JPH11343361A - Tubular foamed polyolefin resin particle having through hole and production of molded polyolefin resin foam having communicating gap - Google Patents

Tubular foamed polyolefin resin particle having through hole and production of molded polyolefin resin foam having communicating gap

Info

Publication number
JPH11343361A
JPH11343361A JP16772198A JP16772198A JPH11343361A JP H11343361 A JPH11343361 A JP H11343361A JP 16772198 A JP16772198 A JP 16772198A JP 16772198 A JP16772198 A JP 16772198A JP H11343361 A JPH11343361 A JP H11343361A
Authority
JP
Japan
Prior art keywords
particles
foamed
density
expanded
polyolefin resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16772198A
Other languages
Japanese (ja)
Other versions
JP4023911B2 (en
Inventor
Akira Shiotani
暁 塩谷
Mitsuru Shinohara
篠原  充
Toshio Tokoro
寿男 所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP16772198A priority Critical patent/JP4023911B2/en
Publication of JPH11343361A publication Critical patent/JPH11343361A/en
Application granted granted Critical
Publication of JP4023911B2 publication Critical patent/JP4023911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain tubular foamed polyolefin resin particles suitable for producing a molded polyolefin resin foam which has communicating gaps, a uniform true density, and a uniform gap distribution and is excellent in heat insulation properties, water repellency, sound absorption, or the like, and in mechanical strengths, and to provide a method for producing a molded foam from the particles. SOLUTION: The tubular foamed polyolefin resin particles contain 0.005-1 wt.% metal borate, have a standard deviation of particle wt. Sw of 0.2 mg or lower and a standard deviation of true particle density Sd of 0.05 g/cm<3> or lower, and are charged into a metal mold and heated to be fused to each other, thus giving a molded foam.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は貫通穴を有する筒状
のポリオレフィン系樹脂発泡粒子及び連通した空隙を有
するポリオレフィン系樹脂発泡成型体の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a tubular polyolefin resin foam particle having a through hole and a polyolefin resin foam molded article having communicating voids.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】連通し
た空隙を有する発泡成型体は、透水性、通気性、吸音性
等の特性に優れるため、例えば排水性が要求される場所
において地中に埋設して使用する排水資材や、吸音性が
要求される建造物における壁材等として利用されてい
る。このような連通した空隙を有する発泡成型体は、特
開平4−153026号公報、特開平5−177723
号公報において提案されている。しかしながら前者の成
型体はポリスチレン製の発泡樹脂粒子同士が互いに接着
されて形成されたものであって、まず発泡樹脂粒子とポ
リオレフィン系樹脂水性分散液とを混合し、この混合物
を成形型内に充填して加熱し、その後冷却固化させるこ
とにより製造するもので、発泡樹脂粒子をそのまま成形
型内に充填して成型するものではないから製造工程が煩
雑で、そのため成型時間が長くなり、生産性が悪いとい
う問題がある。また発泡粒子相互の接着を該発泡粒子の
表面に皮膜状に形成したポリオレフィン系樹脂相互の接
着に委ねるものであり、このような皮膜は破壊し易いた
め、充分に高い接着強度が得られないという欠点もあっ
た。
2. Description of the Related Art A foamed molded article having an open space has excellent properties such as water permeability, air permeability, sound absorption and the like. It is used as a drainage material to be buried and used as a wall material in a building requiring sound absorption. A foam molded article having such communicating voids is disclosed in JP-A-4-153,026 and JP-A-5-177723.
No. pp. 147-64. However, the former molded body is formed by bonding polystyrene foamed resin particles to each other. First, the foamed resin particles and the aqueous polyolefin resin dispersion are mixed, and this mixture is filled in a molding die. It is manufactured by heating and then cooling and solidifying, and it is not a process of filling and molding the foamed resin particles as it is, so the manufacturing process is complicated, so the molding time is increased, and productivity is increased. There is a problem of bad. Further, the adhesion between the foamed particles is left to the adhesion between the polyolefin-based resins formed in the form of a film on the surface of the foamed particles. Since such a film is easily broken, a sufficiently high adhesive strength cannot be obtained. There were also disadvantages.

【0003】また上記後者に記載されている成型体は、
最長部分の長さが2cm以上である非球形の多数の発泡
成型チップを相互に融着してなるものであり、発泡成型
チップの最長部分の長さが2cm以上と長いため、チッ
プ相互の間にできる空間の大きさにバラツキが生じ易
く、従って型内の位置によってチップの充填密度が異な
り易く、また充填する度に充填密度が異なり易い等、チ
ップの金型への充填が均一に行われ難く、このためチッ
プの充填率をコントロールするのが困難であり、成型体
の空隙率を特定の値にコントロールすることも困難とな
ると共に、成型体の空隙率をどの部分においてもある程
度一定の値にコントロールすることが困難であり、この
結果、均一な透水性等の物性を得ることができなかっ
た。また同様の理由から、チップ相互の接触面積の割合
が小さいために、発泡成型体全体としては破壊し易く脆
いものであった。
[0003] The molded article described in the latter is
It is made by fusing a large number of non-spherical foam-molded chips with the longest portion of 2 cm or more to each other, and the longest portion of the foam-molded chip is as long as 2 cm or more. The size of the space that can be formed tends to vary, so the filling density of the chip tends to vary depending on the position in the mold, and the filling density tends to vary each time it is filled. Therefore, it is difficult to control the filling rate of the chip, it is difficult to control the porosity of the molded body to a specific value, and the porosity of the molded body is a constant value in any part. Therefore, it was not possible to obtain uniform physical properties such as water permeability. Further, for the same reason, since the ratio of the contact area between the chips was small, the foamed molded article was easily broken and brittle as a whole.

【0004】一方、本出願人は十分な空隙を有するとと
もに、発泡粒子相互の融着性に優れた、連通した空隙を
有するポリオレフィン系樹脂発泡成型体として、最***
径の大きさ、及び最***径と、該最***径を得た断面に
おける外径との間に特定の関係を有する筒形形状の発泡
粒子を成型してなる発泡成型体及びその製造方法を先に
提案した(特開平8−108441号公報)。上記、特
開平8−108441号公報に記載されている方法にお
いて、機械的強度、透水性、通気性に優れた発泡成型体
を得ようとする場合、成型用の発泡粒子として真密度が
大きく、重量バラツキの小さい発泡粒子群を使用すれば
良い。しかしながら、発泡粒子の重量バラツキを小さく
することは、発泡用樹脂粒子を造粒する際に充分注意を
払うことで対処可能であるが、真密度の大きい発泡粒子
を製造しようとすると、個々の発泡粒子の真密度のバラ
ツキが発生し、場合によっては、ほとんど発泡していな
い粒子が混入した発泡粒子群(尚、本願明細書中におい
て、複数の発泡粒子を一つの集合体として、『発泡粒子
群』と呼ぶことがある。)しか得ることができない。そ
して、真密度のバラツキのある発泡粒子群を成型して、
たとえ連通した空隙を有する高密度の発泡成型体が得ら
れたとしても、成型体の部分部分の密度バラツキが大き
く、成型体の部分的な密度の違い、融着性の違いから機
械的強度が均一な成型体を得難いという問題があった。
即ち、特開平8−108441号公報に記載されている
方法では、発泡成型体の機械的強度等の物性を高める目
的で、比較的低発泡の発泡粒子を用いて成型した場合、
たとえ低発泡のものが得られたとしても、機械的強度、
断熱性、吸音性等の物性に優れるとともに、これらの物
性が均一な発泡成型体を得難いという問題があった。一
方、真密度の小さい発泡粒子群の真密度のバラツキは、
高発泡の発泡成型体を得ようとする場合に空隙率のバラ
ツキを引き起こす。そのため、たとえ連通した空隙を有
する低密度の発泡成型体が得られたとしても、空隙率の
バラツキのために透水性、吸音性等の物性において優れ
たものを得難いという問題があった。
[0004] On the other hand, the present applicant has proposed a polyolefin resin foam molded article having sufficient voids and having excellent void adhesion between expanded particles and having continuous voids, having a minimum hole diameter and a minimum hole diameter. A foam molded article formed by molding cylindrical foam particles having a specific relationship between the diameter and the outer diameter of the cross section at which the minimum hole diameter is obtained, and a method for producing the same have been previously proposed (Japanese Unexamined Patent Application Publication No. -108441). In the method described in JP-A-8-108441, when attempting to obtain a foamed molded article having excellent mechanical strength, water permeability, and air permeability, the true density is large as foamed particles for molding, What is necessary is just to use the foaming particle group with small weight variation. However, reducing the weight variation of the foamed particles can be dealt with by paying sufficient attention when granulating the foaming resin particles. Variations in the true density of the particles occur, and in some cases, a group of expanded particles in which particles that are hardly expanded are mixed (in the specification of the present application, a plurality of expanded particles are regarded as one aggregate and referred to as a group of expanded particles. ]) Can only be obtained. Then, molding a group of expanded particles with variations in true density,
Even if a high-density foamed molded product with interconnected voids is obtained, the density variation of the part of the molded product is large, and the mechanical strength is different due to the difference in partial density of the molded product and the difference in fusing property. There was a problem that it was difficult to obtain a uniform molded body.
That is, in the method described in JP-A-8-108441, in order to enhance the physical properties such as the mechanical strength of the foam molded article, when molded using foam particles of relatively low foam,
Even if a low foamed one is obtained, mechanical strength,
There is a problem that it is excellent in physical properties such as heat insulating property and sound absorbing property, and it is difficult to obtain a foam molded article having these physical properties uniform. On the other hand, the variation of the true density of the foamed particles having a small true density is as follows.
When attempting to obtain a highly foamed molded article, the porosity varies. For this reason, even if a low-density foamed molded product having interconnected voids is obtained, there is a problem that it is difficult to obtain a material having excellent physical properties such as water permeability and sound absorption due to variation in porosity.

