JPH11350032A - Production of silicon steel sheet - Google Patents

Production of silicon steel sheet

Info

Publication number
JPH11350032A
JPH11350032A JP10165290A JP16529098A JPH11350032A JP H11350032 A JPH11350032 A JP H11350032A JP 10165290 A JP10165290 A JP 10165290A JP 16529098 A JP16529098 A JP 16529098A JP H11350032 A JPH11350032 A JP H11350032A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
rolling
magnetic properties
secondary recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10165290A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Yashiki
裕義 屋鋪
Tomoki Fukagawa
智機 深川
Mitsuyo Maeda
光代 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10165290A priority Critical patent/JPH11350032A/en
Publication of JPH11350032A publication Critical patent/JPH11350032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for inexpensively producing a silicon steel sheet remarkably improved in magnetic properties in the rolling direction compared to the conventional non-oriented silicon steel having magnetic properties in the width direction better than those of the conventional grain-oriented silicon steel sheet and particularly suitable as the stock for a dividedtype iron core. SOLUTION: A slab contg. <=0.01% C, 2.0 to 4.0%, Si, <=0.5% Mn, <=0.010% S, 0.003 to 0.020% sol.Al and 0.001 to 0.010% N is subjected to hot rolling and annealing, is thereafter subjected to primary cold rolling at a draft of 40 to 70%, process annealing and secondary cold rolling at a draft of 65 to 90%, is thereafter subjected to primary recrystallization annealing of executing rapid heating and holding at 850 to 950 deg.C for 5 sec to 10 min and is moreover subjected to secondary recrystallization annealing of executing holding at 750 to 1000 deg.C for 4 to 100 hr in a 100% hydrogen atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、モータや発電機等
の回転機の分割型のステータ鉄心や小型トランスのEI
鉄心などの分割型鉄心に好適な電磁鋼板の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a split stator core for a rotating machine such as a motor or a generator, and an EI for a small transformer.
The present invention relates to a method for manufacturing an electromagnetic steel sheet suitable for a split core such as an iron core.

【0002】[0002]

【従来の技術】回転機のステータ鉄心は、環状のヨーク
部と、ヨーク部から内向きに突き出たティース部で構成
されている。ステータ鉄心が電気機器として作動する際
には、ヨーク部の円周方向とティース部の長手方向に磁
束が流れる。一般的には、ステータ鉄心はコイル状の電
磁鋼板から一体物として打ち抜き加工により成形される
ことが多いが、この場合には磁束は鋼板の板面内の種々
の方向にとうることになる。このため、磁化方向による
磁気特性の差異が方向性電磁鋼板に比較して小さい(異
方性が小さい)無方向性電磁鋼板が素材として使用され
る。しかしながら寸法制約があるために、大型の回転機
用の鉄心は、一体物として打ち抜くのが困難であり、複
数の鉄心片を組み立てて構成される分割型ステータ鉄心
が用いられる。
2. Description of the Related Art A stator iron core of a rotating machine includes an annular yoke portion and teeth portions protruding inward from the yoke portion. When the stator core operates as an electric device, magnetic flux flows in the circumferential direction of the yoke portion and the longitudinal direction of the teeth portion. Generally, the stator core is often formed by stamping from a coil-shaped electromagnetic steel plate as an integral body, but in this case, the magnetic flux can be taken in various directions within the plate surface of the steel plate. For this reason, a non-oriented electrical steel sheet having a smaller difference in magnetic properties depending on the magnetization direction (smaller anisotropy) than a grain-oriented electrical steel sheet is used as a material. However, it is difficult to punch an iron core for a large rotating machine as an integral body due to dimensional restrictions, and a split stator core configured by assembling a plurality of iron core pieces is used.

【0003】図1(a)は、電磁鋼板6から鉄心片2を
採取する場合の板取方法を示す模式図であり、図1
(b)は鉄心片2を組上げた分割型ステータ鉄心1を示
す模式図である。図1(b)に示したように、鉄心片2
は環状に組み付けられてステータ鉄心1とされる(以
下、単に「分割型鉄心」とも記す)。最近では、鉄心組
立工程の合理化を目的に、小型モータでも分割型鉄心が
使われる場合がある。
FIG. 1 (a) is a schematic view showing a sheet picking method when the iron core piece 2 is sampled from the magnetic steel sheet 6, and FIG.
(B) is a schematic diagram showing a split stator core 1 in which iron core pieces 2 are assembled. As shown in FIG.
Are assembled in an annular shape to form a stator core 1 (hereinafter, also simply referred to as a “split-type core”). Recently, a split-type iron core may be used even for a small motor for the purpose of streamlining the iron core assembly process.

【0004】分割型鉄心では、ティース(歯)4方向
と、これに直交するヨーク3の周方向の二方向での磁気
特性が重要である。鉄心の性能を向上させるには、2極
や4極のタービン発電機のようにティース方向よりもヨ
ーク3の周方向の方が有効磁路長(磁束が通じる距離)
が長い場合には、ヨーク周方向に良好な磁気特性が得ら
れるように板取りするのがよく、8極以上のブラシレス
DCモータのように、ヨーク3の周方向よりもティース
方向の有効磁路長が長い場合には、ティース方向が鋼板
の磁気特性の良好な方向(圧延方向)になるように板取
りするのがよい。同様の考え方で、小型変圧器のEI鉄
心では、E鉄心の3本の足およびI鉄心が方向性電磁鋼
板の圧延方向になるように板取りして鉄心性能の向上を
図ることがある。
[0004] In the split type iron core, the magnetic characteristics in two directions, ie, four directions of teeth (teeth) and a circumferential direction of the yoke 3 orthogonal to the four directions are important. In order to improve the performance of the iron core, the effective magnetic path length (the distance through which the magnetic flux passes) is greater in the circumferential direction of the yoke 3 than in the teeth direction as in a two-pole or four-pole turbine generator.
When the length of the yoke 3 is long, it is preferable to perform plate cutting so as to obtain good magnetic characteristics in the circumferential direction of the yoke. When the length is long, the plate is preferably removed so that the teeth direction is a direction in which the magnetic properties of the steel sheet are good (rolling direction). In the same way, in the EI core of the small transformer, the three cores of the E core and the I core may be trimmed so as to be in the rolling direction of the grain-oriented electrical steel sheet to improve the core performance.

