JPH11352533A - Wavelength conversion crystal and its production as well as laser apparatus using the same - Google Patents

Wavelength conversion crystal and its production as well as laser apparatus using the same

Info

Publication number
JPH11352533A
JPH11352533A JP15711998A JP15711998A JPH11352533A JP H11352533 A JPH11352533 A JP H11352533A JP 15711998 A JP15711998 A JP 15711998A JP 15711998 A JP15711998 A JP 15711998A JP H11352533 A JPH11352533 A JP H11352533A
Authority
JP
Japan
Prior art keywords
crystal
wavelength conversion
conversion crystal
laser
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15711998A
Other languages
Japanese (ja)
Inventor
Ryuichi Komatsu
▲隆▼一 小松
Tamotsu Sugawara
保 菅原
Noriko Watanabe
紀子 渡辺
Vincent Naahii
ビンセント ナーヒー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP15711998A priority Critical patent/JPH11352533A/en
Publication of JPH11352533A publication Critical patent/JPH11352533A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a wavelength conversion crystal which is capable of making wavelength conversion up to the UV region, has deliquescence resistance, and is expressed by RbLiB6 O10 . SOLUTION: This wavelength conversion crystal is represented as RbLiB6 O10 and has the deliquescence resistance. Carbonate or borate of lithium, carbonate of rubidium and boric acid or boric anhydride are weighed in prescribed amts. and are melted, and the wavelength conversion crystal represented by RbLiB6 O10 is grown from this melt. The wavelength conversion crystal is transferred into an atmosphere of 20% or lower for relative humidity and room temp., when the temp. of the wavelength conversion crystal after the growth is decreased to 150 deg.C. The wavelength conversion crystal is then left standing and cooled down to the room temp.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザの入射光の
波長を半分にする波長変換結晶及びその製造方法並びに
この結晶を用いたレーザ発振装置に関する。更に詳しく
は、耐潮解性を有するLiRbB610で表される波長
変換結晶及びその製造方法並びにこの結晶を用いたレー
ザ発振装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength conversion crystal for halving the wavelength of incident light of a laser, a method for manufacturing the same, and a laser oscillator using the crystal. More specifically, the present invention relates to a wavelength conversion crystal represented by LiRbB 6 O 10 having deliquescent resistance, a method for producing the same, and a laser oscillation device using the crystal.

【0002】[0002]

【従来の技術】YAG等の赤外固体レーザとこの種の波
長変換結晶を用いて作られる紫外域又は可視域の短波長
固体レーザは、従来のArガスレーザやエキシマレーザ
と比較して、より安全でメインテナンスが容易である
上、低価格で小型化し得る特長がある。入射光の波長を
半分にして出射する上記波長変換結晶は、信頼性の高い
短波長固体レーザには必要不可欠な結晶である。しかし
ながら、この波長変換結晶として十分に満足できる結晶
はこれまで存在せず、多くの研究者が良好な特性を示す
波長変換結晶を見い出すべく、現在活発な研究を行って
いる。
2. Description of the Related Art A short-wavelength solid-state laser in the ultraviolet or visible range made using an infrared solid-state laser such as YAG and a wavelength conversion crystal of this kind is more secure than conventional Ar gas lasers and excimer lasers. In addition, maintenance is easy, and there is a feature that the size can be reduced at a low price. The wavelength conversion crystal that emits the wavelength of the incident light by half is an indispensable crystal for a highly reliable short-wavelength solid-state laser. However, there is no crystal which is sufficiently satisfactory as this wavelength conversion crystal so far, and many researchers are currently conducting active research to find a wavelength conversion crystal exhibiting good characteristics.