【0005】本発明は上記従来の問題に鑑みなされたも
ので、貫通穴を有する筒状のポリオレフィン系樹脂発泡
粒子において、従来困難であった真密度のバラツキをな
くしたものであり、空隙の分布が均一であり、断熱性、
排水性、吸音性等の物性に優れた連通した空隙を有する
ポリオレフィン系樹脂発泡成型体を製造するために、更
には比較的密度が高く機械的強度にも優れた、連通した
空隙を有するポリオレフィン系樹脂発泡成型体を製造す
るために好適に用いることができる貫通穴を有する筒状
のポリオレフィン系樹脂発泡粒子及び上記連通した空隙
を有するポリオレフィン系樹脂発泡成型体の製造方法を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and it is an object of the present invention to eliminate the conventionally difficult dispersion of true density in a tubular polyolefin resin foamed particle having a through hole. Is uniform, heat insulating,
In order to produce a polyolefin-based resin foam molded article having interconnected voids with excellent physical properties such as drainage and sound absorption properties, a polyolefin-based article having interconnected voids having a relatively high density and excellent mechanical strength An object of the present invention is to provide a method for producing a tubular polyolefin-based resin foamed particle having a through hole which can be suitably used for producing a resin foam-molded article and a polyolefin-based resin foamed article having the communicating voids. I do.

【0006】[0006]

【課題を解決するための手段】即ち本発明の貫通穴を有
する筒状のポリオレフィン系樹脂発泡粒子は、ホウ酸金
属塩(但し、アルカリ金属塩は除く。)を0.005〜
1重量%含有することを特徴とする。本発明の筒状の発
泡粒子は、真密度が0.03〜0.75g/cm3 であ
ることが好ましい。また本発明の連通した空隙を有する
ポリオレフィン系樹脂発泡成型体の製造方法は、発泡粒
子重量の標準偏差:Swが0.2mg以下であり、且つ
発泡粒子の真密度の標準偏差:Sdが0.05g/cm
3 以下の貫通穴を有する筒状のポリオレフィン系樹脂発
泡粒子群を金型内に充填し、加熱することにより該粒子
群を相互に融着せしめることを特徴とする。本発明の製
造方法は、密度が0.06g/cm3 以上の発泡成型体
を製造する方法として好ましい。
In other words, the expanded polyolefin-based resin particles having a through hole according to the present invention contain 0.005 to 5% of a metal borate (excluding an alkali metal salt).
It is characterized by containing 1% by weight. The true density of the tubular expanded particles of the present invention is preferably 0.03 to 0.75 g / cm 3 . In the method of the present invention for producing a foamed polyolefin resin article having interconnected voids, the standard deviation of the weight of the expanded particles: Sw is 0.2 mg or less, and the standard deviation of the true density of the expanded particles: Sd is 0. 05g / cm
A foamed polyolefin-based resin particle group having three or less through holes is filled in a mold, and the particles are fused to each other by heating. The production method of the present invention is preferable as a method for producing a foamed molded article having a density of 0.06 g / cm 3 or more.

【0007】[0007]

【発明の実施の形態】本発明の発泡粒子の基材樹脂であ
るポリオレフィン系樹脂としては、例えばエチレン−ブ
テンランダムコポリマー、エチレン−ブテンブロックコ
ポリマー、エチレン−プロピレンブロックコポリマー、
エチレン−プロピレンランダムコポリマー、エチレン−
プロピレン−ブテンランダムターポリマー、ホモポリプ
ロピレン等のポリプロピレン系樹脂、低密度ポリエチレ
ン、中密度ポリエチレン、高密度ポリエチレン、直鎖状
低密度ポリエチレン、直鎖状超低密度ポリエチレン、エ
チレン−酢酸ビニルコポリマー、エチレン−メチルメタ
クリレートコポリマー、エチレン−メタクリル酸コポリ
マーの分子間を金属イオンで架橋したアイオノマー系樹
脂等のポリエチレン系樹脂、或いはポリブテン−1、ポ
リペンテン、エチレン−アクリル酸−無水マレイン酸タ
ーポリマー等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of the polyolefin resin as a base resin of the expanded particles of the present invention include an ethylene-butene random copolymer, an ethylene-butene block copolymer, an ethylene-propylene block copolymer,
Ethylene-propylene random copolymer, ethylene-
Propylene-butene random terpolymer, polypropylene resin such as homopolypropylene, low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, ethylene-vinyl acetate copolymer, ethylene- Examples include a polyethylene resin such as an ionomer resin in which the molecules of a methyl methacrylate copolymer or an ethylene-methacrylic acid copolymer are crosslinked with metal ions, or polybutene-1, polypentene, an ethylene-acrylic acid-maleic anhydride terpolymer, or the like.

【0008】ポリオレフィン系樹脂は無架橋のまま用い
ても、過酸化物や放射線による架橋を施して用いても良
いが、生産工程数が少なく、リサイクル可能な無架橋の
ものが好ましい。
The polyolefin resin may be used as it is without cross-linking or may be used after being cross-linked by peroxide or radiation. However, it is preferable to use a non-cross-linked resin which has a small number of production steps and is recyclable.

【0009】上記ポリオレフィン系樹脂のなかでも、発
泡成型体を圧縮した時の圧縮回復性が良好な低密度ポリ
エチレン、中密度ポリエチレン、高密度ポリエチレン、
直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレ
ン、ポリプロピレン、ポリブテン、エチレン−プロピレ
ンコポリマー、プロピレン−ブテンコポリマー、エチレ
ン−プロピレン−ブテンターポリマー等が好ましい。特
に、エチレン−プロピレンランダムコポリマー、プロピ
レン−ブテンランダムコポリマー、エチレン−プロピレ
ン−ブテンターポリマーが好ましい。
Among the above-mentioned polyolefin resins, low-density polyethylene, medium-density polyethylene, and high-density polyethylene, which have good compression recovery when the foamed molded article is compressed,
Preferred are linear low-density polyethylene, linear ultra-low-density polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, propylene-butene copolymer, ethylene-propylene-butene terpolymer, and the like. In particular, an ethylene-propylene random copolymer, a propylene-butene random copolymer, and an ethylene-propylene-butene terpolymer are preferable.

