンプAの圧縮機12からのホットガスを再熱媒体に用いた冷媒−空気熱交換用の再熱器15を設けているが省略するも自由である。   The water heat source heat pump A repeats the evaporating, compressing, condensing, and expanding process sequence for the circulating refrigerant, and dissipates heat in the refrigerant condensing process in the refrigerant evaporating process for air or heat source water that exchanges heat with the circulating refrigerant. Each of which is an evaporation process and a condensation process of the circulating refrigerant, which are different from each other, a direct expansion coil 9 for treating the outside air, a water heat exchanger 11 through which the heat source water is passed, and the circulating refrigerant are compressed. A compressor 12, a decompression mechanism 31 such as an expansion valve for expanding the circulating refrigerant, and a switching mechanism 32 such as a valve for switching between the evaporation process and the condensation process of the direct expansion coil 9 for external air treatment and the water heat exchanger 11. At least, these are connected by piping so that the refrigerant circulates. With this water heat source heat pump A, for example, hot water of 45 ° C. is caused to flow through the water heat exchanger 11 to cool the air with the outdoor expansion straight coil 9, or cold water of 10 ° C. is allowed to flow into the water heat exchanger 11, for example. The air can be heated by the directly expanded coil 9 for treating the outside air. In the illustrated example, there is provided a reheater 15 for refrigerant-air heat exchange using hot gas from the compressor 12 of the water heat source heat pump A as a reheating medium, but it can be omitted.

この除湿空調機で夏期に冷房運転をする場合、外気を外気処理用冷温水コイル2と外気処理用直膨式コイル9の一方又は両方で冷却減湿した除湿空気と、還気を還気処理用冷温水コイル1で乾き冷却した空気と、を所定比率(例えば3:7)で混合すると、前記乾き冷却した空気で、これよりも低温低湿の前記除湿空気を再熱するのと同じ効果が得られ、給気を温湿度制御できる。例えば、やや温度が高くとも湿度の低い(不快指数の低い)空気を給気し、快適空調を行える。この場合、例えば、熱源水として7℃の冷水を流すと、還気処理用冷温水コイル1による熱交換で熱源水が7℃から10℃へ温度上昇し、さらに外気処理用冷温水コイル2と外気処理用直膨式コイル9の一方又は両方による熱交換で熱源水が10℃から17℃へ温度上昇し、空調システム全体における熱源水の往きと還りの温度差がΔt10℃と大きくなる。熱源装置に戻った熱源水は温度調整され、熱源水回路を循環する。なお、再熱器15を用いて給気を温湿度制御するも自由である。   When this dehumidifying air conditioner is used for cooling operation in the summer, dehumidified air whose outside air is cooled and dehumidified by one or both of the outside-air treatment cold / hot water coil 2 and the outside-air treatment direct expansion coil 9 and the return air are returned to the air. When the air that has been dried and cooled by the cold / hot water coil 1 is mixed at a predetermined ratio (for example, 3: 7), the same effect as reheating the dehumidified air at a lower temperature and lower humidity than the dried and cooled air can be obtained. As a result, the temperature and humidity can be controlled. For example, even if the temperature is slightly high, comfortable air conditioning can be performed by supplying air with low humidity (low discomfort index). In this case, for example, when 7 ° C. cold water is flown as the heat source water, the heat source water rises in temperature from 7 ° C. to 10 ° C. by heat exchange by the return air treatment cold / hot water coil 1, and the outside air treatment cold / hot water coil 2 The heat source water rises in temperature from 10 ° C. to 17 ° C. due to heat exchange by one or both of the directly expanded coils 9 for treating the outside air, and the temperature difference between the return and return of the heat source water in the entire air conditioning system becomes Δt10 ° C. The temperature of the heat source water returned to the heat source device is adjusted and circulates in the heat source water circuit. It is also free to control the temperature and humidity of the supply air using the reheater 15.

また、冬期でも冷房運転する場合、熱源水として冷水のみを流すだけで、還気を還気処理用冷温水コイル1で冷却し、かつ、低温の外気を外気処理用冷温水コイル2と外気処理用直膨式コイル9の一方又は両方で加熱し、加熱により加湿し易くした空気を加湿器5で加湿して温度を下げ、冷却した還気と混合して温湿度制御し給気することができる。なお、熱源水温が外気温より高く加熱可能なときは外気処理用冷温水コイル2へ通水し、逆の場合は通水を停止する。この場合、例えば、熱源水として12℃の冷水を流すと、還気処理用冷温水コイル1による熱交換で熱源水が例えば12℃から13.5℃へ温度上昇し、さらに外気処理用冷温水コイル2と外気処理用直膨式コイル9の一方又は両方による熱交換で熱源水が13.5℃から11℃へ温度降下して相殺され、空調システム全体における熱源水の往きと還りの温度差がΔt1℃と僅かとなる。なお、前述の熱源水の温度差の増減や設定値は一例で、その変更は自由である。   In the case of cooling operation even in winter, only cold water is flowed as heat source water, the return air is cooled by the return air treatment cold / hot water coil 1, and the low temperature outside air is treated with the outside air treatment cold / hot water coil 2 and the outside air treatment. The air that is heated by one or both of the direct expansion coils 9 for use, humidified by heating is humidified by the humidifier 5, the temperature is lowered, mixed with the cooled return air, and the temperature and humidity are controlled and supplied. it can. In addition, when the heat source water temperature is higher than the outside air temperature and can be heated, the water is passed through the outside air processing cold / hot water coil 2, and in the opposite case, the water passage is stopped. In this case, for example, when 12 ° C. cold water is flown as the heat source water, the temperature of the heat source water rises from, for example, 12 ° C. to 13.5 ° C. due to heat exchange by the return air treatment cold / hot water coil 1. The temperature difference between the return and return of the heat source water in the entire air conditioning system is offset by a heat drop of the heat source water from 13.5 ° C. to 11 ° C. due to heat exchange by one or both of the coil 2 and the direct expansion coil 9 for treating the outside air. Becomes as small as Δt1 ° C. In addition, the increase / decrease in temperature difference of the above-mentioned heat source water and a set value are examples, and the change is free.