【0005】これらの分割型鉄心では、圧延方向のみな
らず、それと直交する幅方向にも磁気特性が優れた電磁
鋼板が望まれている。従来の方向性電磁鋼板は磁気特性
の異方性が大きく幅方向での磁気特性がよくないうえ、
その製造に際しては脱炭焼鈍や1000℃を超える高温
での二次再結晶焼鈍など特殊な工程が必要なために製造
コストも高く、分割型鉄心用の素材として満足できるも
のではなかった。また、無方向性電磁鋼板は方向性電磁
鋼板に比較すると安価であり、圧延方向と幅方向の磁気
特性バランスも良好であるが、方向性電磁鋼板に比較し
て圧延方向の磁気特性が劣るために、分割型鉄心の性能
は方向性電磁鋼板を用いる場合よりも劣るという問題が
あった。
[0005] In these split-type iron cores, an electromagnetic steel sheet having excellent magnetic properties not only in the rolling direction but also in the width direction orthogonal thereto is desired. Conventional grain-oriented electrical steel sheets have large anisotropy of magnetic properties and poor magnetic properties in the width direction.
In the production, special processes such as decarburization annealing and secondary recrystallization annealing at a high temperature exceeding 1000 ° C. are required, so that the production cost is high, and it is not satisfactory as a material for a split iron core. In addition, non-oriented electrical steel sheets are inexpensive compared to grain-oriented electrical steel sheets, and have a good balance of magnetic properties in the rolling direction and width direction, but have poor magnetic properties in the rolling direction compared to grain-oriented electrical steel sheets. In addition, there is a problem that the performance of the split-type iron core is inferior to the case of using a grain-oriented electrical steel sheet.

【0006】以上述べたような問題を解決するために、
いくつかの技術が開示されている。特開平5−7083
3号公報では、Cを0.01〜0.10重量%含有し、
Mn、Sおよび/またはSeを二次再結晶焼鈍時のイン
ヒビター用の元素として含有するスラブを熱間圧延し、
冷間圧延した後、脱炭焼鈍を施し、その後、900〜1
200℃の温度範囲で連続焼鈍する、磁気特性の異方性
のバランスが優れた電磁鋼板の製造方法が提案されてい
る。しかし、この方法では短時間の連続焼鈍で磁気特性
を得ようとするため磁気特性の変動が生じやすいうえ、
脱炭焼鈍が必須工程であるので必ずしも低コストとはな
らない。
In order to solve the above problems,
Several techniques have been disclosed. JP-A-5-7083
In Japanese Patent Publication No. 3, 0.01 to 0.10% by weight of C is contained,
Hot rolling a slab containing Mn, S and / or Se as an inhibitor element during secondary recrystallization annealing;
After cold rolling, it is subjected to decarburizing annealing, and then 900-1
There has been proposed a method for producing an electromagnetic steel sheet which is continuously annealed in a temperature range of 200 ° C. and has an excellent balance of anisotropy of magnetic properties. However, in this method, magnetic properties tend to fluctuate because the magnetic properties are intended to be obtained by short-time continuous annealing.
Since decarburization annealing is an essential step, the cost is not necessarily low.

【0007】特開平7−18334号公報には、重量%
でC:0.010%以下、Si:1.5〜4%、Mn:
1〜4%、S:0.01%以下、sol.Al:0.0
03〜0.03%、N:0.001〜0.01%を含有
するスラブを、熱間圧延し、冷間圧延した後、連続焼鈍
して一次再結晶させた後水素雰囲気中で二次再結晶焼鈍
する、磁気特性の異方性が少ない電磁鋼板の製造方法が
提案されている。しかし、この方法ではMnを大量に含
有させるので製造コストが高くなるのが問題であった。
Japanese Patent Application Laid-Open No. 7-18334 discloses that
C: 0.010% or less, Si: 1.5 to 4%, Mn:
1-4%, S: 0.01% or less, sol. Al: 0.0
A slab containing 0.3 to 0.03% and N: 0.001 to 0.01% is hot-rolled, cold-rolled, continuously annealed and primary-recrystallized, and then subjected to secondary annealing in a hydrogen atmosphere. There has been proposed a method for producing an electrical steel sheet which has low anisotropy of magnetic properties and undergoes recrystallization annealing. However, this method has a problem that the production cost is increased because Mn is contained in a large amount.

【0008】[0008]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、圧延方向の磁気特性が従来の無方向性電磁
鋼板に比較して大幅に改善され、幅方向の磁気特性が従
来の方向性電磁鋼板よりも良好な、特に分割型鉄心の素
材として好適な電磁鋼板の安価な製造方法を提供するこ
とにある。
The problem to be solved by the present invention is that the magnetic properties in the rolling direction are greatly improved as compared with the conventional non-oriented electrical steel sheet, and the magnetic properties in the width direction are reduced in the conventional direction. It is an object of the present invention to provide an inexpensive method for producing an electromagnetic steel sheet which is better than a conductive magnetic steel sheet, and is particularly suitable as a material for a split iron core.

【0009】[0009]

【課題を解決するための手段】磁気特性の異方性の大き
さは、二次再結晶焼鈍時に形成される集合組織の発達状
況に大きく影響される。この二次再結晶は、一般にイン
ヒビターと称される析出物により結晶粒の成長が抑制さ
れた状況下で、ミラー指数の{110}<001>で表
示されるゴス方位を有する再結晶粒が選択的に成長する
現象である。
The magnitude of the anisotropy of the magnetic properties is greatly influenced by the state of development of the texture formed during the secondary recrystallization annealing. In this secondary recrystallization, a recrystallization grain having a Goss orientation represented by Miller index {110} <001> is selected under the condition that the growth of the crystal grain is suppressed by a precipitate generally called an inhibitor. It is a phenomenon that grows.

【0010】従来の方向性電磁鋼板においては、二次再
結晶焼鈍時に作用させるインヒビター効果が極めて強
く、ゴス方位({110}<001>)への集積度の高
い二次再結晶が生じる。この場合には、圧延方向の磁気
特性は著しく良好であるが、幅方向の磁気特性が劣り、
磁気特性の異方性が極めて大きくなる。
In a conventional grain-oriented electrical steel sheet, the inhibitor effect exerted during secondary recrystallization annealing is extremely strong, and secondary recrystallization with a high degree of integration in the Goss orientation ({110} <001>) occurs. In this case, the magnetic properties in the rolling direction are extremely good, but the magnetic properties in the width direction are inferior,
The anisotropy of the magnetic properties becomes extremely large.