【0003】従来、この種の波長変換結晶として、透過
波長領域が紫外域まで広がったホウ酸系のBBO(Ba
24)、LBO(LiB35)などの非線形光学結晶
が知られている。また近年LBO結晶のLiの一部をC
sで置換したCLBO(CsLiB318)の結晶が開
発されている。CLBO結晶は、LBO結晶とほぼ同じ
非線形光学定数の値を有する。しかし、このCLBO結
晶は吸湿性があり、この吸湿により結晶が自発的に砕け
る潮解性があり、良質な結晶ができない不具合がある。
この点を解消するために、CLBO結晶のCsの一部又
は全部をRb、K及びTlと置換した組成で表される結
晶が提案されている(特開平8−295507)。この
中で特にCsをRbで全部置換したLiRbB6
10(LRBO)の結晶は容易に製造でき、かつ安全性が
高い特長がある。
Conventionally, as this type of wavelength conversion crystal, boric acid-based BBO (Ba) whose transmission wavelength range has been extended to the ultraviolet range.
Nonlinear optical crystals such as B 2 O 4 ) and LBO (LiB 3 O 5 ) are known. In recent years, part of Li of LBO crystal has been replaced with C
A crystal of CLBO (CsLiB 3 O 18 ) substituted with s has been developed. CLBO crystals have substantially the same nonlinear optical constant values as LBO crystals. However, the CLBO crystal has a hygroscopic property, and has a deliquescent property in which the crystal spontaneously breaks due to the moisture absorption, so that a high-quality crystal cannot be obtained.
In order to solve this problem, there has been proposed a crystal having a composition in which part or all of Cs in a CLBO crystal is substituted with Rb, K and Tl (Japanese Patent Application Laid-Open No. 8-295507). Among them, LiRbB 6 O in which Cs is entirely replaced with Rb
The crystal of 10 (LRBO) can be easily manufactured and has high safety.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記BBO、
LBO及びCLBOの結晶は勿論のこと、上記RLBO
の結晶においても、得られた結晶は水分を吸収するとい
う吸湿性を有し、波長変換の効率が劣化する問題点があ
った。またこの水分は結晶を加工するときに大気中から
吸収されるばかりでなく、育成後の冷却中の結晶に大気
中から吸着して白濁化し、かつ結晶を取扱う際に形状が
崩れる潮解性を有する致命的な欠点があった。本発明の
目的は、紫外域まで波長変換することができ、かつ耐潮
解性を有するRbLiB610で表される波長変換結晶
及びその製造方法並びにこの結晶を用いたレーザ発振装
置を提供することにある。
However, the above BBO,
Not only LBO and CLBO crystals, but also RLBO
In the above crystal, there is a problem that the obtained crystal has a hygroscopic property of absorbing moisture and the wavelength conversion efficiency is deteriorated. In addition, this moisture is not only absorbed from the atmosphere when processing the crystal, but also adsorbs from the air to the cooled crystal after growing from the atmosphere to make it cloudy, and has a deliquescence that the shape collapses when handling the crystal. There was a fatal drawback. SUMMARY OF THE INVENTION An object of the present invention is to provide a wavelength conversion crystal represented by RbLiB 6 O 10 capable of wavelength conversion up to the ultraviolet region and having deliquescence resistance, a method for manufacturing the same, and a laser oscillation device using the crystal. It is in.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
LiRbB610で表され、耐潮解性を有することを特
徴とする波長変換結晶である。このLiRbB610
表される波長変換結晶は、B−O構造を有するため紫外
域まで波長変換することができ、ハイパワー領域での波
長変換ではBBOに勝る特性を有する。特に本発明の波
長変換結晶は耐潮解性を有するために、結晶を大気中に
放置しても結晶の形状が崩れることもない。
The invention according to claim 1 is
A wavelength conversion crystal represented by LiRbB 6 O 10 and having deliquescent resistance. Since the wavelength conversion crystal represented by LiRbB 6 O 10 has a BO structure, it can perform wavelength conversion up to the ultraviolet region, and has characteristics superior to BBO in wavelength conversion in a high power region. In particular, since the wavelength conversion crystal of the present invention has deliquescence resistance, the shape of the crystal does not collapse even when the crystal is left in the air.

【0006】請求項2に係る発明は、リチウムの炭酸塩
又はホウ酸塩と、ルビジウムの炭酸塩と、ホウ酸又は無
水ホウ酸とを所定量秤量して融解し、この融液からLi
RbB610で表される波長変換結晶を育成した後、こ
の波長変換結晶を大気中で冷却することにより波長変換
結晶を製造する方法において、育成後の波長変換結晶の
温度が150℃まで低下したときに上記波長変換結晶を
相対湿度が20%以下の室温の雰囲気中に移して放置し
室温まで冷却することを特徴とする波長変換結晶の製造
方法である。育成後の結晶の降温過程で、結晶の温度が
150℃まで低下して時点で、相対湿度が20%以下の
室温の雰囲気中に移して放置し室温まで冷却することに
より、結晶化の全過程において水分の吸着が防止され、
得られた結晶は白濁化せず、また型くずれもなく、耐潮
解性を示す。
According to a second aspect of the present invention, a predetermined amount of lithium carbonate or borate, rubidium carbonate, boric acid or boric acid is weighed and melted.
After growing the wavelength conversion crystal represented by RbB 6 O 10 , in a method of manufacturing the wavelength conversion crystal by cooling the wavelength conversion crystal in the air, the temperature of the grown wavelength conversion crystal is reduced to 150 ° C. A method for producing a wavelength conversion crystal, characterized in that the wavelength conversion crystal is moved to an atmosphere at a room temperature having a relative humidity of 20% or less and left to cool to room temperature. At the time when the temperature of the crystal is lowered to 150 ° C. in the temperature decreasing process of the crystal after the growth, the crystal is transferred to an atmosphere having a relative humidity of 20% or less at room temperature, left to cool to room temperature, and the entire process of crystallization is performed. The adsorption of moisture is prevented at
The obtained crystals do not become cloudy, do not lose their shape, and show deliquescent resistance.