冬期に暖房運転する場合、外気を外気処理用冷温水コイル2と外気処理用直膨式コイル9の一方又は両方で加熱し、加湿器5で加湿して湿度調整した空気と、還気を還気処理用冷温水コイル1で加熱した空気と、を所定比率で混合することで給気を温湿度制御できる。このとき、外気処理用冷温水コイル2と外気処理用直膨式コイル9に加えて再熱器15で外気を加熱してもよく、再熱器15の分、伝熱面積が増えて省エネとなる。なお、図示省略するが、2管式の熱源水回路の往き管から外気処理用冷温水コイル2と還気処理用冷温水コイル1に個々に熱源水が入り、水熱交換器11と還気処理用冷温水コイル1から個々に熱源水回路の還り管に出るように配管して構成したり、ケーシング6の外気取入口17や還気取入口16に風量調整ダンパを設けるも自由である。   In the case of heating operation in winter, the outside air is heated by one or both of the outside-air treatment cold / hot water coil 2 and the outside-air treatment direct expansion coil 9 and humidified by the humidifier 5 to adjust the humidity and the return air. The temperature and humidity can be controlled by mixing the air heated by the air treatment cold / hot water coil 1 with a predetermined ratio. At this time, the outside air may be heated by the reheater 15 in addition to the cold / hot water coil 2 for outside air treatment and the direct expansion coil 9 for outside air treatment. Become. Although not shown, the heat source water enters the outside air treatment cold / hot water coil 2 and the return air treatment cold / hot water coil 1 individually from the forward pipe of the two-pipe heat source water circuit, and the water heat exchanger 11 and the return air are supplied. It is also possible to arrange the pipes so as to individually come out from the treatment cold / hot water coil 1 to the return pipe of the heat source water circuit, or to provide an air volume adjusting damper at the outside air inlet 17 or the return air inlet 16 of the casing 6.

図2は第2の実施例で、第1の実施例において、水熱源ヒートポンプAを省略したもので、この除湿空調機は、ケーシング6内に、還気を熱交換する還気処理用冷温水コイル1と、外気を熱交換する外気処理用冷温水コイル2と、還気処理用冷温水コイル1を通った還気と外気処理用冷温水コイル2を通った外気とを混合して給気する吸込み式の送風機3と、外気処理用冷温水コイル2からの外気を加湿する加湿器5と、を備え、還気処理用冷温水コイル1と、外気処理用冷温水コイル2及び加湿器5と、を隔てて対向配置し、その間に、送風機3を配置し、ケーシング6の上面に、給気口18と還気取入口16と外気取入口17と熱源水出入口配管とを設ける。外気取入口17は屋外とダクト等を介して連通させ、還気取入口16と給気口18は室内とダクト等を介してそれぞれ連通させる。   FIG. 2 shows a second embodiment, in which the water heat source heat pump A is omitted in the first embodiment, and this dehumidifying air conditioner is provided in the casing 6 with cold / hot water for return air treatment for heat exchange of the return air. The coil 1 is mixed with the outside air processing cold / hot water coil 2 for exchanging heat with the outside air, and the return air passing through the return air processing cold / hot water coil 1 and the outside air passing through the outside air processing cold / hot water coil 2 are mixed and supplied. A suction type blower 3 and a humidifier 5 for humidifying the outside air from the outside air treatment cold / hot water coil 2. The return air treatment cold / hot water coil 1, the outside air treatment cold / hot water coil 2 and the humidifier 5. The air blower 3 is disposed therebetween, and an air supply port 18, a return air intake port 16, an outside air intake port 17, and a heat source water inlet / outlet pipe are provided on the upper surface of the casing 6. The outside air intake port 17 communicates with the outside through a duct or the like, and the return air intake port 16 and the air supply port 18 communicate with the room through a duct or the like.