【0010】また基材樹脂として例示した上記ポリプロ
ピレン、エチレン−プロピレンコポリマー、プロピレン
−ブテンコポリマー、エチレン−プロピレン−ブテンタ
ーポリマー等の融点130℃以上のプロピレン系樹脂
は、重合触媒としてメタロセン化合物を用いて得られた
ものが樹脂融点と剛性との関係、樹脂の融点と耐熱性と
の関係において、他の重合触媒を用いて得られたものよ
りも優れた剛性、耐熱性を示す等の理由から特に好まし
い。尚、メタロセン化合物とは、例えば遷移金属をπ電
子系の不飽和化合物で挟んだ構造の化合物で、チタン、
ジルコニウム、ニッケル、パラジウム、ハフニウム、白
金等の四価の遷移金属に、1つ又は2つ以上のシクロペ
ンタジエニル環又はその類縁体が配位子として存在する
化合物である。
The above-mentioned propylene resins having a melting point of 130 ° C. or more, such as polypropylene, ethylene-propylene copolymer, propylene-butene copolymer, and ethylene-propylene-butene terpolymer, which are exemplified as the base resin, use a metallocene compound as a polymerization catalyst. In the relationship between the obtained resin melting point and rigidity, in the relationship between the melting point of the resin and the heat resistance, rigidity better than that obtained using other polymerization catalysts, especially because of showing heat resistance, etc. preferable. Note that a metallocene compound is a compound having a structure in which a transition metal is sandwiched between π-electron unsaturated compounds, for example, titanium,
A compound in which one or more cyclopentadienyl rings or analogs thereof are present as ligands in a tetravalent transition metal such as zirconium, nickel, palladium, hafnium, and platinum.

【0011】本発明の製造方法により得られる発泡成型
体は、好ましくは連通した空隙の空隙率が10%以上で
あり、且つ密度が0.06g/cm3 以上のものであ
る。空隙率が10%未満の場合、排水性、吸音性等に劣
るものとなる虞れがある。一方、空隙率が高すぎると、
成型体の強度が低下する虞れがあるため、空隙率は10
〜45%であることが好ましい。また密度が0.06g
/cm3 未満の場合、発泡粒子相互の融着性は良好であ
るが、発泡粒子自体の密度が小さいため、その発泡粒子
群より得られる成型体の圧縮密度が不充分となる虞れが
ある。逆に成型体の密度が極度に高過ぎると、充分な空
隙率を確保することが困難となる虞れがあるため、密度
は0.06〜0.60g/cm3 であることが好まし
い。
The foam molded article obtained by the production method of the present invention preferably has a porosity of communicating voids of 10% or more and a density of 0.06 g / cm 3 or more. When the porosity is less than 10%, there is a possibility that the drainage property, the sound absorbing property, and the like are inferior. On the other hand, if the porosity is too high,
Since the strength of the molded body may be reduced, the porosity is 10
It is preferably about 45%. The density is 0.06g
If it is less than / cm 3, the fusion property between the foamed particles is good, but the density of the foamed particles themselves is small, so that the compression density of the molded product obtained from the foamed particles may be insufficient. . Conversely, if the density of the molded body is too high, it may be difficult to ensure a sufficient porosity, and therefore the density is preferably 0.06 to 0.60 g / cm 3 .

【0012】従来の連通した空隙を有するポリオレフィ
ン系樹脂発泡成型体の場合、成型体の密度分布や空隙率
の分布のバラツキが現れるという問題があったが、本発
明の製造方法により得られる発泡成型体は、たとえ密度
が低いものであっても、空隙率の最大値と最小値の差は
小さく、密度及び空隙のバラツキが非常に小さいことが
特徴の一つである。
[0012] In the case of a conventional polyolefin resin foam molded article having interconnected voids, there was a problem that the distribution of the density and the porosity distribution of the molded article appeared, but the foam molded article obtained by the production method of the present invention. One of the characteristics of the body is that even if the body has a low density, the difference between the maximum value and the minimum value of the porosity is small, and the variation in the density and the void is very small.

【0013】上記発泡成型体の空隙率は、下記(1)式
により求めることができる。
The porosity of the foam molded article can be determined by the following equation (1).

【0014】[0014]

【数1】 空隙率:A(%)=〔(B−C)÷B〕×100 ・・・・(1)[Equation 1] Porosity: A (%) = [(B−C) ÷ B] × 100 (1)

【0015】ただし、Bは発泡成型体の見掛け体積(c
3)、Cは発泡成型体の真の体積(cm3)である。発泡
成型体の見掛け体積:B(cm3)は、発泡成型体の外形
寸法より算出される体積である。また発泡成型体の真の
体積:C(cm3)は、発泡成型体の見掛け体積:Bから
空隙部の容積を除いた実質体積で、発泡成型体を容積既
知のエタノール中に沈めた時、増加した容積が真の体
積:C(cm3)に相当する。
Here, B is the apparent volume (c) of the foamed molded article.
m 3 ), C is the true volume (cm 3 ) of the foamed molded article. The apparent volume of the foamed molded product: B (cm 3 ) is a volume calculated from the external dimensions of the foamed molded product. The true volume of the foamed article: C (cm 3 ) is the actual volume of the foamed article: B, excluding the volume of the void portion. When the foamed article is submerged in a known volume of ethanol, The increased volume corresponds to the true volume: C (cm 3 ).

【0016】一方、上記発泡成型体の密度は、空隙部分
を含む発泡成型体の見掛け体積B(cm3 )で発泡成型
体の重量(g)を割ることにより求めることができる。
On the other hand, the density of the foam molded article can be determined by dividing the weight (g) of the foam molded article by the apparent volume B (cm 3 ) of the foam molded article including the void portion.

【0017】上記、連通した空隙を有するポリオレフィ
ン系樹脂発泡成型体は、後述する特定のポリオレフィン
系樹脂発泡粒子を金型内に充填し、水蒸気で加熱して発
泡粒子相互を融着させる方法によって得ることができる
が、この発泡粒子の形状としては、貫通した穴を有する
筒形形状の発泡粒子を用いる。
The above-mentioned foamed polyolefin-based resin having a communicating void is obtained by a method in which foamed specific polyolefin-based resin particles described later are filled in a mold and heated with steam to fuse the foamed particles to each other. However, as the shape of the expanded particles, cylindrical expanded particles having through holes are used.

【0018】上記筒形形状の発泡粒子とは、図1に示す
ように発泡粒子の穴Pの方向に垂直な断面形状がそれぞ
れ、(a)外周形状、穴の形状が共に円形であるもの、
(b)外周形状、穴の形状共に多角形であるもの、
(c)外周形状が円形で穴の形状が多角形であるもの、
(d)外周形状が多角形で穴の形状が円形であるもの、
(e)上記(a)〜(d)をその外周において互いに接
合させた形状であるもの等があり、本発明においては上
記したいずれの断面形状を有する筒形形状の発泡粒子も
使用できる。また、(f)発泡粒子の穴Pの方向に垂直
な、どの断面においても上記(a)〜(e)の外周に突
起が設けられた断面形状を有する筒形形状の発泡粒子
や、(g)発泡粒子の穴Pの方向に垂直な、ある断面に
おいて上記(a)〜(e)の形状を有し且つ別の断面に
おいては上記(a)〜(e)の外周に突起が設けられた
断面形状を有する筒形形状の発泡粒子も使用可能であ
る。
As shown in FIG. 1, the foamed particles having a cylindrical shape have a cross section perpendicular to the direction of a hole P of the foamed particles, respectively: (a) an outer peripheral shape and a hole having a circular shape;
(B) both the outer peripheral shape and the hole shape are polygonal;
(C) those having a circular outer peripheral shape and a polygonal hole shape;
(D) those having a polygonal outer peripheral shape and a circular hole shape;
(E) There is a shape in which the above (a) to (d) are joined to each other at the outer periphery thereof. In the present invention, cylindrical foamed particles having any of the above-mentioned cross-sectional shapes can be used. In addition, (f) cylindrical foamed particles having a cross-sectional shape in which projections are provided on the outer periphery of (a) to (e) in any cross section perpendicular to the direction of the hole P of the foamed particles, and (g) ) The cross-section perpendicular to the direction of the hole P of the foamed particles has a shape in the above (a) to (e) in one cross section and a projection is provided on the outer circumference in the above (a) to (e) in another cross section. Cylindrical expanded particles having a cross-sectional shape can also be used.