【0007】請求項3に係る発明は、図3に示すように
レーザ媒質11から発生したレーザ光の光路に耐潮解性
を有するLiRbB610で表される波長変換結晶12
が設けられたことを特徴とするレーザ発振装置である。
レーザ媒質11から発生したレーザ光を本発明の波長変
換結晶12に照射すると、この波長変換結晶12で波長
変換されたレーザ光が出射される。
According to a third aspect of the present invention, there is provided a wavelength conversion crystal 12 represented by LiRbB 6 O 10 having deliquescent resistance in an optical path of a laser beam generated from a laser medium 11 as shown in FIG.
Is provided.
When the laser light generated from the laser medium 11 is irradiated on the wavelength conversion crystal 12 of the present invention, the laser light whose wavelength has been converted by the wavelength conversion crystal 12 is emitted.

【0008】[0008]

【発明の実施の形態】本発明の上記結晶を製造するとき
の出発原料は、リチウムの炭酸塩又はホウ酸塩と、ルビ
ジウムの炭酸塩と、ホウ酸又は無水ホウ酸である。これ
らを所定量秤量して加熱融解することにより融液を得た
後、この融液から結晶を育成させる。本発明のLRBO
の結晶化温度は720℃以下で、一致融解を示すので、
結晶の育成方法としては、チョクラルスキー(CZ)
法、ブリッジマン法、浮遊帯域融解(FZ)法などを採
用することができる。LRBOの結晶化速度はホウ酸系
の光学結晶の中でCLBO結晶に比べれば幾分遅いが、
BBO結晶やLBO結晶の結晶化速度より速く、これら
の結晶と比べて、LRBO結晶はより短時間で育成する
ことができる。育成後のLRBO結晶は、結晶の温度が
150℃に低下するまでは育成炉の大気中で育成炉のヒ
ータへの印加電圧を徐々に下げることにより冷却し、1
50℃に到達した時点でこの結晶を育成炉から取出し、
相対湿度が20%以下の室温の雰囲気中に移して放置し
室温まで冷却する。この相対湿度が20%以下の室温の
雰囲気としては、ドライボックス、デシケータ又は降温
プロファイルをプログラム制御された恒温恒湿槽の各内
部雰囲気が挙げられる。上記雰囲気でLRBO結晶は結
晶体が保有する熱を放散しながら徐々に室温まで冷却さ
れる。上記育成炉から相対湿度が低い雰囲気に移すとき
の結晶の温度は好ましくは120℃であり、また移され
る雰囲気の好ましい相対湿度は15%以下である。
BEST MODE FOR CARRYING OUT THE INVENTION Starting materials for producing the above crystals of the present invention are lithium carbonate or borate, rubidium carbonate, and boric acid or boric anhydride. After weighing these in a predetermined amount and melting them by heating to obtain a melt, crystals are grown from the melt. LRBO of the present invention
Has a crystallization temperature of 720 ° C. or lower and shows consistent melting.
Czochralski (CZ)
Method, Bridgman method, floating zone melting (FZ) method, or the like can be employed. The crystallization rate of LRBO is somewhat lower than that of CLBO crystal among boric acid-based optical crystals,
The crystallization speed of the BBO crystal and the LBO crystal is faster than that of these crystals, so that the LRBO crystal can be grown in a shorter time. The grown LRBO crystal is cooled by gradually lowering the voltage applied to the heater of the growing furnace in the atmosphere of the growing furnace until the temperature of the crystal decreases to 150 ° C.
When the temperature reaches 50 ° C., the crystal is taken out of the growth furnace,
It is moved to an atmosphere at a room temperature having a relative humidity of 20% or less and left to cool to room temperature. Examples of the atmosphere at room temperature where the relative humidity is 20% or less include the respective internal atmospheres of a dry box, a desiccator, or a thermo-hygrostat in which a temperature-lowering profile is program-controlled. In the above atmosphere, the LRBO crystal is gradually cooled to room temperature while dissipating the heat of the crystal. The temperature of the crystal when it is transferred from the growth furnace to an atmosphere having a low relative humidity is preferably 120 ° C., and the preferable relative humidity of the transferred atmosphere is 15% or less.