また、熱源水が還気処理用冷温水コイル1及び外気処理用冷温水コイル2に任意の順序で1つずつ通水されるように構成すると共に、還気処理用冷温水コイル1への熱源水の一部又は全部をバイパスさせて還気処理用冷温水コイル1の熱源水流量を制御する第1流量制御機構4を、設ける。これにより、還気処理用冷温水コイル1の水量を変化させても第1流量制御機構4によって熱源水がバイパスするので外気処理用冷温水コイル2の水量が変化することがなく、能力むらの無い安定した運転を行える。図例では、外気処理用冷温水コイル2に通水後の熱源水を還気処理用冷温水コイル1に通水するように直列に配管して構成すると共に、第1流量制御機構4は、還気処理用冷温水コイル1の熱源水出入口をバイパスするバイパス流路7と三方弁などの流量調整弁8などにて構成しているが通水順序や流量制御機構の構成の変更は自由である。図2の除湿空調機では、負荷に応じて第1流量制御機構4を作動させ、外気処理用冷温水コイル2にて外気を冷却又は加熱し、還気処理用冷温水コイル1にて還気を冷却又は加熱した後、両空気を混合し、室内に給気して空調する。送風機3の空気入口において、還気と外気の圧力差がなくなるように還気側(還気処理用冷温水コイル1)と外気側(外気処理用冷温水コイル2)のいずれか一方のコイルの伝熱管を丸管にしかつ他方のコイルの伝熱管を前記丸管より低圧損の楕円管にするのが好ましいが、還気処理用冷温水コイル1と外気処理用冷温水コイル2の伝熱管を適宜、楕円管や円形管にするも自由である。   Further, the heat source water is configured to be passed through the return air treatment cold / hot water coil 1 and the outside air treatment cold / hot water coil 2 one by one in an arbitrary order, and the heat source water is supplied to the return air treatment cold / hot water coil 1. A first flow rate control mechanism 4 that controls a heat source water flow rate of the return air treatment cold / hot water coil 1 by bypassing part or all of the water is provided. As a result, even if the amount of water in the return air treatment cold / hot water coil 1 is changed, the heat source water is bypassed by the first flow rate control mechanism 4, so the amount of water in the outside air treatment cold / hot water coil 2 does not change, resulting in uneven performance. There is no stable operation. In the illustrated example, the heat source water that has been passed through the outdoor air processing cold / hot water coil 2 is configured by piping in series so as to pass through the return air processing cold / hot water coil 1, and the first flow rate control mechanism 4 includes: Although it is composed of a bypass flow path 7 that bypasses the heat source water inlet / outlet of the return air treatment cold / hot water coil 1 and a flow rate adjusting valve 8 such as a three-way valve, the water flow order and the flow rate control mechanism can be changed freely. is there. In the dehumidifying air conditioner of FIG. 2, the first flow rate control mechanism 4 is operated according to the load, the outside air is cooled or heated by the outside air treatment cold / hot water coil 2, and the return air is treated by the return air treatment cold / hot water coil 1. After cooling or heating, the air is mixed and supplied to the room for air conditioning. At the air inlet of the blower 3, either the return air side (return air treatment cold / hot water coil 1) or the outside air side (outside air treatment cold / hot water coil 2) of the coil so as to eliminate the pressure difference between the return air and the outside air. It is preferable that the heat transfer tube is a round tube and the heat transfer tube of the other coil is an elliptical tube having a lower pressure loss than the round tube. However, the heat transfer tubes of the return air treatment cold / hot water coil 1 and the outside air treatment cold / hot water coil 2 are provided. If necessary, an elliptical tube or a circular tube can be freely used.

この除湿空調機で夏期に冷房運転をする場合、外気を外気処理用冷温水コイル2で冷却減湿した除湿空気と、還気を還気処理用冷温水コイル1で乾き冷却した空気と、を所定比率で混合すると、前記乾き冷却した空気で、これよりも低温低湿の前記除湿空気を再熱するのと同じ効果が得られ、給気を温湿度制御できる。この場合も、外気処理用冷温水コイル2による熱交換で熱源水が温度上昇し、続いて、還気処理用冷温水コイル1による熱交換で熱源水がさらに温度上昇し、空調システム全体における熱源水の往きと還りの温度差が大きくなる。   When the dehumidifying air conditioner is used for cooling operation in the summer, dehumidified air obtained by cooling and dehumidifying the outside air using the cold / hot water coil 2 for treating the outside air, and air dried and cooled using the cold / hot water coil 1 used for the return air treatment, When mixed at a predetermined ratio, the same effect as reheating the dehumidified air having a lower temperature and lower humidity can be obtained with the dry and cooled air, and the temperature and humidity can be controlled. Also in this case, the temperature of the heat source water rises due to heat exchange by the cold / hot water coil 2 for outside air treatment, and then the temperature of the heat source water further rises due to heat exchange by the cold / hot water coil 1 for return air treatment. The temperature difference between going and returning water becomes large.

冬期に暖房運転する場合、外気を外気処理用冷温水コイル2で加熱し、加湿器5で加湿して湿度調整した空気と、還気を還気処理用冷温水コイル1で加熱した空気と、を所定比率で混合することで給気を温湿度制御できる。なお、図示省略するが、外気処理用冷温水コイル2を水量制御する流量調整弁を設けたり、2管式の熱源水回路の往き管から外気処理用冷温水コイル2と還気処理用冷温水コイル1に個々に熱源水が入り、外気処理用冷温水コイル2と還気処理用冷温水コイル1から個々に熱源水回路の還り管に出るように配管して構成したり、ケーシング6の外気取入口17や還気取入口16に風量調整ダンパを設けるも自由である。   When heating operation is performed in winter, the outside air is heated by the cold / hot water coil 2 for treating the outside air, humidified by the humidifier 5, and the humidity is adjusted, and the air heated by the cold / hot water coil 1 for the return air treatment is heated; The air supply can be controlled in temperature and humidity by mixing them at a predetermined ratio. Although not shown in the drawings, a flow rate adjusting valve for controlling the amount of water in the outside air treatment cold / hot water coil 2 is provided, or the outside air treatment cold / hot water coil 2 and the return air treatment cold / hot water from the forward pipe of the two-pipe heat source water circuit. The heat source water enters the coil 1 individually, and it is configured by piping from the outside air treatment cold / hot water coil 2 and the return air treatment cold / hot water coil 1 individually to the return pipe of the heat source water circuit, or the outside air of the casing 6 It is also free to provide an air volume adjusting damper at the intake port 17 or the return air intake port 16.