【0011】本発明者らは二次再結晶焼鈍時のインヒビ
ター効果の大きさを制御する方法を中心に、上述の課題
を解決するための研究を鋭意おこなった結果、極低炭素
で特定範囲のSi、AlおよびNを含有する鋼を熱間圧
延し、熱延板焼鈍を含む二回冷延法で製品板厚に圧延し
た後、特定の条件範囲で一次再結晶焼鈍と二次再結晶焼
鈍をおこなうことにより、インヒビター効果が比較的小
さい析出物を鋼中に分散させ、ゴス方位に適度に集積し
た二次再結晶を生じさせることが可能であることを見出
した。その結果、従来の無方向性電磁鋼板に比べて圧延
方向の磁気特性が大幅にすぐれ、しかも、圧延方向と幅
方向の磁気特性の差が少ない電磁鋼板の製造方法を完成
した。
The present inventors have intensively studied to solve the above-mentioned problems, focusing on a method for controlling the magnitude of the inhibitor effect at the time of secondary recrystallization annealing. Steel containing Si, Al and N is hot-rolled, rolled to a product thickness by a double cold rolling method including hot-rolled sheet annealing, and then subjected to primary recrystallization annealing and secondary recrystallization annealing under specific conditions. It has been found that by performing the above, it is possible to disperse precipitates having a relatively small inhibitor effect in the steel and to cause secondary recrystallization moderately accumulated in the Goss orientation. As a result, a method for manufacturing an electromagnetic steel sheet having significantly improved magnetic properties in the rolling direction and a small difference in magnetic properties between the rolling direction and the width direction compared to conventional non-oriented electrical steel sheets was completed.

【0012】本発明の要旨は下記の電磁鋼板の製造方法
にある。重量%で、C:0.01%以下、Si:2.0
〜4.0%、Mn:0.5%以下、S:0.010%以
下、sol.Al:0.003〜0.020%、N:
0.001〜0.010%を含有し、残部がFeおよび
不可避的不純物からなる化学組成を有するスラブを熱間
圧延し、焼鈍した後、40〜70%の圧下率で一回目の
冷間圧延をおこない、中間焼鈍した後、65〜90%の
圧下率で二回目の冷間圧延をおこない、その後、急速加
熱して850〜950℃で5秒〜10分保持する一次再
結晶焼鈍を施し、さらに100%水素雰囲気中にて75
0〜1000℃で4〜100時間保持する二次再結晶焼
鈍を施すことを特徴とする、分割型鉄心に適した電磁鋼
板の製造方法。
The gist of the present invention resides in the following method for producing an electromagnetic steel sheet. C: 0.01% or less, Si: 2.0% by weight
-4.0%, Mn: 0.5% or less, S: 0.010% or less, sol. Al: 0.003 to 0.020%, N:
A slab containing 0.001 to 0.010%, the balance being a chemical composition consisting of Fe and unavoidable impurities, is hot-rolled and annealed, and then subjected to a first cold rolling at a rolling reduction of 40 to 70%. After the intermediate annealing, a second cold rolling is performed at a reduction rate of 65 to 90%, and then a primary recrystallization annealing is performed by rapidly heating and holding at 850 to 950 ° C. for 5 seconds to 10 minutes. 75% in a 100% hydrogen atmosphere
A method for producing a magnetic steel sheet suitable for a split-type iron core, comprising performing secondary recrystallization annealing at 4 to 100 hours at 0 to 1000C.

【0013】[0013]

【発明の実施の形態】以下に、本発明の実施の形態を詳
細に説明する。なお、化学組成を表す%表示は重量%を
意味する。
Embodiments of the present invention will be described below in detail. In addition,% display showing a chemical composition means weight%.

【0014】(1)鋼の化学組成 Cは鉄損を悪くするので少ないほどよい。しかしなが
ら、C含有量が0.01%以下であれば磁気特性への悪
影響は小さいので、C含有量の上限は0.01%以下と
する。望ましくは0.005%以下である。
(1) Chemical composition of steel C is preferred to be smaller as it reduces iron loss. However, if the C content is 0.01% or less, the adverse effect on magnetic properties is small, so the upper limit of the C content is 0.01% or less. Desirably, it is 0.005% or less.

【0015】Siは、鋼の電気抵抗を高め渦電流損を小
さくして鉄損を改善する作用を有する。この作用を利用
して鉄損を改善するために2.0%以上含有させる。し
かしながら、Si含有量が4%を超えると著しく加工性
が低下して冷間圧延が困難となるため、その含有量の上
限は4.0%とする。
Si has the effect of increasing the electrical resistance of steel, reducing eddy current loss and improving iron loss. In order to improve iron loss by using this effect, the content is made 2.0% or more. However, if the Si content exceeds 4%, the workability is significantly reduced and cold rolling becomes difficult, so the upper limit of the content is set to 4.0%.

【0016】Mnは、安定して良好な二次再結晶を生じ
させる効果があるが、大量に含有させると製造コストが
高くなるので好ましくない。本発明では製造コストを低
減する目的でMn含有量は0.5%以下とする。Mn含
有量の下限は特に限定するものではないが、Mn含有が
0.05%に満たない場合には熱間脆性が生じることが
あるので、0.05%以上含有させるのがよい。
[0016] Mn has an effect of stably producing good secondary recrystallization, but it is not preferable to contain Mn in a large amount because the production cost is increased. In the present invention, the Mn content is set to 0.5% or less for the purpose of reducing the production cost. The lower limit of the Mn content is not particularly limited, but if the Mn content is less than 0.05%, hot embrittlement may occur, so the Mn content is preferably 0.05% or more.

【0017】Sは、Mnと結合してMnSを形成し、磁
気特性を損なうので少ないほど好ましいので0.010
%以下とする。望ましくは0.005%以下である。
S is combined with Mn to form MnS and impairs magnetic properties.
% Or less. Desirably, it is 0.005% or less.