【0019】このような筒形形状の発泡粒子として、具
体的には図1に示すように、(a)の発泡粒子の一例と
して、(ア)の円筒形状のものが、(b)の発泡粒子の
一例としては、(イ)に示す三角筒形のもの、(ウ)に
示す四角筒形のもの、(エ)六角筒形のもの等が挙げら
れる。また、(c)の発泡粒子の一例としては、(オ)
に示す形状のものが、(d)の発泡粒子の一例として
は、(カ)に示す形状のものが挙げられる。
As shown in FIG. 1, as an example of the foamed particles having the cylindrical shape, as shown in FIG. Examples of the particles include a triangular cylinder shown in (a), a square cylinder shown in (c), and a hexagonal cylinder shown in (d). Examples of the expanded particles (c) include (e)
As an example of the expanded particles of (d), those having the shape shown in (f) include those having the shape shown in (f).

【0020】また、(e)の発泡粒子の一例としては、
(キ)や(ク)に示すような、円筒を複数並列に一体化
した形状のものが、(f)の発泡粒子の一例としては、
(ケ)、(コ)、(サ)、(シ)、(ス)に示すよう
な、多角筒又は円筒の外周面、或いは多角筒又は円筒を
並列一体化したものの外周面に、穴Pの方向に沿う帯状
の突起eが設けられた形状のものが挙げられる。更に、
(g)の発泡粒子の一例としては、(セ)、(ソ)に示
すように、多角筒や円筒、或いは多角筒や円筒を並列一
体化したものの外周に複数の突起eが設けられた形状等
が挙げられる。
Further, as an example of the expanded particles (e),
As shown in (g) and (v), a plurality of cylinders are integrated in parallel, and as one example of the expanded particles of (f),
The hole P is formed on the outer peripheral surface of a polygonal cylinder or a cylinder, or the outer peripheral surface of a polygonal cylinder or a cylinder integrated in parallel as shown in (g), (c), (sa), (shi), and (su). One having a shape in which a band-like projection e along the direction is provided. Furthermore,
As an example of the foamed particles (g), as shown in (c) and (so), a polygonal cylinder or a cylinder, or a polygonal cylinder or a cylinder in which a plurality of protrusions e are provided on the outer periphery thereof in parallel and integrated. And the like.

【0021】尚、上記した態様は一例であって、他に穴
Pの方向に垂直な断面形状の外周形状が楕円であるもの
や、該断面の穴形状が楕円のもの、該断面の穴の中心が
ずれているもの、筒形の発泡粒子がねじれた形態のも
の、垂直な断面形状がC型のもののように一部に切れ目
のあるもの等も使用することができ、筒形形状の発泡粒
子としては、図示したものに限られるものではない。
The above-described embodiment is merely an example, and other shapes such as those having an elliptical outer peripheral shape in a cross section perpendicular to the direction of the hole P, those having an elliptical hole shape in the cross section, and those having an elliptical hole shape in the cross section, It is also possible to use one having a displaced center, one having a twisted cylindrical foam particle, one having a partially cut portion such as a C-shaped vertical cross-section, etc. The particles are not limited to those illustrated.

【0022】筒形形状の発泡粒子の場合、空間率が50
〜80%であるものが好ましい。このような空間率のも
のを用いて成型すると、空隙率の大きな発泡成型体が容
易に得られる利点がある。筒形形状の発泡粒子の空間率
は、下記(2)式により求められる。
In the case of cylindrical foamed particles, the porosity is 50
Preferably, it is 8080%. Molding with such a void ratio has an advantage that a foam molded body having a large void ratio can be easily obtained. The porosity of the tubular expanded particles is determined by the following equation (2).

【0023】[0023]

【数2】 空間率(%)=〔(真密度−嵩密度)÷真密度×100〕 ・・・(2)[Equation 2] Porosity (%) = [(true density−bulk density) ÷ true density × 100] (2)

【0024】また発泡粒子の真密度は、エタノールの入
ったメスシリンダーを用いて測定する。約5000個の
発泡粒子の合計重量:W(g)を測定し、この発泡粒子
群をメスシリンダーのエタノール中に沈め、エタノール
の水位上昇分より発泡粒子群の真の体積:L(cm3
を測定し、次式より求める。
The true density of the expanded particles is measured using a measuring cylinder containing ethanol. The total weight of about 5000 foamed particles: W (g) was measured, and the foamed particles were submerged in ethanol in a measuring cylinder, and the true volume of the foamed particles was L (cm 3 ) based on the rising water level of ethanol.
Is measured, and is obtained from the following equation.

【0025】[0025]

【数3】 真密度(g/cm3 )=W÷L ・・・・・・(3)## EQU3 ## True density (g / cm 3 ) = W L (3)

【0026】また、発泡粒子の嵩密度は、空のメスシリ
ンダー中に合計重量:W(g)の約5000個の発泡粒
子を入れ、メスシリンダーの目盛りから発泡粒子群の体
積:V(cm3 )を読み取り、次式より求める。
The bulk density of the expanded particles can be determined by placing approximately 5000 expanded particles having a total weight of W (g) in an empty measuring cylinder, and measuring the volume of the expanded particle group: V (cm 3) from the scale of the measuring cylinder. ) Is read and calculated by the following equation.

【0027】[0027]

【数4】 嵩密度(g/cm3 )=W÷V ・・・・・・・・・・(4)## EQU4 ## Bulk density (g / cm 3 ) = W ÷ V (4)

【0028】上記した種々の形状の発泡粒子のうち、特
に図1における(ア)、(キ)、(ク)の発泡粒子のよ
うに、表面に突起eを有さず、且つ外周形状、穴の形状
共に円形である発泡粒子が、製造が比較的容易であり、
金型内に該粒子を充填する際にフィーダー詰まりがな
く、しかも金型内のどの位置においても均一な密度に充
填され、充填率のコントロールがし易い点で好ましい。
Among the various shapes of the foamed particles described above, particularly, like the foamed particles (A), (G), and (C) in FIG. The foam particles that are both circular in shape are relatively easy to manufacture,
This is preferable because the particles are not clogged in the feeder when the particles are filled in the mold, and the particles are filled at a uniform density at any position in the mold, and the filling ratio can be easily controlled.

【0029】連通した空隙を有するポリオレフィン系樹
脂発泡成型体を得る場合、上記の如く筒形形状の発泡粒
子を用いると、発泡粒子を金型内に空送して充填する際
に、充填空気の流入口に対する空気の流出口の位置を調
整することによって発泡粒子に方向性を与えて金型内に
充填することがある程度可能となり、発泡成型体の空隙
率、特に連通した空隙の方向性を制御することができる
ので好ましい。成型用の発泡粒子としては、図1に示す
発泡粒子の長さ:Lと直径:Dとの比:L/Dが、0.
5〜2.0のものを用いることが好ましい。
When a foamed polyolefin-based resin having communicating voids is obtained, if the foamed particles having a cylindrical shape are used as described above, when the foamed particles are air-fed into a mold and filled, the filled air is filled with air. By adjusting the position of the air outlet with respect to the inlet, it is possible to give directionality to the foamed particles and to fill the inside of the mold to some extent, and control the porosity of the foamed molded body, particularly the directionality of the interconnected voids Is preferred. As the foamed particles for molding, the ratio of length: L to diameter: D: L / D shown in FIG.
It is preferable to use those having 5 to 2.0.

【0030】発泡粒子を製造する手段としては、例え
ば、前記ポリオレフィン系樹脂を押出機で溶融混練した
後ストランド状に押出して、冷却後適宜長さに切断する
か、或いは適宜長さに切断後冷却する等の手段で先ず、
発泡粒子製造原料としての樹脂粒子を製造する。発泡粒
子製造用原料としての樹脂粒子を製造するに際し、上記
ポリオレフィン系樹脂を単独で用いても2種以上を混合
して用いても良い。更に劣化防止のためにフェノール
系、リン系、イオウ系等の酸化防止剤、ヒンダードアミ
ン系、ベンゾトリアゾール系等の光安定剤等や、加工性
向上のためにステアリン酸カルシウム等の脂肪酸金属塩
を触媒中和剤として添加したり、エルカ酸アミド、オレ
イン酸アミド等の脂肪酸アミドを滑剤として添加しても
良い。上記添加剤は、それぞれ樹脂100重量部に対
し、0.001〜5重量部程度添加することが好まし
い。
As means for producing expanded particles, for example, the polyolefin resin is melt-kneaded with an extruder, extruded into strands, and cut into appropriate lengths after cooling, or cut into appropriate lengths and then cooled. First, by means such as
Resin particles as a raw material for producing expanded particles are produced. In producing resin particles as a raw material for producing expanded particles, the above-mentioned polyolefin-based resin may be used alone or in combination of two or more. In addition, phenol-based, phosphorus-based, sulfur-based antioxidants, hindered amine-based, benzotriazole-based light stabilizers, etc. to prevent deterioration, and fatty acid metal salts such as calcium stearate to improve processability are used in the catalyst. A fatty acid amide such as erucamide or oleamide may be added as a lubricant. The above additives are preferably added in an amount of about 0.001 to 5 parts by weight based on 100 parts by weight of the resin.