図3は第3の実施例で、第1の実施例において、還気処理用冷温水コイル1を省略したもので、この除湿空調機は、ケーシング6内に、外気を熱交換する外気処理用冷温水コイル2及び水熱源ヒートポンプAの外気処理用直膨式コイル9と、外気を加湿する加湿器5と、還気と外気処理用冷温水コイル2、外気処理用直膨式コイル9及び加湿器5を通った外気とを混合して給気する吸込み式の送風機3と、を備え、還気取入口16と、外気処理用冷温水コイル2、外気処理用直膨式コイル9及び加湿器5と、を隔てて配置し、その間に、送風機3を配置し、ケーシング6の上面には、還気取入口16と外気取入口17と給気口18と熱源水出入口配管とを設ける。また、熱源水が外気処理用冷温水コイル2及び水熱源ヒートポンプAに任意の順序で1つずつ通水されるように構成すると共に、外気処理用冷温水コイル2への熱源水をバイパスさせて外気処理用冷温水コイル2の熱源水流量を制御する第2流量制御機構10を設けたもので、その他の構成は第1の実施例と同様であるので詳細は省略する。これにより、外気処理用冷温水コイル2の水量を変化させても第2流量制御機構10によって熱源水がバイパスするので水熱源ヒートポンプAの水量が変化することがなく、能力むらの無い安定した運転を行える。図例では、外気処理用冷温水コイル2に通水後の熱源水を水熱源ヒートポンプAの水熱交換器11に通水するように構成しているが、通水順序の変更は自由である。この除湿空調機では、負荷に応じて第2流量制御機構10を作動させ、外気処理用冷温水コイル2と外気処理用直膨式コイル9の一方又は両方にて外気を冷却又は加熱した後、機内で還気と混合し、室内に給気する。室内負荷は各種の循環空調機で処理する(図示省略)。   FIG. 3 shows a third embodiment in which the return air treatment cold / hot water coil 1 is omitted in the first embodiment. This dehumidifying air conditioner is used for the outside air treatment for exchanging the outside air in the casing 6. A direct expansion coil 9 for outside air treatment of the cold / hot water coil 2 and the water heat source heat pump A, a humidifier 5 for humidifying the outside air, a cold / hot water coil 2 for return air and outside air treatment, a direct expansion coil 9 for outside air treatment, and a humidification A suction type blower 3 that mixes and supplies outside air that has passed through the vessel 5, and includes a return air intake 16, a cold / hot water coil 2 for outside air treatment, a direct expansion coil 9 for outside air treatment, and a humidifier. 5, and the blower 3 is disposed therebetween, and a return air intake port 16, an external air intake port 17, an air supply port 18, and a heat source water inlet / outlet pipe are provided on the upper surface of the casing 6. In addition, the heat source water is configured to pass through the outside air treatment cold / hot water coil 2 and the water heat source heat pump A one by one in an arbitrary order, and the heat source water to the outside air treatment cold / hot water coil 2 is bypassed. A second flow rate control mechanism 10 for controlling the heat source water flow rate of the cold / hot water coil 2 for outside air treatment is provided, and the other configuration is the same as that of the first embodiment, and the details are omitted. Thereby, even if the amount of water in the cold / hot water coil 2 for outside air treatment is changed, the heat source water is bypassed by the second flow rate control mechanism 10, so the amount of water in the water heat source heat pump A does not change, and stable operation without unevenness in performance is achieved. Can be done. In the illustrated example, the heat source water after passing through the cold / hot water coil 2 for treating the outside air is configured to pass through the water heat exchanger 11 of the water heat source heat pump A, but the water passing sequence can be changed freely. . In this dehumidifying air conditioner, after the second flow rate control mechanism 10 is operated according to the load and the outside air is cooled or heated by one or both of the outside air treatment cold / hot water coil 2 and the outside air treatment direct expansion coil 9, It is mixed with return air in the aircraft and supplied to the room. The indoor load is processed by various circulating air conditioners (not shown).