【0009】本発明のLRBO結晶は単結晶の状態で非
線形光学材料として、図3に示すレーザ発振装置に用い
ることができる。このレーザ発振装置ではレーザ媒質1
1の基本波長のレーザ光をレーザ媒質11の光路に設け
られたこのLRBO単結晶12に照射すれば、照射され
たLRBO単結晶12の入射光はこの単結晶中で波長変
換されて高調波を出射する。これによりこのLRBO結
晶を短波長光源として利用できる。レーザ媒質として
は、dye(色素)レーザ、固体レーザ、半導体レーザ
等が挙げられる。また本発明のLRBO結晶を焼結して
多結晶のセラミック体の非線形光学材料として使用し、
可視領域よりも長い波長のレーザ光をこのセラミック体
に照射することにより可視化することができる。これは
例えば、YAGを用いた1.06μmのレーザ光をこの
セラミック体に照射すると0.53μmの可視光が出射
され、レーザ光のビーム形状や強度分布などのビーム形
状を見ることができる。
The LRBO crystal of the present invention can be used as a nonlinear optical material in a single crystal state in the laser oscillation device shown in FIG. In this laser oscillation device, the laser medium 1
By irradiating the LRBO single crystal 12 provided on the optical path of the laser medium 11 with the laser light having the fundamental wavelength of 1, the incident light of the irradiated LRBO single crystal 12 is wavelength-converted in the single crystal to reduce harmonics. Emit. Thereby, this LRBO crystal can be used as a short wavelength light source. Examples of the laser medium include a dye laser, a solid-state laser, and a semiconductor laser. Further, the LRBO crystal of the present invention is sintered and used as a nonlinear optical material of a polycrystalline ceramic body,
The ceramic body can be visualized by irradiating the ceramic body with laser light having a wavelength longer than the visible region. For example, when the ceramic body is irradiated with a laser beam of 1.06 μm using YAG, for example, visible light of 0.53 μm is emitted, and the beam shape of the laser beam and the beam shape such as the intensity distribution can be seen.

【0010】[0010]

【実施例】次の本発明の実施例を比較例とともに説明す
る。 <実施例1>LRBO結晶をチョクラルスキー法により
育成した。先ず炭酸リチウム(Li2CO3)と炭酸ルビ
ジウム(Rb2CO3)と酸化ホウ素(B23)をモル比
でLi2CO3:Rb2CO3:B23=1:1:6となる
ように秤量し均一に混合した。内径約60mm、高さ約
60mmの白金ルツボをたて型炉の中に配置し、ルツボ
の中に上記混合粉を3回に分けて入れ、850℃に保っ
て混合粉を融解した。最終的に融液はルツボの容積の8
0%を占めた。上記モル比と同一にして別に作製した種
結晶をシードホルダに取付けた後、この種結晶を750
℃の温度に調整された融液表面に接触させ、この温度で
2時間維持しながら、種結晶を引上げて直径約1cm、
長さ約5cmのLRBO結晶を育成した。育成後のLR
BO結晶は、結晶の温度が120℃に低下するまでは育
成炉の大気中で育成炉のヒータへの印加電圧を徐々に下
げることにより冷却し、120℃に到達した時点でこの
結晶を育成炉から取出し、素早く相対湿度20%、温度
30℃に調整されたドライボックスの中に入れた。LR
BO結晶の温度は結晶近傍に熱電対を設けて測定した。
このドライボックスの中で5時間放置した後、30℃の
温度を有するLRBO結晶をドライボックスから取出し
た。
The following examples of the present invention will be described together with comparative examples. <Example 1> LRBO crystals were grown by the Czochralski method. First, lithium carbonate (Li 2 CO 3 ), rubidium carbonate (Rb 2 CO 3 ), and boron oxide (B 2 O 3 ) have a molar ratio of Li 2 CO 3 : Rb 2 CO 3 : B 2 O 3 = 1: 1: Then, the mixture was weighed so as to be 6 and uniformly mixed. A platinum crucible having an inner diameter of about 60 mm and a height of about 60 mm was placed in a vertical furnace, and the mixed powder was put into the crucible in three portions and kept at 850 ° C. to melt the mixed powder. Finally, the melt has a volume of 8 crucibles.
Accounted for 0%. After attaching a seed crystal separately prepared in the same molar ratio as above to a seed holder, this seed crystal was 750
Contact with the melt surface adjusted to a temperature of 0 ° C., while maintaining the temperature at this temperature for 2 hours, the seed crystal is pulled up to a diameter of about 1 cm,
An LRBO crystal having a length of about 5 cm was grown. LR after rearing
The BO crystal is cooled by gradually lowering the voltage applied to the heater of the growing furnace in the atmosphere of the growing furnace until the temperature of the crystal decreases to 120 ° C., and when the temperature reaches 120 ° C., the BO crystal is cooled. , And quickly placed in a dry box adjusted to a relative humidity of 20% and a temperature of 30 ° C. LR
The temperature of the BO crystal was measured by providing a thermocouple near the crystal.
After standing in this dry box for 5 hours, the LRBO crystal having a temperature of 30 ° C. was taken out of the dry box.