【0031】更に、発泡粒子を成型して得られる発泡成
型体に柔軟性を付与する目的で、ポリオレフィン系樹脂
にエチレン−プロピレンラバー等の熱可塑性エラストマ
ーを、基材樹脂中の含有量が5〜40wt%となるよう
に添加して用いても良い。また上記ポリオレフィン系樹
脂に、ポリカプロラクトン、β−ヒドロキシ酪酸及び/
又はそのコポリマー、ポリビニルアルコール、変性デン
プン等の生分解性プラスチックを混合して用いることも
できる。
Further, for the purpose of imparting flexibility to a foamed molded product obtained by molding the foamed particles, a thermoplastic elastomer such as ethylene-propylene rubber is added to the polyolefin resin so that the content in the base resin is 5 to 5. You may add and use so that it may be set to 40 wt%. Further, polycaprolactone, β-hydroxybutyric acid and / or
Alternatively, a biodegradable plastic such as a copolymer thereof, polyvinyl alcohol, and modified starch can be mixed and used.

【0032】ポリオレフィン系樹脂粒子は、黒、灰色、
茶色等の着色顔料又は染料を添加して着色したものであ
ってもよい。着色した樹脂粒子を発泡して得た着色発泡
粒子を用いれば、着色された発泡成型体を得ることがで
きる。着色顔料又は染料の色は、上記に例示したものの
他に黄色、赤色、桃色、緑色、青色等、成型体の用途に
応じて適宜選択される。
The polyolefin resin particles are black, gray,
It may be colored by adding a coloring pigment or dye such as brown. By using colored foamed particles obtained by foaming colored resin particles, a colored foam molded article can be obtained. The color of the coloring pigment or dye is appropriately selected depending on the use of the molded article, such as yellow, red, pink, green, and blue, in addition to those exemplified above.

【0033】基材樹脂に着色顔料、染料を添加するため
に、顔料、染料をそのまま基材樹脂に練り込む方法も採
用できるが、添加量が少ない顔料や染料を均一に樹脂中
に分散させるために、通常は、まず顔料や染料を含むマ
スターバッチを作り、このマスターバッチと顔料や染料
を含まない樹脂とを混練するマスターバッチ法を採用す
ることが好ましい。着色顔料、染料の添加量は着色の色
によっても異なるが、通常基材樹脂100重量部に対し
て0.001〜15重量部が好ましい。
In order to add a coloring pigment or a dye to the base resin, a method of kneading the pigment or the dye as it is into the base resin can be adopted. However, in order to uniformly disperse the pigment or the dye in a small amount in the resin. Usually, it is preferable to first adopt a masterbatch method in which a masterbatch containing a pigment or a dye is prepared, and the masterbatch and a resin containing no pigment or a dye are kneaded. The amount of the coloring pigment or dye varies depending on the coloring color, but is usually preferably 0.001 to 15 parts by weight based on 100 parts by weight of the base resin.

【0034】前記した筒形形状の発泡粒子を得るには、
発泡粒子製造原料である樹脂粒子として筒形形状の樹脂
粒子を用いる。筒形形状の樹脂粒子を得るには、上記し
た発泡粒子の製造原料としての樹脂粒子を製造するため
の押出機として、ダイスの溶融樹脂出口に、所望する樹
脂粒子の断面形状と同形状のスリットを有し、且つ貫通
する穴Pを有する筒形形状を保持するためにスリットの
内側に筒形ストランドの穴部の圧力を常圧もしくはそれ
以上に保つための圧力調整孔を設けたものを使用する。
尚、圧力調整孔は気体圧入装置に連結されて空気等を筒
形ストランド穴部に供給したり、単に常圧部と連通させ
ることにより筒形ストランド穴部を常圧又はそれ以上の
圧力に保つことができる。
In order to obtain the above-mentioned tubular expanded particles,
Cylindrical resin particles are used as resin particles that are raw materials for producing expanded particles. To obtain the cylindrical resin particles, a slit having the same shape as the cross-sectional shape of the desired resin particles is formed at the molten resin outlet of the die as an extruder for producing the resin particles as a raw material for producing the expanded particles. And a pressure adjusting hole for maintaining the pressure in the hole of the cylindrical strand at a normal pressure or higher is provided inside the slit in order to maintain the cylindrical shape having the through hole P. I do.
The pressure adjusting hole is connected to the gas press-fitting device to supply air or the like to the cylindrical strand hole, or to maintain the cylindrical strand hole at normal pressure or higher by simply communicating with the normal pressure part. be able to.

【0035】上記のようにして得た樹脂粒子を、密閉容
器内で発泡剤の存在下で分散媒に分散させて、該樹脂粒
子の軟化温度以上の温度に加熱して樹脂粒子内に発泡剤
を含浸させ、しかる後容器の一端を開放し、容器内圧力
を発泡剤の分圧以上の圧力に保持しながら樹脂粒子と分
散媒とを同時に容器内よりも低圧の雰囲気下(通常は大
気圧下)に放出する等の方法により、樹脂粒子を発泡せ
しめて発泡粒子を得ることができる。
The resin particles obtained as described above are dispersed in a dispersion medium in the presence of a foaming agent in a closed container, and heated to a temperature equal to or higher than the softening temperature of the resin particles to form a foaming agent in the resin particles. And then open one end of the container, and simultaneously hold the resin particles and the dispersion medium in an atmosphere at a lower pressure than the inside of the container while maintaining the pressure in the container at a pressure equal to or higher than the partial pressure of the blowing agent (usually atmospheric pressure). The resin particles can be foamed by a method such as the method described below to obtain foamed particles.

【0036】発泡粒子の製造に用いられる発泡剤として
は、通常、プロパン、イソブタン、ブタン、イソペンタ
ン、ペンタン、シクロペンタン、ヘキサン、シクロブタ
ン、シクロヘキサン、クロロフルオロメタン、トリフル
オロメタン、1,2,2,2−テトラフルオロエタン、
1−クロロ−1,1−ジフルオロエタン、1,1−ジフ
ルオロエタン、1−クロロ−1,2,2,2−テトラフ
ルオロエタン等の揮発性発泡剤や、窒素、二酸化炭素、
アルゴン、空気等の無機ガス系発泡剤が挙げられるが、
なかでもオゾン層の破壊がなく且つ安価に提供される無
機ガス系発泡剤が好ましい。上記無機ガス系発泡剤のう
ち、より好ましいのは窒素、空気、二酸化炭素であり、
特に窒素、空気が好ましい。尚、上記無機ガス系発泡剤
は特に密度0.06g/cm3 以上の発泡成型体を製造
するのに使用される低倍率の発泡粒子を得る場合に好適
である。窒素、空気を除く上記発泡剤の使用量は通常樹
脂粒子100重量部当り2〜50重量部である。また窒
素、空気を発泡剤として用いる場合、5〜60kgf/
cm2 Gの圧力で密閉容器内に圧入する。発泡剤の使用
量は得ようとする発泡粒子の嵩密度と発泡温度との関係
に応じて適宜に選択される。
As the blowing agent used for producing expanded particles, propane, isobutane, butane, isopentane, pentane, cyclopentane, hexane, cyclobutane, cyclohexane, chlorofluoromethane, trifluoromethane, 1,2,2,2 -Tetrafluoroethane,
Volatile blowing agents such as 1-chloro-1,1-difluoroethane, 1,1-difluoroethane, 1-chloro-1,2,2,2-tetrafluoroethane, nitrogen, carbon dioxide,
Inorganic gas-based blowing agents such as argon and air are listed,
Among them, an inorganic gas-based blowing agent which does not destroy the ozone layer and is provided at low cost is preferable. Of the inorganic gas-based blowing agents, more preferred are nitrogen, air, and carbon dioxide,
Particularly, nitrogen and air are preferable. The above-mentioned inorganic gas-based foaming agent is particularly suitable for obtaining low-magnification foamed particles used for producing a foam molded article having a density of 0.06 g / cm 3 or more. The amount of the foaming agent except nitrogen and air is usually 2 to 50 parts by weight per 100 parts by weight of the resin particles. When nitrogen and air are used as the foaming agent, 5 to 60 kgf /
Press into a closed vessel with a pressure of cm 2 G. The amount of the foaming agent to be used is appropriately selected according to the relationship between the bulk density of the foamed particles to be obtained and the foaming temperature.