夏期に外気を冷却して給気する場合、外気を外気処理用冷温水コイル2と外気処理用直膨式コイル9で冷却減湿した除湿空気を、還気と所定比率で混合すると、還気で、これよりも低温低湿の前記除湿空気を再熱するのと同じ効果が得られ、給気を温湿度制御できる。なお、再熱器15を用いて給気を温湿度制御するも自由である。また、冬期に外気を冷却して給気する場合、熱源水として冷水のみを流すだけで、低温の外気を外気処理用冷温水コイル2と外気処理用直膨式コイル9の一方又は両方で加熱し、加熱により加湿し易くした空気を加湿器5で加湿して温度を下げ、還気と混合して温湿度制御し給気することができる。なお、熱源水温が外気温より高く加熱可能なときは外気処理用冷温水コイル2へ通水し、逆の場合は通水を停止する。冬期に外気を加熱して給気する場合、外気を外気処理用冷温水コイル2と外気処理用直膨式コイル9の一方又は両方で加熱し、加湿器5で加湿して湿度調整した空気と、還気を所定比率で混合することで給気を温湿度制御できる。このとき、外気処理用冷温水コイル2と外気処理用直膨式コイル9に加えて再熱器15で外気を加熱してもよく、再熱器15の分、伝熱面積が増えて省エネとなる。なお、図3の除湿空調機で、外気負荷だけでなく室内負荷の一部も処理させるように構成するも自由である。また、図1と図3の実施例において、もう1つの新たな加湿器を外気処理用冷温水コイル2と外気処理用直膨式コイル9との間に配置するも自由である。   When the outside air is cooled and supplied in the summer, if the dehumidified air cooled and dehumidified by the outside air processing cold / hot water coil 2 and the outside air processing direct expansion coil 9 is mixed with the return air at a predetermined ratio, the return air is returned. Thus, the same effect as reheating the dehumidified air having a low temperature and low humidity can be obtained, and the temperature and humidity can be controlled. It is also free to control the temperature and humidity of the supply air using the reheater 15. In addition, when the outside air is cooled and supplied in the winter, only the cold water is supplied as the heat source water, and the low temperature outside air is heated by one or both of the outside air treatment cold / hot water coil 2 and the outside air treatment direct expansion coil 9. Then, the air that has been easily humidified by heating is humidified by the humidifier 5 to lower the temperature, and mixed with the return air to control the temperature and humidity and supply air. In addition, when the heat source water temperature is higher than the outside air temperature and can be heated, the water is passed through the outside air processing cold / hot water coil 2, and in the opposite case, the water passage is stopped. When the outside air is heated and supplied in winter, the outside air is heated by one or both of the outside-air treatment cold / hot water coil 2 and the outside-air treatment direct expansion coil 9 and humidified by the humidifier 5 to adjust the humidity. The supply air can be controlled in temperature and humidity by mixing the return air at a predetermined ratio. At this time, the outside air may be heated by the reheater 15 in addition to the cold / hot water coil 2 for outside air treatment and the direct expansion coil 9 for outside air treatment. Become. Note that the dehumidifying air conditioner of FIG. 3 can be configured to process not only the outside air load but also a part of the indoor load. In the embodiment shown in FIGS. 1 and 3, another new humidifier may be disposed between the outside air treatment cold / hot water coil 2 and the outside air treatment direct expansion coil 9.

図4は第4の実施例で、第2の実施例において、還気処理用冷温水コイル1を省略したもので、この除湿空調機は、ケーシング6内に、外気を熱交換する外気処理用冷温水コイル2と、還気取入口16からの還気と外気処理用冷温水コイル2を通った外気とを混合して給気する吸込み式の送風機3と、外気処理用冷温水コイル2からの外気を加湿する加湿器5と、を備え、還気取入口16と、外気処理用冷温水コイル2及び加湿器5と、を隔てて配置し、その間に、送風機3を配置し、ケーシング6の上面に、給気口18と還気取入口16と外気取入口17と熱源水出入口配管とを設けている。その他の構成は第2の実施例と同様であるので詳細は省略する。   FIG. 4 shows a fourth embodiment in which the return air treatment cold / hot water coil 1 is omitted in the second embodiment, and this dehumidifying air conditioner is used for the outside air treatment for exchanging the outside air in the casing 6. From the cold / hot water coil 2, the suction type blower 3 that mixes and supplies the return air from the return air intake 16 and the outside air that has passed through the outside air processing cold / hot water coil 2, and the outside air processing cold / hot water coil 2. A humidifier 5 that humidifies the outside air, and the return air intake 16, the cold / hot water coil 2 for treating the outside air and the humidifier 5 are arranged apart from each other, and the blower 3 is arranged therebetween, and the casing 6. Are provided with an air supply port 18, a return air intake port 16, an external air intake port 17, and a heat source water inlet / outlet pipe. Since other configurations are the same as those of the second embodiment, details are omitted.

図4の除湿空調機では、外気処理用冷温水コイル2にて外気を冷却又は加熱した後、機内で還気と混合し、室内に給気する。室内負荷は各種循環空調機で処理する。夏期に外気を冷却して給気する場合、外気を外気処理用冷温水コイル2で冷却減湿した除湿空気を、還気と所定比率で混合すると、還気で、これよりも低温低湿の前記除湿空気を再熱するのと同じ効果が得られ、給気を温湿度制御できる。冬期に外気を加熱して給気する場合、外気を外気処理用冷温水コイル2で加熱し、加湿器5で加湿して湿度調整した空気と、還気を所定比率で混合することで給気を温湿度制御できる。なお、図4の除湿空調機で、外気負荷だけでなく室内負荷の一部も処理させるように構成するも自由である。   In the dehumidifying air conditioner of FIG. 4, after the outside air is cooled or heated by the outside air processing cold / hot water coil 2, the outside air is mixed with the return air in the inside of the machine and supplied to the room. Indoor loads are handled by various circulating air conditioners. When the outside air is cooled and supplied in the summer, the dehumidified air cooled and dehumidified by the outside air processing cold / hot water coil 2 is mixed with the return air at a predetermined ratio. The same effect as reheating the dehumidified air can be obtained, and the temperature and humidity of the supply air can be controlled. When the outside air is heated and supplied in winter, the outside air is heated by the outside air processing cold / hot water coil 2 and humidified by the humidifier 5 to adjust the humidity and the return air is mixed at a predetermined ratio. The temperature and humidity can be controlled. Note that the dehumidifying air conditioner of FIG. 4 can be configured to process not only the outside air load but also a part of the indoor load.