【0011】<比較例1>実施例1と同一の条件で実施
例1と同一のLRBO結晶を育成した。この結晶を育成
した後、育成炉のヒータへの印加電圧を徐々に下げ、結
晶の温度が120℃になった時点で、ヒータの電源を切
った。大気中の育成炉中で結晶が30℃の室温になるま
で5時間放置した。
Comparative Example 1 The same LRBO crystal as in Example 1 was grown under the same conditions as in Example 1. After growing this crystal, the voltage applied to the heater of the growth furnace was gradually lowered, and when the temperature of the crystal reached 120 ° C., the power of the heater was turned off. The crystal was left in a growth furnace in the air for 5 hours until the crystal reached room temperature of 30 ° C.

【0012】<比較評価>実施例1のドライボックスか
ら取出した室温のLRBO結晶と、比較例1の育成炉か
ら取出した室温のLRBO結晶のそれぞれの状態を写真
撮影した。その結果をそれぞれ図1(実施例1)及び図
2(比較例1)に示す。図1及び図2から明らかなよう
に、比較例1のLRBO結晶は大気中の水分を吸収して
白濁化し、潮解により結晶が割れたのに対して、実施例
1のLRBO結晶は割れずに透明であった。また得られ
た実施例1及び比較例1のLRBO結晶を手で強く握り
しめ、形状の崩れの有無を調べたところ、比較例1のL
RBO結晶は脆くて形が崩れた。これに対して実施例1
のLRBO結晶は緻密で固い結晶体であって形状の変化
は全くなかった。
<Comparative Evaluation> Photographs were taken of the respective states of the room temperature LRBO crystal taken out of the dry box of Example 1 and the room temperature LRBO crystal taken out of the growth furnace of Comparative Example 1. The results are shown in FIG. 1 (Example 1) and FIG. 2 (Comparative Example 1). As is clear from FIG. 1 and FIG. 2, the LRBO crystal of Comparative Example 1 absorbed the moisture in the atmosphere and became cloudy, and the crystal was cracked by deliquescence, whereas the LRBO crystal of Example 1 was not broken. It was transparent. Further, the obtained LRBO crystals of Example 1 and Comparative Example 1 were strongly grasped by hand, and the presence or absence of shape collapse was examined.
The RBO crystal was brittle and collapsed. On the other hand, Embodiment 1
The LRBO crystal was a dense and hard crystal and did not change its shape at all.

【0013】[0013]

【発明の効果】以上述べたように、本発明の波長変換結
晶は、LiRbB610で表される結晶であるため、B
−O構造を有することから紫外域まで波長変換すること
ができ、ハイパワー領域での波長変換ではBBOに勝る
特性を示す。特にこの結晶は耐潮解性を有すため、大気
中に放置しても結晶は容易に白濁化せず、加工の際など
の取扱い時に細かいクラックに起因して割れたり形状が
崩れたりすることがない。
As described above, since the wavelength conversion crystal of the present invention is a crystal represented by LiRbB 6 O 10 ,
Due to the -O structure, wavelength conversion can be performed up to the ultraviolet region, and the wavelength conversion in the high power region shows characteristics superior to BBO. In particular, since this crystal has deliquescence resistance, the crystal does not easily become cloudy even when left in the air, and may break or lose its shape due to fine cracks during handling such as processing. Absent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の室温まで冷却後のLRBO結晶の状
態を示す写真図。
FIG. 1 is a photograph showing the state of an LRBO crystal after cooling to room temperature in Example 1.