【0018】sol.Alは、二次再結晶を生じさせる
のに重要な役割を果たす主要なインヒビターであるAl
Nや、(Al、Si)Nなどの窒化物を形成する重要な
元素である。sol.Alの含有量が0.003%に満
たない場合にはインヒビター効果が不足する。しかし、
0.020%を超えて含有させるとインヒビター量が過
剰になり、その分散状態も不適切になって二次再結晶が
不安定になる。このため、sol.Alの含有量は0.
003〜0.020%の範囲とする。望ましくは0.0
05〜0.015%の範囲である。
Sol. Al is a key inhibitor that plays an important role in causing secondary recrystallization
It is an important element that forms nitrides such as N and (Al, Si) N. sol. If the Al content is less than 0.003%, the inhibitor effect is insufficient. But,
If the content exceeds 0.020%, the amount of the inhibitor becomes excessive, the dispersion state becomes inappropriate, and the secondary recrystallization becomes unstable. Therefore, sol. The content of Al is 0.1.
003 to 0.020%. Desirably 0.0
The range is from 0.05 to 0.015%.

【0019】Nは、インヒビターとなる窒化物を形成す
るのに必要である。N含有量が0.001%に満たない
場合には窒化物の析出量が少なすぎて所望のインヒビタ
ー効果が得られない。他方、0.01%を超えて含有さ
せてもその効果は飽和する。このため、N含有量は0.
001〜0.01%の範囲とする。
N is necessary to form a nitride serving as an inhibitor. If the N content is less than 0.001%, the precipitation amount of the nitride is too small to obtain the desired inhibitor effect. On the other hand, if the content exceeds 0.01%, the effect is saturated. Therefore, the N content is 0.1.
001 to 0.01%.

【0020】本発明の製造方法では上記の6元素の管理
が重要であるが、さらに磁気特性を向上させるためにS
bおよび/またはSnを合計で0.3%まで含有させて
もよい。残部はFeおよび不可避的不純物である。
In the manufacturing method of the present invention, the management of the above six elements is important.
b and / or Sn may be contained up to a total of 0.3%. The balance is Fe and inevitable impurities.

【0021】(2)圧延および焼鈍条件 熱延板の素材となるスラブは上記の化学組成を有する鋼
である。このスラブは、転炉、電気炉など公知の方法で
精錬し、必要があれば真空処理などを施して得た溶鋼を
連続鋳造してスラブとしたもの、または鋼塊にした後分
塊圧延してスラブとしたもののいずれでもよい。
(2) Rolling and Annealing Conditions The slab used as the raw material of the hot rolled sheet is steel having the above chemical composition. This slab is refined by a known method such as a converter and an electric furnace, and if necessary, is subjected to a vacuum treatment or the like to continuously cast molten steel to form a slab, or to a steel ingot and then to slab rolling. Any slab may be used.

【0022】スラブの熱間圧延の条件については特に制
約はなく、一般的な条件でおこなえばよいが、例えば、
スラブの加熱温度は1050〜1270℃とし、700
〜950℃の範囲で熱間圧延を終了する等の条件が好ま
しい。
There are no particular restrictions on the conditions for hot rolling of the slab, which may be performed under general conditions.
The heating temperature of the slab is 1050-1270 ° C, 700
Conditions such as terminating hot rolling in the range of 9950 ° C. are preferred.

【0023】熱延板には冷間圧延に先立って焼鈍を施
す。本発明の製造方法において、熱延板焼鈍および後述
の中間焼鈍を挟んだ2回の冷間圧延を施すのは次の理由
による。つまり、本発明が規定するような極低炭素、高
Si、低Mnの化学組成を有する鋼では、鋼の凝固後に
α−γ変態が生じない。このため、熱延の板厚中央部に
は鋳造組織の影響が強い{100}<011>方位に集
積した結晶組織(バンド組織)が残存しやすく、後工程
での二次再結晶が不安定になり、所望の磁気特性が得ら
れない場合がある。バンド組織を破壊し二次再結晶を安
定しておこなわせるために熱延板焼鈍および中間焼鈍を
挟んだ2回の冷間圧延を施すのである。
The hot rolled sheet is annealed prior to cold rolling. In the production method of the present invention, the cold rolling is performed twice with hot-rolled sheet annealing and intermediate annealing described below interposed therebetween for the following reasons. That is, in a steel having a chemical composition of extremely low carbon, high Si, and low Mn as defined by the present invention, α-γ transformation does not occur after solidification of the steel. For this reason, a crystal structure (band structure) accumulated in the {100} <011> orientation, which is strongly affected by the cast structure, is likely to remain in the central part of the hot-rolled sheet, and secondary recrystallization in the subsequent process is unstable. And desired magnetic properties may not be obtained. In order to break the band structure and stably perform secondary recrystallization, cold rolling is performed twice with hot-rolled sheet annealing and intermediate annealing interposed.

【0024】熱延板焼鈍を施す時期は、熱間圧延時に生
じた表面の酸化皮膜を除去する前でも、除去した後で
も、いずれでもかまわない。焼鈍条件は、これを連続焼
鈍方式でおこなう場合には750〜1100℃で10秒
以上5分以下の均熱、箱焼鈍方式でおこなう場合には6
00〜850℃で30分以上50時間以下の均熱とする
のが望ましい。
The hot rolled sheet may be annealed either before or after removing the oxide film on the surface formed during hot rolling. The annealing conditions are soaking at 750 to 1100 ° C. for 10 seconds or more and 5 minutes or less when carrying out the continuous annealing method, and 6 when carrying out the box annealing method.
It is desirable to set the temperature at 00 to 850 ° C. for 30 minutes to 50 hours.

【0025】一次冷間圧延の圧下率は40〜70%の範
囲とする。これは、一次冷間圧延の圧下率が40%に満
たない場合にはバンド組織の破壊が十分におこなわれな
いために二次再結晶が生じにくく、また、圧下率が70
%を超えるとバンド組織の破壊効果が飽和するからであ
る。
The rolling reduction of the primary cold rolling is in the range of 40 to 70%. This is because, when the rolling reduction of the primary cold rolling is less than 40%, the band structure is not sufficiently destroyed, so that secondary recrystallization hardly occurs, and the rolling reduction is 70%.
%, The effect of breaking the band structure is saturated.