【0037】発泡粒子を得るに際して、樹脂粒子を分散
させるための分散媒としては、樹脂粒子を溶解しないも
のであればよく、このような分散媒としては、通常は水
が使用される。
In obtaining the foamed particles, the dispersion medium for dispersing the resin particles may be any one which does not dissolve the resin particles, and water is usually used as such a dispersion medium.

【0038】本発明においては、樹脂粒子を分散媒に分
散せしめて発泡温度に加熱するに際し、樹脂粒子相互の
融着を防止するために融着防止剤を分散媒に添加するこ
ともできる。融着防止剤としては水等に溶解せず、加熱
によっても溶融しないものであれば、無機系、有機系を
問わずいずれも使用可能であるが、一般的には無機系の
ものが好ましい。
In the present invention, when the resin particles are dispersed in a dispersion medium and heated to a foaming temperature, a fusion inhibitor may be added to the dispersion medium in order to prevent fusion between the resin particles. As the anti-fusing agent, any inorganic or organic type can be used as long as it does not dissolve in water or the like and does not melt even by heating, but generally, an inorganic type is preferable.

【0039】無機系の融着防止剤としては、カオリン、
タルク、マイカ、酸化アルミニウム、酸化チタン、水酸
化アルミニウム、炭酸マグネシウム、炭酸亜鉛、リン酸
三カルシウム等の粉体が好適である。また分散助剤とし
てドデシルベンゼンスルフォン酸ナトリウム、オレイン
酸ナトリウム等のアニオン系界面活性剤が好適に使用さ
れる。上記融着防止剤としては平均粒径0.001〜1
00μm、特に0.001〜30μmのものが好まし
い。融着防止剤の添加量は樹脂粒子100重量部に対
し、通常は0.01〜10重量部が好ましい。また界面
活性剤は樹脂粒子100重量部当たり、通常0.001
〜5重量部添加することが好ましい。
As the inorganic anti-fusing agent, kaolin,
Powders such as talc, mica, aluminum oxide, titanium oxide, aluminum hydroxide, magnesium carbonate, zinc carbonate, and tricalcium phosphate are preferred. Anionic surfactants such as sodium dodecylbenzenesulfonate and sodium oleate are preferably used as a dispersing aid. The anti-fusing agent has an average particle size of 0.001 to 1
The thickness is preferably 00 μm, particularly preferably 0.001 to 30 μm. Usually, the addition amount of the anti-fusing agent is preferably 0.01 to 10 parts by weight based on 100 parts by weight of the resin particles. The surfactant is usually used in an amount of 0.001 per 100 parts by weight of the resin particles.
It is preferable to add up to 5 parts by weight.

【0040】本発明方法において、金型内で成型に供す
るポリオレフィン系樹脂発泡粒子として、発泡粒子重量
の分布幅及び発泡粒子の真密度の分布幅が狭いもの(重
量、真密度のバラツキの小さいもの)を用いる。つま
り、発泡粒子重量の標準偏差:Swが0.2mg以下、
発泡粒子の真密度の標準偏差:Sdが0.05g/cm
3 以下のものを使用する。金型内で成型する貫通穴を有
する筒状のポリオレフィン系樹脂発泡粒子群の、Sw、
Sdが上記範囲から外れると、得られる成型体の空隙の
バラツキが大きくなってしまう等の不具合を生じる。
In the method of the present invention, the polyolefin resin expanded particles to be molded in a mold are those having a narrow distribution width of the expanded particle weight and a distribution width of the true density of the expanded particles (those having small variations in weight and true density). ) Is used. That is, the standard deviation of the foamed particle weight: Sw is 0.2 mg or less,
Standard deviation of true density of expanded particles: Sd is 0.05 g / cm
3 Use the following. Sw, of a cylindrical polyolefin-based resin expanded particle group having a through hole to be molded in a mold,
When Sd is out of the above range, problems such as a large variation in the voids of the obtained molded body occur.

【0041】重量のバラツキの小さい発泡粒子群を得る
には、発泡粒子製造原料である樹脂粒子の重量バラツキ
を小さくすれば良く、重量バラツキの小さい樹脂粒子
は、所望のスリットを有する押出機から溶融樹脂を押出
して造粒する際のラインスピードを遅くする、ストラン
ドを充分冷却後に切断する等の操作により得ることがで
きる。また、真密度のバラツキの小さいポリオレフィン
系樹脂発泡粒子を得るには、ホウ酸金属塩をポリオレフ
ィン系樹脂粒子中に添加し、この樹脂粒子を前記発泡剤
を使用して発泡して得ることができる。
In order to obtain a foamed particle group having a small variation in weight, it is only necessary to reduce the variation in the weight of the resin particles which are the raw material for producing the foamed particles. The resin particles having a small variation in the weight are melted by an extruder having a desired slit. It can be obtained by operations such as reducing the line speed when extruding and granulating the resin, and cutting the strand after sufficiently cooling it. In addition, in order to obtain polyolefin resin foam particles having a small variation in true density, a metal borate can be added to polyolefin resin particles, and the resin particles can be foamed using the foaming agent. .

【0042】上記ほう酸金属塩としては、次の(a)
式、(b)式で示される化合物が用いられる。
The metal borate includes the following (a)
The compound represented by the formula (b) is used.

【0043】[0043]

【化1】 xM2 O・yB2 3 ・zH2 O ・・・・(a) (但し、x、yは1以上の整数、zは0以上の数、Mは
1価の金属元素を示す。)
## STR1 ## xM 2 O · yB 2 O 3 · zH 2 O ···· (a) ( where, x, y is an integer of 1 or more, z is 0 or more numbers, M is a monovalent metal element Shown.)

【0044】[0044]

【化2】 xM′O・yB2 3 ・zH2 O ・・・・(b) (但し、x、yは1以上の整数、zは0以上の数、M′
は2価の金属元素を示す。)
## STR2 ## xM'O · yB 2 O 3 · zH 2 O ···· (b) ( however, x, y is an integer of 1 or more, z is 0 or more numbers, M '
Represents a divalent metal element. )

【0045】但し、上記(a)、(b)に示すホウ酸金
属塩としては、ホウ酸ナトリウム、ほう酸カリウム等の
アルカリ金属塩を除くものである。本発明において使用
するホウ酸金属塩の中で、特にホウ酸亜鉛、ホウ酸マグ
ネシウムが好適である。
However, the metal borate shown in the above (a) and (b) excludes alkali metal salts such as sodium borate and potassium borate. Among the metal borates used in the present invention, zinc borate and magnesium borate are particularly preferred.

【0046】ホウ酸亜鉛としては、メタホウ酸亜鉛〔Z
n(BO2 2 〕、塩基性ホウ酸亜鉛〔ZnB4 7
2ZnO〕等や、2ZnO・3B2 3 ・3.5H
2 O、3ZnO・2B2 3 ・5H2 O等の化学式で示
される化合物が挙げられる。
As the zinc borate, zinc metaborate [Z
n (BO 2 ) 2 ], basic zinc borate [ZnB 4 O 7.
2ZnO] or 2ZnO.3B 2 O 3 .3.5H
2 O, compounds represented by the chemical formula such as 3ZnO · 2B 2 O 3 · 5H 2 O.