【図2】比較例1の室温まで冷却後のLRBO結晶の状
態を示す写真図。
FIG. 2 is a photograph showing the state of an LRBO crystal after cooling to room temperature in Comparative Example 1.

【図3】本発明のレーザ発振装置の構成図。FIG. 3 is a configuration diagram of a laser oscillation device of the present invention.

【符号の説明】[Explanation of symbols]

11 レーザ媒質 12 波長変換結晶 11 Laser medium 12 Wavelength conversion crystal

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年6月5日[Submission date] June 5, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【手続補正書】[Procedure amendment]

【提出日】平成10年7月7日[Submission date] July 7, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 波長変換結晶及びその製造方法並びに
これを用いたレーザ装
METHOD Name of the Invention Wavelength conversion crystals and their manufacture as well as lasers equipment using the same

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項3[Correction target item name] Claim 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0001】[0001]

【発明の属する技術分野】本発明は、レーザの入射光の
波長を半分にする波長変換結晶及びその製造方法並びに
この結晶を用いたレーザ発振装置に関する。更に詳しく
は、耐潮解性を有するLiRbB610で表される波長
変換結晶及びその製造方法並びにこの結晶を用いたレー
ザ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength conversion crystal for halving the wavelength of incident light of a laser, a method for manufacturing the same, and a laser oscillator using the crystal. More specifically, a wavelength conversion crystal represented by LiRbB 6 O 10 having deliquescence resistance, a method for producing the same, and a laser using the crystal.
It relates to The equipment.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】[0004]

【発明が解決しようとする課題】しかし、上記BBO、
LBO及びCLBOの結晶は勿論のこと、上記LRBO
の結晶においても、得られた結晶は水分を吸収するとい
う吸湿性を有し、波長変換の効率が劣化する問題点があ
った。またこの水分は結晶を加工するときに大気中から
吸収されるばかりでなく、育成後の冷却中の結晶に大気
中から吸着して白濁化し、かつ結晶を取扱う際に形状が
崩れる潮解性を有する致命的な欠点があった。本発明の
目的は、紫外域まで波長変換することができ、かつ耐潮
解性を有するLiRb610で表される波長変換結晶
及びその製造方法並びにこの結晶を用いたレーザ装置を
提供することにある。
However, the above BBO,
Not only LBO and CLBO crystals, but also LRBO
In the above crystal, there is a problem that the obtained crystal has a hygroscopic property of absorbing moisture and the wavelength conversion efficiency is deteriorated. In addition, this moisture is not only absorbed from the atmosphere when processing the crystal, but also adsorbs from the air to the cooled crystal after growing from the atmosphere to make it cloudy, and has a deliquescence that the shape collapses when handling the crystal. There was a fatal drawback. An object of the present invention may be a wavelength converting to ultraviolet region, and provide lasers equipment using the wavelength conversion crystal and a method for manufacturing the same, and the crystal represented by LiRb B 6 O 10 having耐潮disintegratable Is to do.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
LiRbB610で表され、耐潮解性を有することを特
徴とする波長変換結晶である。このLiRbB610
表される波長変換結晶は、B−O構造を有するため紫外
域まで波長変換することができ、またハイパワー領域で
の波長変換ではBBOに勝る特性を有する。特に本発明
の波長変換結晶は耐潮解性を有するために、結晶を大気
中に放置しても結晶の形状が崩れることもない。
The invention according to claim 1 is
A wavelength conversion crystal represented by LiRbB 6 O 10 and having deliquescent resistance. The LiRbB 6 O 10 in the wavelength conversion represented crystal, B-O structure can be wavelength-converted to ultraviolet region because it has, also has the property over BBO in wavelength conversion at high power region. In particular, since the wavelength conversion crystal of the present invention has deliquescence resistance, the shape of the crystal does not collapse even when the crystal is left in the air.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】請求項3に係る発明は、図3に示すように
レーザ媒質11から発生したレーザ光の光路に耐潮解性
を有するLiRbB610で表される波長変換結晶12
が設けられたことを特徴とするレーザ装置である。レー
ザ媒質11から発生したレーザ光を本発明の波長変換結
晶12に照射すると、この波長変換結晶12で波長変換
されたレーザ光が出射される。
According to a third aspect of the present invention, there is provided a wavelength conversion crystal 12 represented by LiRbB 6 O 10 having deliquescent resistance in an optical path of a laser beam generated from a laser medium 11 as shown in FIG.
A lasers equipment, characterized in that is provided. When the laser light generated from the laser medium 11 is irradiated on the wavelength conversion crystal 12 of the present invention, the laser light whose wavelength has been converted by the wavelength conversion crystal 12 is emitted.