【0026】中間焼鈍は、上述の熱延板焼鈍と同様の均
熱条件で焼鈍するのがよい。二次冷間圧延の圧下率は6
5%以上、90%以下である。二次冷間圧延の圧下率が
65%に満たない場合には、後程おこなう一次再結晶焼
鈍に際して、ゴス方位を有する二次再結晶粒が成長する
のに好適な{111}面方位の強い一次再結晶集合組織
が形成できないために、二次再結晶が不安定となる。圧
下率が90%を超えると一次再結晶集合組織中のゴス方
位が極端に少なくなり二次再結晶が不安定となる。これ
を避けるために二次冷間圧延の圧下率は90%以下とす
る。好ましくは85%以下である。
The intermediate annealing is preferably performed under the same soaking conditions as in the above-described hot-rolled sheet annealing. Reduction rate of secondary cold rolling is 6
5% or more and 90% or less. When the rolling reduction of the secondary cold rolling is less than 65%, the primary recrystallization annealing having a strong {111} plane orientation suitable for growing secondary recrystallized grains having a Goss orientation during the subsequent primary recrystallization annealing. Since a recrystallization texture cannot be formed, secondary recrystallization becomes unstable. If the rolling reduction exceeds 90%, the Goss orientation in the primary recrystallization texture becomes extremely small, and the secondary recrystallization becomes unstable. In order to avoid this, the rolling reduction of the secondary cold rolling is set to 90% or less. Preferably it is 85% or less.

【0027】二次冷間圧延後の鋼板の厚さは特に限定す
る必要はなく、一般的に電磁鋼板として使用されている
厚さであればよく、例えば0.20〜0.65mm程度
の厚さが好適である。
The thickness of the steel sheet after the secondary cold rolling is not particularly limited and may be any thickness generally used as an electromagnetic steel sheet, for example, about 0.20 to 0.65 mm. Is preferred.

【0028】一次再結晶焼鈍は連続焼鈍方式でおこなう
のがよい。これは、二次再結晶焼鈍に際して安定した二
次再結晶を生じさせるためには、一次再結晶焼鈍温度へ
の加熱速度を1℃/秒以上とする急速加熱とするのがよ
いからである。
The primary recrystallization annealing is preferably performed by a continuous annealing method. This is because in order to generate stable secondary recrystallization during secondary recrystallization annealing, rapid heating at a heating rate of 1 ° C./sec or more to the primary recrystallization annealing temperature is preferable.

【0029】焼鈍温度は850〜950℃とし、この間
の所定温度に5秒以上10分以下保持する。焼鈍温度が
850℃に満たない場合には、一次再結晶粒径が細かく
なりすぎ、以下に述べる二次再結晶焼鈍時にゴス方位に
集積した二次再結晶組織が得られない。焼鈍温度が95
0℃を超えると、一次再結晶粒径が大きくなりすぎて、
二次再結晶焼鈍時に二次再結晶が生じにくい。均熱時間
が5秒に満たない場合には鋼板内での一次再結晶粒径が
均一にならないので安定した二次再結晶が生じにくい。
均熱時間は一次再結晶粒径が均一に成長するには10分
間あれば十分であり、それを超えて均熱するのは経済性
を損なうので好ましくない。
The annealing temperature is 850 to 950 ° C., and the predetermined temperature is maintained for 5 seconds to 10 minutes. If the annealing temperature is lower than 850 ° C., the primary recrystallized grain size becomes too fine, and the secondary recrystallized structure accumulated in the Goss orientation during the secondary recrystallization annealing described below cannot be obtained. Annealing temperature is 95
When the temperature exceeds 0 ° C., the primary recrystallization particle size becomes too large,
Secondary recrystallization hardly occurs during secondary recrystallization annealing. If the soaking time is less than 5 seconds, the primary recrystallization grain size in the steel sheet will not be uniform, so that stable secondary recrystallization will not easily occur.
A soaking time of 10 minutes is sufficient for the primary recrystallized grain size to grow uniformly, and soaking more than that time is not preferable because it impairs economic efficiency.

【0030】二次再結晶焼鈍の目的は、適度のゴス方位
集積度を持つ二次再結晶を生じさせることにある。この
ためには、二次再結晶が生じる温度域でインヒビターを
適切に制御することが重要である。二次再結晶焼鈍を7
50〜1000℃の温度域で4〜100時間保持するの
は、この温度域で最も適切なインヒビターの効果が得ら
れ、適度にゴス方位に集積した二次再結晶が生じるから
である。焼鈍温度が750℃に満たない場合にはインヒ
ビターの効果が強すぎて二次再結晶は生じない。望まし
くは800℃以上がよい。他方、焼鈍温度が1000℃
を超えると焼鈍効果が飽和するうえ、経済性を損なうの
で好ましくない。望ましくは950℃以下がよい。
The purpose of the secondary recrystallization annealing is to produce a secondary recrystallization having an appropriate degree of Goss orientation accumulation. For this purpose, it is important to appropriately control the inhibitor in a temperature range in which secondary recrystallization occurs. 7 for secondary recrystallization annealing
The reason why the temperature is kept in the temperature range of 50 to 1000 ° C. for 4 to 100 hours is that the most appropriate inhibitor effect is obtained in this temperature range, and secondary recrystallization which is appropriately accumulated in the Goss orientation is generated. When the annealing temperature is lower than 750 ° C., the effect of the inhibitor is so strong that secondary recrystallization does not occur. Desirably, the temperature is 800 ° C. or higher. On the other hand, the annealing temperature is 1000 ° C.
Exceeding this is not preferable because the annealing effect is saturated and the economy is impaired. Desirably, it is 950 ° C. or lower.

【0031】均熱時間が4時間に満たない場合には、二
次再結晶が不十分になる場合があるのでよくない。他
方、二次再結晶は100時間までで十分におこなわれる
ので、これを超えて均熱する必要はなく経済性を損なう
のでよくない。このため均熱時間は4時間以上、100
時間以下とする。
If the soaking time is less than 4 hours, secondary recrystallization may be insufficient, which is not preferable. On the other hand, since the secondary recrystallization is sufficiently performed for up to 100 hours, there is no need to soak the heat beyond this, which is not good because it impairs economic efficiency. Therefore, soaking time is more than 4 hours, 100 hours
It should be no more than hours.