【0047】また、ホウ酸マグネシウムとしては、オル
トホウ酸マグネシウム〔Mg3 (BO3 2 〕、二ホウ
酸マグネシウム、ピロホウ酸マグネシウム〔Mg2 2
5又は2MgO・B2 3 〕、メタホウ酸マグネシウ
ム〔MgO・B2 3 〕、四ホウ酸三マグネシウム〔M
3 4 9 又は3MgO・2B2 3 〕、四ホウ酸五
マグネシウム〔Mg5 4 11〕、六ホウ酸マグネシウ
ム〔MgB6 10〕等や、2MgO・3B2 3 ・nH
2 O(nは正の整数)、MgO・4B2 3 ・3H
2 O、MgO・6B2 3 ・18H2 O等の化学式で示
される化合物が挙げられる。これらのホウ酸金属塩は1
種又2種以上を組み合わせて用いることができる。
The magnesium borate includes magnesium orthoborate [Mg 3 (BO 3 ) 2 ], magnesium diborate, magnesium pyroborate [Mg 2 B 2
O 5 or 2MgO · B 2 O 3], magnesium metaborate [MgO · B 2 O 3], tetraborate tribasic magnesium [M
g 3 B 4 O 9 or 3MgO · 2B 2 O 3], tetraborate five magnesium [Mg 5 B 4 O 11], six and magnesium borate [MgB 6 O 10] or, 2MgO · 3B 2 O 3 · nH
2 O (n is a positive integer), MgO · 4B 2 O 3 · 3H
2 O, compounds represented by the chemical formula 2 O such as MgO · 6B 2 O 3 · 18H . These metal borate salts are 1
Species or a combination of two or more can be used.

【0048】上記ホウ酸金属塩のなかでも、特に2Zn
O・3B2 3 ・3.5H2 O、3ZnO・2B2 3
・5H2 O等の化学式で示されるホウ酸亜鉛が好まし
い。
Among the above-mentioned metal borates, particularly, 2Zn
O · 3B 2 O 3 · 3.5H 2 O, 3ZnO · 2B 2 O 3
· 5H 2 zinc borate represented by the chemical formula O are preferred.

【0049】ホウ酸金属塩は、粒径が0.1〜100μ
m、特に0.5〜50μmのものが好ましい。粒径が
0.1μm未満のホウ酸金属塩を添加すると、得られる
発泡粒子の気泡が微細化し、成型性に劣る発泡粒子とな
り易い。また粒径が100μmを超えるホウ酸金属塩を
添加すると、得られる発泡粒子の気泡が粗大化し易い。
The metal borate has a particle size of 0.1 to 100 μm.
m, particularly preferably 0.5 to 50 μm. When a metal borate having a particle size of less than 0.1 μm is added, the foam of the obtained foamed particles becomes finer, and easily becomes foamed particles having poor moldability. When a metal borate having a particle size of more than 100 μm is added, the foam of the obtained expanded particles tends to be coarse.

【0050】ホウ酸金属塩は、発泡粒子中に0.005
〜1重量%含有されていることが好ましく、特に0.0
05〜0.5重量%含有されていることが好ましい。ホ
ウ酸金属塩の含有量が0.005重量%未満の場合、発
泡粒子の密度のバラツキが大きくなり、真密度の分布に
おける標準偏差:Sdが0.05g/cm3 以下である
発泡粒子が得難くなる。またホウ酸金属塩の含有量が1
重量%を超えると、得られた発泡粒子が収縮し易く、ま
た連続気泡構造の発泡粒子となって成型性に劣るものと
なり易い。本発明において、成型用ポリオレフィン系樹
脂発泡粒子としては、真密度の分布における標準偏差:
Sdが0.03g/cm3 以下であるものが特に好まし
い。
The metal borate is added in an amount of 0.005% in the expanded particles.
To 1% by weight, particularly 0.0% by weight.
It is preferably contained in the range of 0.5 to 0.5% by weight. When the content of the metal borate is less than 0.005% by weight, the variation in the density of the expanded particles becomes large, and the expanded particles having a standard deviation: Sd of 0.05 g / cm 3 or less in the distribution of the true density are obtained. It becomes difficult. When the content of the metal borate is 1
When the content is more than 10% by weight, the obtained expanded particles are likely to shrink, and the expanded particles are likely to be inferior in moldability as expanded particles having an open-cell structure. In the present invention, as the expanded polyolefin resin particles for molding, the standard deviation in the distribution of true density is as follows:
Those having an Sd of 0.03 g / cm 3 or less are particularly preferred.

【0051】樹脂粒子中に上記ホウ酸金属塩を添加する
ためには、前記したマスターバッチ法を採用することが
好ましい。また樹脂粒子中には、上記ホウ酸金属塩の他
に、場合によっては同様の目的で粒径等を調整したタル
ク等の無機物又は有機物を添加することもできる。
In order to add the above-mentioned metal borate to the resin particles, it is preferable to employ the above-mentioned master batch method. Further, in addition to the above-mentioned metal borate, an inorganic or organic substance such as talc whose particle size is adjusted for the same purpose may be added to the resin particles in some cases.

【0052】成型に用いる発泡粒子が無架橋ポリオレフ
ィン系樹脂発泡粒子である場合、発泡粒子の二次発泡性
や、得られた成型体の収縮は該発泡粒子の示差走査熱量
測定において得られるDSC曲線に現れる高温ピークの
熱量に大きく依存する。このような観点から、成型に用
いる発泡粒子としては、上記高温ピークの熱量が10〜
25J/gのものが好ましい。高温ピーク熱量が上記値
よりも小さい場合は、二次発泡性が大きくなりすぎ空隙
が埋まってしまったり、成型体が収縮する等の問題が発
生する虞がある。
When the foamed particles used for molding are non-crosslinked polyolefin-based resin foamed particles, the secondary expansion property of the foamed particles and the shrinkage of the obtained molded body are measured by a DSC curve obtained by differential scanning calorimetry of the foamed particles. Greatly depends on the calorific value of the high-temperature peak appearing in. From such a viewpoint, as the expanded particles used for molding, the calorific value of the high-temperature peak is 10 to 10.
The thing of 25 J / g is preferred. When the high-temperature peak calorific value is smaller than the above value, there is a possibility that the secondary foaming property becomes too large, the voids are filled, and problems such as shrinkage of the molded body occur.

【0053】一方、高温ピーク熱量が上記値よりも大き
い場合は、発泡粒子相互の融着が不良な成型体となり易
く、発泡粒子相互の融着性を高めるために加熱温度を高
くしたり、発泡粒子を加圧タンク内に入れ該粒子内圧を
高くしたものを使用する等の必要が生じる。
On the other hand, when the high-temperature peak calorific value is larger than the above value, a molded article in which the fusion of the foamed particles to each other tends to be inferior is likely to occur. It becomes necessary to put the particles in a pressurized tank and use a material having an increased internal pressure.

【0054】尚、発泡粒子の高温ピーク熱量は、発泡粒
子1〜8mgを示差走査熱量計によって10℃/mi
n.の昇温速度で220℃まで昇温して得たDSC曲線
(図2)における高温ピークbの面積に相当し、次のよ
うにして求めることができる。まず図2に示すようにD
SC曲線上80℃の点I と、DSC曲線上の該樹脂の融
解終了温度を示す点IIとを結ぶ直線を引く。次に固有ピ
ークaと高温ピークbとの間の谷部にあたるDSC曲線
上の点III を通りグラフ横軸の温度に対して垂直な直線
を、点I と点IIとを結んだ直線へ引き、その交点を点IV
とする。このようにして求めた点IVと点IIとを結ぶ直
線、点III と点IVを結ぶ直線及び点III と点IIを結ぶD
SC曲線によって囲まれる部分(斜線部分)の面積が高
温ピーク熱量に相当する。
The high-temperature peak calorie of the foamed particles was determined by measuring 1 to 8 mg of the foamed particles at 10 ° C./mi using a differential scanning calorimeter.
n. It corresponds to the area of the high-temperature peak b in the DSC curve (FIG. 2) obtained by raising the temperature to 220 ° C. at the temperature raising rate, and can be obtained as follows. First, as shown in FIG.
A straight line is drawn connecting point I on the SC curve at 80 ° C. and point II on the DSC curve indicating the melting end temperature of the resin. Next, a straight line passing through the point III on the DSC curve corresponding to a valley between the specific peak a and the high temperature peak b and perpendicular to the temperature on the horizontal axis of the graph is drawn to a straight line connecting the points I and II, Point IV at the intersection
And The straight line connecting the points IV and II, the straight line connecting the points III and IV, and the D connecting the points III and II
The area of the portion (hatched portion) surrounded by the SC curve corresponds to the high-temperature peak calorific value.