図5〜図8は、図1〜図4の各実施例において、外気取入口17からの外気を送風機3までバイパスさせる外気ダンパ30をケーシング6内に設け、外気冷房自在とした実施例である。外気ダンパ30は、比例制御又はオンオフ制御で外気のバイパス比率を全給気風量まで制御自在に構成する。   5 to 8 are embodiments in which the outside air damper 30 for bypassing the outside air from the outside air intake port 17 to the blower 3 is provided in the casing 6 in each embodiment of FIGS. . The outside air damper 30 is configured to be able to control the bypass ratio of outside air up to the total supply air volume by proportional control or on / off control.

なお、図示省略するが、前記各実施例において、給気口18と還気取入口16と外気取入口17と熱源水出入口をケーシング6の上面に設けて、ダクトや配管の施工を容易にし周囲に余分なスペースを取らずに済むようにしているが、これらを側面に設けるも自由である。あるいは、ケーシング6を分割構造として、キャンバス継手などを介して又は直接、着脱自在に連結してケーシング6を構成してもよい。また、送風機3をコイルの風上に各々設けて押込み式に送風して混合したり、外気と還気の混合比率を変更したりするも自由である。   Although not shown in the drawings, in each of the above embodiments, the air supply port 18, the return air intake port 16, the outside air intake port 17, and the heat source water inlet / outlet port are provided on the upper surface of the casing 6 to facilitate the construction of ducts and pipes. However, it is also possible to provide these on the side surface. Alternatively, the casing 6 may be configured by detachably connecting the casing 6 through a canvas joint or the like directly or detachably. Moreover, it is also free to provide the blower 3 on the windward side of the coil and mix by blowing air in a pushing manner, or to change the mixing ratio of outside air and return air.

本発明の第1の実施例の簡略説明図である。It is a simplified explanatory view of the 1st example of the present invention. 本発明の第2の実施例の簡略説明図である。It is a simplified explanatory drawing of the 2nd Example of this invention. 本発明の第3の実施例の簡略説明図である。It is a simplified explanatory view of the 3rd example of the present invention. 本発明の第4の実施例の簡略説明図である。It is a simplified explanatory view of the 4th example of the present invention. 本発明の第5の実施例の簡略説明図である。It is a simplified explanatory drawing of the 5th Example of this invention. 本発明の第6の実施例の簡略説明図である。It is a simplified explanatory drawing of the 6th Example of this invention. 本発明の第7の実施例の簡略説明図である。It is a simplified explanatory drawing of the 7th Example of this invention. 本発明の第8の実施例の簡略説明図である。It is a simplified explanatory drawing of the 8th Example of this invention.

符号の説明Explanation of symbols

1 還気処理用冷温水コイル
2 外気処理用冷温水コイル
3 送風機
4 第1流量制御機構
5 加湿器
9 外気処理用直膨式コイル
10 第2流量制御機構
16 還気取入口
17 外気取入口
30 外気ダンパ
A 水熱源ヒートポンプ
DESCRIPTION OF SYMBOLS 1 Cooling / heating water coil for return air processing 2 Cold / hot water coil for outside air processing 3 Blower 4 First flow control mechanism 5 Humidifier 9 Direct expansion coil for outside air processing 10 Second flow control mechanism 16 Return air intake 17 Outside air intake 30 Outside air damper A Water source heat pump

Claims (4)