【0032】二次再結晶焼鈍の雰囲気は100%水素
(工業的な意味での純水素雰囲気)とする必要がある。
雰囲気ガス中に窒素ガスが含有される場合には、窒素ガ
スによる鋼板の窒化が生じてインヒビター効果が過度に
強くなり、ゴス方位への集積度が高すぎる二次再結晶が
生じることがある。この場合には、圧延方向の磁気特性
は良好であるが、幅方向の磁気特性が損なわれ、磁気特
性の異方性が少ない鋼板が得られない。
The atmosphere for the secondary recrystallization annealing must be 100% hydrogen (pure hydrogen atmosphere in an industrial sense).
When the atmosphere gas contains a nitrogen gas, nitriding of the steel sheet by the nitrogen gas occurs, the inhibitor effect becomes excessively strong, and secondary recrystallization with an excessively high degree of integration in the Goss orientation may occur. In this case, the magnetic properties in the rolling direction are good, but the magnetic properties in the width direction are impaired, and a steel sheet with little magnetic property anisotropy cannot be obtained.

【0033】焼鈍雰囲気を100%水素雰囲気とするこ
とにより、二次再結晶が生じる800〜1000℃の温
度域でインヒビター析出物が徐々に粗大化するととも
に、脱窒反応も生じてインヒビター効果が弱められるの
で適度なゴス方位への集積度を持つ二次再結晶が生じた
鋼板が得られる。
By setting the annealing atmosphere to a 100% hydrogen atmosphere, the inhibitor precipitates are gradually coarsened in a temperature range of 800 to 1000 ° C. where secondary recrystallization occurs, and a denitrification reaction also occurs to weaken the inhibitor effect. As a result, a steel sheet having secondary recrystallization having an appropriate degree of integration in the Goss orientation can be obtained.

【0034】焼鈍時の鋼板間での焼き付き不良を防ぐた
めに二次再結晶焼鈍の前に鋼板間に焼鈍分離剤を介在さ
せるのがよい。その方法は公知のものでよく、例えば耐
熱性のある物質などからなるスラリーを鋼板表面に塗布
する方法や、粉体を静電塗布する方法など、いずれの方
法でもかまわない。無機系の絶縁コーティングを鋼板の
片面あるいは両面に塗布して、焼鈍分離剤の機能を持た
せてもよい。
In order to prevent seizure failure between the steel sheets during annealing, it is preferable to interpose an annealing separator between the steel sheets before the secondary recrystallization annealing. The method may be a known method, for example, any method such as a method of applying a slurry made of a heat-resistant substance or the like to the surface of a steel sheet or a method of electrostatically applying a powder. An inorganic insulating coating may be applied to one or both surfaces of the steel sheet to have the function of an annealing separator.

【0035】二次再結晶焼鈍後の工程としては通常の方
向性電磁鋼板と同様に、焼鈍分離剤を除去した後、必要
に応じて絶縁コーティングを施したり平坦化焼鈍をおこ
なう。無機系の絶縁コーティングを焼鈍分離剤として使
用した場合には、二次再結晶焼鈍後にそのまま絶縁コー
ティングとして使用してもよいし、その上にさらに絶縁
コーティングを塗布してもよい。
As a step after the secondary recrystallization annealing, as in the case of a normal grain-oriented electrical steel sheet, after removing the annealing separating agent, an insulating coating is applied and flattening annealing is performed as necessary. When an inorganic insulating coating is used as an annealing separator, the insulating coating may be used as it is after the secondary recrystallization annealing, or an insulating coating may be further applied thereon.

【0036】[0036]

【実施例】(実施例1)転炉で精錬し、真空脱ガス処理
を施して、連続鋳造して5種類の化学組成からなるスラ
ブを得た。これらのスラブを、1130℃に加熱して仕
上温度840℃で熱間圧延して厚さ2.9mmの熱延板
とし、酸洗して表面のスケールを除去した後、750℃
で10時間均熱する箱焼鈍方式での熱延板焼鈍を施し、
圧下率52%での一次冷間圧延をおこなって厚さ1.4
mmの冷延板とした。これらに700℃で10時間均熱
する箱焼鈍方式での中間焼鈍を施した後、圧下率75%
での二次冷間圧延をおこなって厚さ0.35mmの冷延
板とし、15℃/秒の加熱速度で加熱して900℃で3
0秒間均熱する連続焼鈍方式での一次再結晶焼鈍を施し
た。その後、鋼板表面に焼鈍分離剤を塗布し、二次再結
晶焼鈍として100%水素雰囲気中で40℃/時の加熱
速度で850℃に加熱し、24時間均熱した後炉冷し
た。焼鈍後の鋼板表面の焼鈍分離剤を除去した後、82
0℃で30秒均熱する平坦化のための連続焼鈍を施し、
絶縁コーティングを施して電磁鋼板を得た。
EXAMPLES (Example 1) Refining in a converter, vacuum degassing treatment, and continuous casting were performed to obtain slabs having five types of chemical compositions. These slabs were heated to 1130 ° C. and hot-rolled at a finishing temperature of 840 ° C. to form a hot-rolled sheet having a thickness of 2.9 mm.
Hot-rolled sheet annealing in the box annealing method of soaking for 10 hours at
Primary cold rolling was performed at a rolling reduction of 52% to a thickness of 1.4.
mm cold-rolled sheet. These were subjected to an intermediate annealing in a box annealing method of soaking at 700 ° C. for 10 hours, and then a reduction of 75%
Cold rolling at a heating rate of 15 ° C./sec to obtain a cold rolled sheet having a thickness of 0.35 mm.
Primary recrystallization annealing was performed by a continuous annealing method of soaking for 0 seconds. Thereafter, an annealing separator was applied to the surface of the steel sheet, and as a secondary recrystallization annealing, the steel sheet was heated to 850 ° C. at a heating rate of 40 ° C./hour in a 100% hydrogen atmosphere, soaked for 24 hours, and then cooled in a furnace. After removing the annealing separator on the steel sheet surface after annealing, 82
Continuous annealing for flattening at 0 ° C for 30 seconds,
An electrical steel sheet was obtained by applying an insulating coating.