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】本発明のLRBO結晶は単結晶の状態で非
線形光学材料として、図3に示すレーザ装置に用いるこ
とができる。このレーザ装置ではレーザ媒質11の基本
波長のレーザ光をレーザ媒質11の光路に設けられたこ
のLRBO単結晶12に照射すれば、照射されたLRB
O単結晶12の入射光はこの単結晶中で波長変換されて
高調波を出射する。これによりこのLRBO結晶を短波
長光源として利用できる。レーザ媒質としては、dye
(色素)レーザ、固体レーザ、半導体レーザ等が挙げら
れる。また本発明のLRBO結晶を焼結して多結晶のセ
ラミック体の非線形光学材料として使用し、可視領域よ
りも長い波長のレーザ光をこのセラミック体に照射する
ことにより可視化することができる。これは例えば、Y
AGを用いた1.06μmのレーザ光をこのセラミック
体に照射すると0.53μmの可視光が出射され、レー
ザ光のビーム形状や強度分布などのビーム形状を見るこ
とができる。
[0009] LRBO crystals of the invention as the nonlinear optical material in the form of single crystals, can be used in lasers equipment shown in FIG. It is irradiated with laser light of a fundamental wavelength of the laser medium 11 in this lasers equipment in this LRBO single crystal 12 provided in the optical path of the laser medium 11, irradiated LRB
The incident light of the O single crystal 12 is subjected to wavelength conversion in the single crystal and emits a harmonic. Thereby, this LRBO crystal can be used as a short wavelength light source. As the laser medium, dye
(Dye) lasers, solid-state lasers, semiconductor lasers, and the like. Further, the LRBO crystal of the present invention can be sintered and used as a nonlinear optical material of a polycrystalline ceramic body, and can be visualized by irradiating the ceramic body with laser light having a wavelength longer than the visible region. This is, for example, Y
When the ceramic body is irradiated with 1.06 μm laser light using AG, 0.53 μm visible light is emitted, and the beam shape of the laser light and the beam shape such as the intensity distribution can be seen.

【手続補正8】[Procedure amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の室温まで冷却後のLRBO結晶の状
態を示す写真図。
FIG. 1 is a photograph showing the state of an LRBO crystal after cooling to room temperature in Example 1.

【図2】比較例1の室温まで冷却後のLRBO結晶の状
態を示す写真図。
FIG. 2 is a photograph showing the state of an LRBO crystal after cooling to room temperature in Comparative Example 1.

【図3】本発明のレーザ装置の構成図。FIG. 3 is a block diagram of a laser The equipment of the present invention.

【符号の説明】 11 レーザ媒質 12 波長変換結晶[Description of Signs] 11 Laser medium 12 Wavelength conversion crystal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ナーヒー ビンセント 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所内 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Nahee Vincent 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Mitsubishi Materials Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 LiRbB610で表され、耐潮解性を
有することを特徴とする波長変換結晶。
1. A wavelength conversion crystal represented by LiRbB 6 O 10 and having deliquescence resistance.
【請求項2】 リチウムの炭酸塩又はホウ酸塩と、ルビ
ジウムの炭酸塩と、ホウ酸又は無水ホウ酸とを所定量秤
量して融解し、この融液からLiRbB610で表され
る波長変換結晶を育成した後、前記波長変換結晶を大気
中で冷却することにより前記波長変換結晶を製造する方
法において、 前記育成後の波長変換結晶の温度が150℃まで低下し
たときに前記波長変換結晶を相対湿度が20%以下の室
温の雰囲気中に移して放置し室温まで冷却することを特
徴とする波長変換結晶の製造方法。
2. A predetermined amount of lithium carbonate or borate, rubidium carbonate, boric acid or boric acid is weighed and melted, and a wavelength represented by LiRbB 6 O 10 is obtained from the melt. After growing the conversion crystal, in the method of manufacturing the wavelength conversion crystal by cooling the wavelength conversion crystal in the air, the wavelength conversion crystal when the temperature of the grown wavelength conversion crystal is reduced to 150 ℃ Is transferred to an atmosphere at a room temperature having a relative humidity of 20% or less and left to cool to room temperature.
【請求項3】 レーザ媒質(11)から発生したレーザ光の
光路に耐潮解性を有するLiRbB610で表される波
長変換結晶(12)が設けられたことを特徴とするレーザ発
振装置。
3. A laser oscillation device comprising a wavelength conversion crystal (12) represented by LiRbB 6 O 10 having deliquescence resistance provided in an optical path of laser light generated from a laser medium (11).
JP15711998A 1998-06-05 1998-06-05 Wavelength conversion crystal and its production as well as laser apparatus using the same Withdrawn JPH11352533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15711998A JPH11352533A (en) 1998-06-05 1998-06-05 Wavelength conversion crystal and its production as well as laser apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15711998A JPH11352533A (en) 1998-06-05 1998-06-05 Wavelength conversion crystal and its production as well as laser apparatus using the same