ケーシング6内に、還気を熱交換する還気処理用冷温水コイル1と、外気を熱交換する外気処理用冷温水コイル2及び水熱源ヒートポンプAの外気処理用直膨式コイル9と、外気を加湿する加湿器5と、前記還気処理用冷温水コイル1を通った還気と前記外気処理用冷温水コイル2、前記外気処理用直膨式コイル9及び前記加湿器5を通った外気とを混合して給気する吸込み式の送風機3と、を備え、前記還気処理用冷温水コイル1と、前記外気処理用冷温水コイル2、前記外気処理用直膨式コイル9及び前記加湿器5と、を隔てて対向配置し、その間に、前記送風機3を配置し、熱源水が前記還気処理用冷温水コイル1、前記外気処理用冷温水コイル2及び前記水熱源ヒートポンプAに任意の順序で1つずつ通水されるように構成すると共に、前記外気処理用冷温水コイル2への熱源水の一部又は全部をバイパスさせて前記外気処理用冷温水コイル2の熱源水流量を制御する第2流量制御機構10と、前記還気処理用冷温水コイル1への熱源水の一部又は全部をバイパスさせて前記還気処理用冷温水コイル1の熱源水流量を制御する第1流量制御機構4と、を設け、前記ケーシング6の上面に、還気取入口16と外気取入口17と給気口18と熱源水出入口配管とを設けたことを特徴とする除湿空調機。 In the casing 6, the return air treatment cold / hot water coil 1 for exchanging heat of the return air, the outside air treatment cold / hot water coil 2 for exchanging heat of the outside air, and the outside heat treatment direct expansion coil 9 of the water heat source heat pump A, the outside air A humidifier 5 that humidifies the air, return air that has passed through the cold / hot water coil 1 for return air treatment, the cold / hot water coil 2 for outside air treatment, the direct expansion coil 9 for outside air treatment, and the outside air that has passed through the humidifier 5. A suction-type blower 3 that mixes and supplies air, and the return air treatment cold / hot water coil 1, the outside air treatment cold / hot water coil 2, the outside air treatment direct expansion coil 9, and the humidification The air blower 3 is disposed therebetween, with the heat source water being arbitrarily provided to the return air treatment cold / hot water coil 1, the outside air treatment cold / hot water coil 2 and the water heat source heat pump A. If it is configured to pass water one by one in the order A second flow rate control mechanism 10 that controls a flow rate of the heat source water in the cold / hot water coil 2 for outside air processing by bypassing a part or all of the heat source water to the cold / hot water coil 2 for outside air treatment; A first flow rate control mechanism 4 for bypassing a part or all of the heat source water to the cold / hot water coil 1 to control the heat source water flow rate of the return air treatment cold / hot water coil 1, and providing on the upper surface of the casing 6 A dehumidifying air conditioner provided with a return air intake port 16, an outside air intake port 17, an air supply port 18, and a heat source water inlet / outlet pipe . ケーシング6内に、還気を熱交換する還気処理用冷温水コイル1と、外気を熱交換する外気処理用冷温水コイル2と、前記還気処理用冷温水コイル1を通った還気と前記外気処理用冷温水コイル2を通った外気とを混合して給気する吸込み式の送風機3と、前記外気処理用冷温水コイル2からの外気を加湿する加湿器5と、を備え、前記還気処理用冷温水コイル1と、前記外気処理用冷温水コイル2及び前記加湿器5と、を隔てて対向配置し、その間に、前記送風機3を配置し、熱源水が前記還気処理用冷温水コイル1及び前記外気処理用冷温水コイル2に任意の順序で1つずつ通水されるように構成すると共に、前記還気処理用冷温水コイル1への熱源水の一部又は全部をバイパスさせて前記還気処理用冷温水コイル1の熱源水流量を制御する第1流量制御機構4を、設け、前記ケーシング6の上面に、還気取入口16と外気取入口17と給気口18と熱源水出入口配管とを設けたことを特徴とする除湿空調機。 In the casing 6, the return air processing cold / hot water coil 1 for exchanging the return air, the outside air processing cold / hot water coil 2 for exchanging the outside air, and the return air passing through the return air processing cold / hot water coil 1, A suction type blower 3 that mixes and supplies outside air that has passed through the outside air treatment cold / hot water coil 2, and a humidifier 5 that humidifies outside air from the outside air treatment cold / hot water coil 2, The return air treatment cold / hot water coil 1, the outside air treatment cold / hot water coil 2 and the humidifier 5 are arranged opposite to each other, and the blower 3 is arranged therebetween, and the heat source water is used for the return air treatment. The chilled / hot water coil 1 and the outside air treatment cold / hot water coil 2 are configured to pass water one by one in an arbitrary order, and a part or all of the heat source water to the return air treatment cold / hot water coil 1 is used. Bypass and control the heat source water flow rate of the cold / hot water coil 1 for return air treatment That the first flow rate control mechanism 4 is provided on the upper surface of the casing 6, instead Kido inlet 16 and the outside air inlet 17 and air inlet port 18 and the heat source water inlet and outlet pipes and dehumidifying air conditioner, characterized in that a . 送風機3の空気入口において、還気と外気の圧力差がなくなるように還気側と外気側のいずれか一方のコイルの伝熱管を丸管にしかつ他方のコイルの伝熱管を前記丸管より低圧損の楕円管にした請求項1又は2記載の除湿空調機。 In order to eliminate the pressure difference between the return air and the outside air at the air inlet of the blower 3, the heat transfer tube of one of the return air side and the outside air side is a round tube, and the heat transfer tube of the other coil is lower in pressure than the round tube. 3. A dehumidifying air conditioner according to claim 1 or 2, wherein the lossy elliptic tube is used. 外気取入口17からの外気を送風機3までバイパスさせる外気ダンパ30をケーシング6内に設けた請求項1、2又は3記載の除湿空調機。 The dehumidifying air conditioner according to claim 1, 2, or 3, wherein an outside air damper (30) for bypassing outside air from the outside air inlet (17) to the blower (3) is provided in the casing (6) .
JP2006271338A 2006-08-17 2006-10-03 Dehumidifying air conditioner Active JP4207166B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006271338A JP4207166B2 (en) 2006-08-17 2006-10-03 Dehumidifying air conditioner
KR1020060114442A KR100891581B1 (en) 2006-08-17 2006-11-20 Air conditioner
CN2007100054158A CN101126530B (en) 2006-08-17 2007-02-08 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006222797 2006-08-17
JP2006271338A JP4207166B2 (en) 2006-08-17 2006-10-03 Dehumidifying air conditioner

Publications (2)

Publication Number Publication Date
JP2008070097A JP2008070097A (en) 2008-03-27
JP4207166B2 true JP4207166B2 (en) 2009-01-14

Family

ID=39291826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271338A Active JP4207166B2 (en) 2006-08-17 2006-10-03 Dehumidifying air conditioner

Country Status (3)