【0037】これらの鋼板の圧延方向(L方向)と幅方
向(C方向)からエプスタイン試験片を採取し、通常の
フルプロセス無方向性電磁鋼板と同様に応力除去焼鈍を
施さないで磁気特性を測定した。表1に、これらの鋼板
の化学組成および磁気特性測定結果を示した。
Epstein test pieces were sampled from the rolling direction (L direction) and the width direction (C direction) of these steel sheets, and the magnetic properties were obtained without performing stress relief annealing as in the case of ordinary full-process non-oriented electrical steel sheets. It was measured. Table 1 shows the results of measuring the chemical composition and magnetic properties of these steel sheets.

【0038】[0038]

【表1】 [Table 1]

【0039】表1に示されているように、本発明が規定
する範囲内の条件で製造された試験番号2、3および5
の鋼板は、L方向およびC方向とも良好な磁気特性が得
られた。これに対し、sol.Al含有量が本発明が規
定する範囲から外れている試験番号1(鋼A)および試
験番号6(鋼E)では、L方向およびC方向ともに磁気
特性が好ましくなかった。また、二次再結晶焼鈍雰囲気
が本発明が規定する範囲から外れた試験番号4では、L
方向の磁気特性は良好であるがC方向の磁気特性が極め
て悪く、異方性が大きくなり好ましくなかった。
As shown in Table 1, Test Nos. 2, 3 and 5 manufactured under conditions within the range specified by the present invention.
In the steel sheet of No. 7, good magnetic properties were obtained in both the L direction and the C direction. In contrast, sol. In Test No. 1 (Steel A) and Test No. 6 (Steel E) in which the Al content was out of the range specified by the present invention, the magnetic properties were unfavorable in both the L direction and the C direction. In Test No. 4, in which the secondary recrystallization annealing atmosphere was out of the range specified by the present invention, L
Although the magnetic properties in the C direction were good, the magnetic properties in the C direction were extremely poor, and the anisotropy was large, which was not preferable.

【0040】(実施例2)転炉で精錬し、真空脱ガス処
理を施して、連続鋳造して、化学組成が重量%でC:
0.0019%、Si:3.4%、Mn:0.2%、
S:0.001%、sol.Al:0.009%、N:
0.0041%、残部がFeおよび不可避的不純物元素
からなるスラブを得た。このスラブを1150℃に加熱
して仕上温度820℃で熱間圧延し、厚さが2.3mm
と2.9mmの熱延板を得た。これらの鋼板を酸洗した
後、750℃で10時間均熱する箱焼鈍方式での熱延板
焼鈍を施し、さらに、種々の圧下率の組み合わせでの2
回の冷間圧延をおこなって厚さが0.35mmの冷延板
とした。中間焼鈍は700℃で10時間均熱する箱焼鈍
方式で施した。その後、15℃/秒の加熱速度で加熱す
る連続焼鈍方式での一次再結晶焼鈍を施し、コイル片面
に無機系のコーティング皮膜を塗布焼き付けし、100
%水素雰囲気中で40℃/時の加熱速度で830℃に昇
温し、40時間均熱後炉冷する二次再結晶焼鈍を施し
た。
Example 2 Refining in a converter, vacuum degassing treatment, continuous casting, and a chemical composition of C:
0.0019%, Si: 3.4%, Mn: 0.2%,
S: 0.001%, sol. Al: 0.009%, N:
A slab consisting of 0.0041% and the balance being Fe and unavoidable impurity elements was obtained. This slab was heated to 1150 ° C. and hot rolled at a finishing temperature of 820 ° C. to a thickness of 2.3 mm.
And a hot rolled sheet of 2.9 mm were obtained. After pickling these steel sheets, hot-rolled sheet annealing is performed by a box annealing method in which the steel sheets are soaked at 750 ° C. for 10 hours.
Cold rolling was performed a number of times to obtain a cold rolled sheet having a thickness of 0.35 mm. The intermediate annealing was performed by a box annealing method in which the temperature was soaked at 700 ° C. for 10 hours. Thereafter, primary recrystallization annealing is performed by a continuous annealing method of heating at a heating rate of 15 ° C./sec, and an inorganic coating film is applied and baked on one surface of the coil.
The temperature was raised to 830 ° C. at a heating rate of 40 ° C./hour in a% hydrogen atmosphere, and the steel was subjected to secondary recrystallization annealing in which it was soaked for 40 hours and then cooled in a furnace.

【0041】二次再結晶焼鈍後の鋼板を、無機系のコー
ティング皮膜を酸洗して除去した後、820℃で30秒
間均熱する平坦化のための連続焼鈍を施し、絶縁コーテ
ィングを施して電磁鋼板を得た。これらの鋼板からエプ
スタイン試験片を採取し、実施例1に記載したのと同様
の方法で磁気測定に供した。表2は上述の冷間圧延後の
製造条件および磁気特性測定結果を示したものである。
After the steel sheet after the secondary recrystallization annealing is removed by pickling the inorganic coating film, the steel sheet is subjected to continuous annealing for flattening at 820 ° C. for 30 seconds, followed by insulation coating. An electromagnetic steel sheet was obtained. Epstein test pieces were collected from these steel sheets and subjected to magnetic measurement in the same manner as described in Example 1. Table 2 shows the manufacturing conditions after the above-described cold rolling and the results of measuring the magnetic properties.

【0042】[0042]

【表2】 [Table 2]

【0043】表2に示されている結果からわかるよう
に、本発明が規定する範囲内の条件で製造された試験番
号8および10は、L方向およびC方向とも良好な磁気
特性が得られた。これに対し、製造条件が本発明が規定
する範囲から外れた試験番号7、9および11〜13で
は、安定した二次再結晶が生じなかったために、L方向
の磁気特性が好ましくなかった。
As can be seen from the results shown in Table 2, in Test Nos. 8 and 10 manufactured under the conditions specified by the present invention, good magnetic properties were obtained in both the L and C directions. . On the other hand, in Test Nos. 7, 9 and 11 to 13 in which the production conditions were out of the range specified by the present invention, stable secondary recrystallization did not occur, and thus the magnetic properties in the L direction were not preferable.