Publications (1)

Publication Number Publication Date
JPH11352533A true JPH11352533A (en) 1999-12-24

Family

ID=15642639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15711998A Withdrawn JPH11352533A (en) 1998-06-05 1998-06-05 Wavelength conversion crystal and its production as well as laser apparatus using the same

Country Status (1)

Country Link
JP (1) JPH11352533A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984151A (en) * 2010-11-22 2011-03-09 中国科学院新疆理化技术研究所 Di lithium tetra borate rubidium nonlinear optic crystal, preparation method and application thereof
CN102212882A (en) * 2011-05-12 2011-10-12 中国科学院新疆理化技术研究所 Non-linear optical crystal of rubidium lithium borate compound, preparation method thereof and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984151A (en) * 2010-11-22 2011-03-09 中国科学院新疆理化技术研究所 Di lithium tetra borate rubidium nonlinear optic crystal, preparation method and application thereof
CN102212882A (en) * 2011-05-12 2011-10-12 中国科学院新疆理化技术研究所 Non-linear optical crystal of rubidium lithium borate compound, preparation method thereof and application thereof

Similar Documents

Publication Publication Date Title
JP4061797B2 (en) BORATE SINGLE CRYSTAL, GROWTH METHOD THEREOF, AND LASER DEVICE USING THE SAME
JP2011153054A (en) Method for producing gallium oxide single crystal and gallium oxide single crystal
CN106868587A (en) Lithium rubidium barium aluminium boroxide fluorine and lithium rubidium barium aluminium boroxide fluorine nonlinear optical crystal and preparation method and purposes
JP2004131369A (en) Method for manufacturing terbium-aluminum-based paramagnetic garnet single crystal
JP2011121840A (en) Terbium oxide crystal for magneto-optic element
WO2020015367A1 (en) Nonlinear optical crystal, preparation method therefor and use thereof
CN103060917B (en) BaGa 2siS 6compound, BaGa 2siS 6non-linear optic crystal and method for making and purposes
Zhao et al. Growth of large-sized Yb: YAG single crystals by temperature gradient technique
Bensalah et al. Growth and characterization of LiSrGaF6 single crystal
JPH11352533A (en) Wavelength conversion crystal and its production as well as laser apparatus using the same
CN110725004A (en) Cesium rubidium fluoroboroaluminate nonlinear optical crystal and preparation method and application thereof
US4478676A (en) Method for decreasing radial temperature gradients of crystal growth melts utilizing radiant energy absorptive materials and crystal growth chambers comprising such materials
JP2008050240A (en) Method for producing cesium boric acid compound crystal and cesium boric acid compound obtained by the same
JP3317338B2 (en) Wavelength conversion crystal, method of manufacturing the same, and laser device using the same
CN109457296B (en) Preparation method and device of cerium doped lanthanum bromide
CN115467024B (en) Potassium barium calcium boron oxyfluoride compound, potassium barium calcium boron oxyfluoride nonlinear optical crystal, preparation method and application
JP2008169065A (en) Fluoride bulk single crystal material for up-conversion
CN112575375A (en) Compound cesium fluorozincate and cesium fluorozincate nonlinear optical crystal as well as preparation method and application thereof
JP3763423B2 (en) Nonlinear optical material and manufacturing method thereof
CN115198343B (en) Scandium rubidium lithium fluosilicate nonlinear optical crystal and preparation method and application thereof
JP2015036349A (en) Method for manufacturing ceramic composite
CN115198364B (en) Scandium rubidium lithium fluorogermanate nonlinear optical crystal, and preparation method and application thereof
JPH101396A (en) Light emitting material and its production
CN110735184B (en) BaHgGeSe4Nonlinear optical crystal and preparation method and application thereof
CN110791812B (en) BaHgSnSe4Nonlinear optical crystal and preparation method and application thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906