Country Link
JP (1) JP4207166B2 (en)
KR (1) KR100891581B1 (en)
CN (1) CN101126530B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542372B1 (en) * 2008-05-01 2015-08-06 엘지전자 주식회사 A ventilating appartus
JP2010007954A (en) * 2008-06-26 2010-01-14 Toyo Eng Works Ltd Dehumidifying air conditioner
JP4746077B2 (en) * 2008-07-23 2011-08-10 木村工機株式会社 Heat pump air conditioning system
WO2010044392A1 (en) * 2008-10-14 2010-04-22 本田技研工業株式会社 Painting apparatus
JP4907687B2 (en) * 2009-04-13 2012-04-04 木村工機株式会社 Heat pump type medium temperature air conditioning system
KR101475498B1 (en) * 2014-06-23 2014-12-24 주식회사 세원기연 Energy saving type air conditioner and supply air control method thereof
ES2534962B1 (en) * 2014-09-19 2015-11-04 Compañía Industrial De Aplicaciones Térmicas, S.A. New pool heat pump with heat recovery from extraction air and evacuation of heat to the extraction air by means of a reversible refrigeration circuit of mechanical compression and regulation procedure
JP6514939B2 (en) * 2015-03-31 2019-05-15 高砂熱学工業株式会社 air conditioner
KR101667979B1 (en) * 2015-06-19 2016-10-21 한국생산기술연구원 Air conditioner with dehumidification and humidification function and method of dehumidified cooling and humidified heating using the same
JPWO2017056215A1 (en) * 2015-09-30 2018-04-26 三菱電機株式会社 Air conditioning system and indoor unit
CN106123169B (en) * 2016-06-29 2018-12-14 深圳日海新能源科技有限公司 Energy-saving air conditioning
CN106196380B (en) * 2016-08-31 2021-11-23 山东华科规划建筑设计有限公司 Refrigerant supercooling heat recycling heat recovery air treatment unit
CA2995017C (en) * 2017-03-01 2019-12-24 Kimura Kohki Co., Ltd. Air conditioner and air conditioning system including the same
CN108036461A (en) * 2018-01-24 2018-05-15 曹新权 A kind of fresh air humidifier and fresh air humidification system
JP6619033B2 (en) * 2018-02-01 2019-12-11 木村工機株式会社 Air conditioner
CA3030732C (en) 2018-02-01 2021-02-16 Kimura Kohki Co., Ltd. Air conditioning system
JP7058250B2 (en) * 2018-09-07 2022-04-21 株式会社日建設計 Air conditioner with dehumidifying function and its control method
JP7473364B2 (en) 2020-03-10 2024-04-23 日本ピーマック株式会社 How to renovate your air conditioning system
CN113587286A (en) * 2021-08-06 2021-11-02 苏州新冠信制冷设备有限公司 Air conditioner with thermal compensation function

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461877A (en) * 1991-05-24 1995-10-31 Luminis Pty Ltd. Air conditioning for humid climates
JP3078746B2 (en) * 1996-03-13 2000-08-21 高砂熱学工業株式会社 Air conditioner
KR200184834Y1 (en) * 1998-03-27 2000-06-01 한완수 Indoor unit of 4-direction blowing of ceiling-cassette type airconditioner
JP2000039203A (en) * 1998-07-21 2000-02-08 Hitachi Plant Eng & Constr Co Ltd Air conditioner
JP3048574B1 (en) * 1999-09-14 2000-06-05 株式会社総合設備計画 Air conditioner
CN2407273Y (en) * 2000-01-24 2000-11-22 张志刚 Coiled pipes of ventilator with dual surface cooler for fresh air
JP2004077040A (en) * 2002-08-20 2004-03-11 Kimura Kohki Co Ltd Heat pump air conditioning system
CN1160536C (en) * 2002-12-25 2004-08-04 上海交通大学 Central air conditioning system at terminal of geothermal heat pump radiation
JP2004340529A (en) * 2003-05-19 2004-12-02 Kajima Corp Energy saving type air conditioning system
JP3800210B2 (en) * 2003-08-22 2006-07-26 木村工機株式会社 Water source heat pump unit
KR200344684Y1 (en) 2003-12-19 2004-03-18 주식회사 디에스테크 Apparatus for cleaning an indoor air with supplying an outdoor air
KR20050093684A (en) * 2004-10-20 2005-09-23 강남필터 주식회사 Indoor air and outdoor air introducing air clean ventilation system with high filtering efficiency for saving energy

Also Published As

Publication number Publication date
CN101126530B (en) 2010-06-23
KR20080016401A (en) 2008-02-21
CN101126530A (en) 2008-02-20
KR100891581B1 (en) 2009-04-03
JP2008070097A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP4207166B2 (en) Dehumidifying air conditioner
KR100821568B1 (en) Air conditioner
CN108679870A (en) A kind of warm and humid sub-control air-conditioning system with Fresh air handing function
CN108800375B (en) Air heat source heat pump type air conditioner
JP4445530B2 (en) Heat pump type dry air conditioning system using geothermal heat
US20120012285A1 (en) Dehumidification system
CN112880035A (en) Improved temperature-control dehumidification fresh air conditioner and fresh air dehumidification wind temperature control method
JP6425750B2 (en) Air conditioning system
JP3506333B2 (en) Ceiling heat recovery machine
JP4647399B2 (en) Ventilation air conditioner
CN112229003B (en) Air conditioning system and control method thereof
JP4505486B2 (en) Heat pump air conditioner
JP3614775B2 (en) Heat pump air conditioner
JP4045551B2 (en) Heat pump air conditioner
JP7374633B2 (en) Air conditioners and air conditioning systems
JP2020041796A (en) Air conditioner with dehumidifying function and control method thereof
JP2007333378A (en) Heat pump type air conditioner
CN115218310B (en) Temperature-humidity-division control multi-station air conditioning system based on single-machine double-evaporation heat pump unit
WO2023148854A1 (en) Heat-exchange-type ventilation device
CN220541244U (en) Constant temperature and humidity multi-connected comfort central air conditioning system
JP3617623B2 (en) Heat pump air conditioner
JP2018109468A (en) Air Conditioning System
JP2008286444A (en) Air conditioning device
KR20230100940A (en) Air Conditioning System which Control Temperature and Humidity
JP3484693B2 (en) Air-cooled heat pump type thermal storage air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent or registration of utility model

Ref document number: 4207166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250