【0044】[0044]

【発明の効果】本発明の製造方法によれば、圧延方向の
磁気特性が従来の無方向性電磁鋼板に比較して大幅に改
善され、しかも幅方向の磁気特性が従来の方向性電磁鋼
板よりも良好な電磁鋼板を安価に製造することができ
る。本発明の方法で製造された電磁鋼板は、特に性能が
優れた分割型鉄心用の素材として好適である。
According to the manufacturing method of the present invention, the magnetic properties in the rolling direction are greatly improved as compared with the conventional non-oriented electrical steel sheet, and the magnetic properties in the width direction are more than those of the conventional grain-oriented electrical steel sheet. In addition, a good electromagnetic steel sheet can be manufactured at low cost. The magnetic steel sheet manufactured by the method of the present invention is particularly suitable as a material for a split-type core having excellent performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)は、電磁鋼板6から鉄心片2を採取
する場合の板取方法を示す模式図、図1(b)は鉄心片
2を組上げた分割型ステータ鉄心1を示す模式図であ
る。
FIG. 1A is a schematic view showing a plate removing method in which an iron core piece 2 is sampled from an electromagnetic steel sheet 6, and FIG. 1B is a schematic view showing a split stator core 1 in which the iron core pieces 2 are assembled. FIG.

【符号の説明】[Explanation of symbols]

1・・・ステータ鉄心、 2・・・鉄心片、 3・・・
ヨーク、4・・・ティース、 5・・・磁束の流れ、
6・・・鋼板。
1 ... stator core 2 ... iron core piece 3 ...
Yoke, 4 ... teeth, 5 ... flow of magnetic flux,
6 ... steel plate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.01%以下、Si:
2.0〜4.0%、Mn:0.5%以下、S:0.01
0%以下、sol.Al:0.003〜0.020%、
N:0.001〜0.010%を含有し、残部がFeお
よび不可避的不純物からなる化学組成を有するスラブを
熱間圧延し、焼鈍した後、40〜70%の圧下率で一回
目の冷間圧延をおこない、中間焼鈍した後、65〜90
%の圧下率で二回目の冷間圧延をおこない、その後、急
速加熱して850〜950℃で5秒〜10分保持する一
次再結晶焼鈍を施し、さらに100%水素雰囲気中にて
750〜1000℃で4〜100時間保持する二次再結
晶焼鈍を施すことを特徴とする、分割型鉄心に適した電
磁鋼板の製造方法。
C .: 0.01% or less in weight%, Si:
2.0 to 4.0%, Mn: 0.5% or less, S: 0.01
0% or less, sol. Al: 0.003 to 0.020%,
N: A slab containing 0.001 to 0.010%, the balance being a chemical composition consisting of Fe and unavoidable impurities is hot-rolled and annealed, and then subjected to a first cooling at a rolling reduction of 40 to 70%. After rolling and intermediate annealing, 65-90
% Cold rolling, followed by rapid reheating and primary recrystallization annealing at 850 to 950 ° C. for 5 seconds to 10 minutes, followed by 750 to 1000 in a 100% hydrogen atmosphere. A method for producing a magnetic steel sheet suitable for a split-type iron core, comprising performing secondary recrystallization annealing at 4 ° C. for 4 to 100 hours.
JP10165290A 1998-06-12 1998-06-12 Production of silicon steel sheet Pending JPH11350032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10165290A JPH11350032A (en) 1998-06-12 1998-06-12 Production of silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10165290A JPH11350032A (en) 1998-06-12 1998-06-12 Production of silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH11350032A true JPH11350032A (en) 1999-12-21

Family

ID=15809528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10165290A Pending JPH11350032A (en) 1998-06-12 1998-06-12 Production of silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH11350032A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236486A (en) * 2010-05-13 2011-11-24 Sumitomo Metal Ind Ltd Non-grain-oriented electrical steel sheet, and method of producing the same
WO2015045397A1 (en) * 2013-09-26 2015-04-02 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
JP2016000856A (en) * 2014-05-19 2016-01-07 Jfeスチール株式会社 Method for manufacturing oriented electromagnetic steel sheet
KR20170029632A (en) 2014-09-01 2017-03-15 신닛테츠스미킨 카부시키카이샤 Grain-oriented electromagnetic steel sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236486A (en) * 2010-05-13 2011-11-24 Sumitomo Metal Ind Ltd Non-grain-oriented electrical steel sheet, and method of producing the same
WO2015045397A1 (en) * 2013-09-26 2015-04-02 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
US9978489B2 (en) 2013-09-26 2018-05-22 Jfe Steel Corporation Method of producing grain oriented electrical steel sheet
JP2016000856A (en) * 2014-05-19 2016-01-07 Jfeスチール株式会社 Method for manufacturing oriented electromagnetic steel sheet
KR20170029632A (en) 2014-09-01 2017-03-15 신닛테츠스미킨 카부시키카이샤 Grain-oriented electromagnetic steel sheet
US10604818B2 (en) 2014-09-01 2020-03-31 Nippon Steel Corporation Grain-oriented electrical steel sheet
US11377705B2 (en) 2014-09-01 2022-07-05 Nippon Steel Corporation Grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPS6056403B2 (en) Method for manufacturing semi-processed non-oriented electrical steel sheet with extremely excellent magnetic properties
JP6623795B2 (en) Electrical steel sheet and method for manufacturing electrical steel sheet
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH11350032A (en) Production of silicon steel sheet
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0978129A (en) Production of nonortiented silicon steel sheet extremely excellent in magnetic property in all orientation
JP4259269B2 (en) Method for producing grain-oriented electrical steel sheet
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH0832927B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
KR20030053139A (en) Method for manufacturing non-oriented electrical steel sheet with low iron loss
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPH05186828A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH07110974B2 (en) Method for producing directional silicon iron alloy ribbon
JP4277529B2 (en) Method for producing grain-oriented electrical steel sheet having no undercoat
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH0734127A (en) Ultrahigh silicon electrical steel sheet excellent in magnetic property and heat treating method therefor
JPS62222022A (en) Manufacture of nonoriented electrical sheet having good brittleness resistance and magnetic characteristic after stress relief annealing
JPH11131196A (en) Nonoriented silicon steel sheet minimal in iron loss
CN113166882A (en) Oriented electrical steel sheet and method for manufacturing the same
JP2758543B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060725