【0055】上記したように、本発明の連通した空隙を
有するポリオレフィン系樹脂発泡成型体は、機械的強度
に優れるとともに、透水性、通気性、吸音性等の物性に
優れ、且つこれらの物性のバラツキが少ないという優れ
た性質を有し、このような利点を生かして、ダッシュボ
ード、フロアー、ルーフ、フード、ピラー、ドアパネル
等の車両用部材、路盤材、暗渠等の排水資材、建築資
材、各種吸音材等として利用することができる。
As described above, the polyolefin resin foam molded article having interconnected voids according to the present invention has excellent mechanical strength, excellent physical properties such as water permeability, air permeability, sound absorption, and the like. It has an excellent property that there is little variation, and taking advantage of such advantages, it is possible to use such materials as dashboards, floors, roofs, hoods, pillars, door panels and other vehicle components, roadbed materials, drainage materials such as culverts, construction materials, It can be used as a sound absorbing material.

【0056】[0056]

【実施例】以下、実施例を挙げて本発明を更に詳細に説
明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples.

【0057】実施例1〜4 酸化防止剤としてIRGANOX1010を0.1重量
%、光安定剤としてTINUVIN770を0.135
重量%とTINUVIN622を0.065重量%、ス
テアリン酸カルシウム0.05重量%、エルカ酸アミド
0.05重量%を含有するエチレン−プロピレンランダ
ムコポリマー(エチレン成分含有量2.4重量%、融点
146℃、MFR=10g/10分)に、押出機内で表
1に示す量のホウ酸亜鉛、0.26重量%のカーボンブ
ラックとを添加し、溶融混練した後、溶融混練物を図1
の(ア)に示す目的とする発泡粒子の穴の方向に垂直な
断面形状と相似形のダイスより押出して急冷した後、切
断して樹脂粒子を得た。尚、ホウ酸亜鉛及びカーボンブ
ラックはマスターバッチ法によって添加した。得られた
樹脂粒子の平均重量を表1にあわせて示す。
Examples 1 to 4 0.1% by weight of IRGANOX 1010 as an antioxidant and 0.135 of TINUVIN 770 as a light stabilizer
% Ethylene and propylene random copolymer containing 0.065% by weight of TINUVIN 622, 0.05% by weight of calcium stearate and 0.05% by weight of erucamide (ethylene content 2.4% by weight, melting point 146 ° C., (MFR = 10 g / 10 min), zinc borate in the amount shown in Table 1 and 0.26% by weight of carbon black were added in an extruder, and the mixture was melt-kneaded.
The resin particles were extruded from a die having a similar shape to the cross section perpendicular to the direction of the holes of the target foamed particles shown in (a), rapidly cooled, and then cut to obtain resin particles. Incidentally, zinc borate and carbon black were added by a master batch method. The average weight of the obtained resin particles is also shown in Table 1.

【0058】次いで上記樹脂粒子50kg、分散剤とし
てカオリン500g、界面活性剤としてドデシルベンゼ
ンスルホン酸ナトリウム6g、水220リットルを、内
容積400リットルの密閉容器内に配合し、更に発泡剤
としての空気を表1に示す圧力で容器内に圧入した後、
内容物を攪拌しながら樹脂粒子の融解終了温度以上の温
度に昇温することなく、表1に示す発泡温度まで昇温
し、同温度で15分間保持した後、容器内に平衡蒸気圧
と等しい圧力の背圧をかけて同圧力を保持しながら、容
器の一端を開放して容器内の樹脂粒子と水とを大気圧下
に放出し、樹脂粒子を発泡させた。得られた発泡粒子の
性状を表1にあわせて示す。
Then, 50 kg of the above resin particles, 500 g of kaolin as a dispersant, 6 g of sodium dodecylbenzenesulfonate as a surfactant, and 220 liters of water are mixed in a closed container having an internal volume of 400 liters. After pressing into the container with the pressure shown in Table 1,
While stirring the contents, the temperature was raised to the foaming temperature shown in Table 1 without raising the temperature to the melting end temperature or higher of the resin particles, and after maintaining at the same temperature for 15 minutes, it was equal to the equilibrium vapor pressure in the container. While maintaining the same pressure by applying a back pressure, one end of the container was opened to release the resin particles and water in the container under atmospheric pressure, thereby foaming the resin particles. Table 1 shows the properties of the obtained expanded particles.

【0059】[0059]

【表1】 [Table 1]

【0060】このようにして得た発泡粒子を、縦200
mm×横250mm×厚さ50mmの平板金型内に充填
し、表2に示す圧力の水蒸気で加熱して成型した。得ら
れた発泡成型体を60℃で24時間養生した後、成型体
の性状を測定した結果を表2にあわせて示す。
The expanded particles obtained in this manner were placed in a vertical
It was filled in a flat metal mold having a size of 250 mm × 250 mm × 50 mm in thickness, and was molded by heating with steam having a pressure shown in Table 2. After curing the obtained foamed molded body at 60 ° C. for 24 hours, the properties of the molded body were measured, and the results are shown in Table 2.

【0061】[0061]

【表2】 [Table 2]

【0062】※1 発泡粒子の空間率は、上記(2)式
に基づいて求めた。 ※2 発泡粒子の真密度の標準偏差:Sdは、発泡粒子
群から任意に取り出した嵩体積約1000cm3 の発泡
粒子をJIS Z8801(1994)の付表2に規定
される篩によりふるい分けし、各篩上の発泡粒子群の真
密度(g/cm 3)をそれぞれ測定する。一方、各篩上
の発泡粒子数を数え、各篩上の発泡粒子群の真密度と、
各篩上の発泡粒子の数から、発泡粒子の真密度の標準偏
差:Sdを求めた。尚、上記発泡粒子の嵩体積とは、空
のメスシリンダーに発泡粒子を入れ、メスシリンダーの
目盛りが示す発泡粒子群の体積である。 ※3 発泡粒子重量の標準偏差:Swは、発泡粒子群か
ら任意に取り出した10000個の発泡粒子の各々の重
量(mg)を測定し、それらの値より算出した。 ※4 発泡成型体の空隙率:A(%)は、前記(1)式
により求めた。 ※5 空隙率のバラツキは、発泡成型体の任意の10か
所から、10mm×10mm×50mmのサンプルを切
り出して空隙率(%)を求め、これらの値の最大値と、
最小値の差で示した。
* 1 The porosity of the expanded particles was determined based on the above equation (2). * 2 The standard deviation of the true density of the expanded particles: Sd means that the expanded particles having a bulk volume of about 1000 cm 3 arbitrarily extracted from the expanded particle group are sieved with a sieve specified in Appendix 2 of JIS Z8801 (1994). The true density (g / cm 3 ) of each of the above foamed particle groups is measured. On the other hand, counting the number of expanded particles on each sieve, the true density of the expanded particle group on each sieve,
The standard deviation Sd of the true density of the foamed particles was determined from the number of foamed particles on each sieve. In addition, the bulk volume of the expanded particles is the volume of the expanded particle group indicated by the scale of the graduated cylinder in which the expanded particles are placed in an empty measuring cylinder. * 3 The standard deviation of the weight of the expanded particles: Sw was calculated from the weight (mg) of each of 10000 expanded particles arbitrarily taken out of the expanded particle group and measured. * 4 The porosity of the foamed molded product: A (%) was determined by the above formula (1). * 5 Variations in porosity are obtained by cutting out a sample of 10 mm × 10 mm × 50 mm from arbitrary 10 places of the foamed molded body and calculating the porosity (%).
The difference between the minimum values is shown.

【0063】比較例1〜3 ホウ酸亜鉛の代わりに、表1に示す量の水酸化アルミニ
ウムを含有する樹脂粒子(比較例3は含有せず。樹脂粒
子の平均重量及び、樹脂粒子中の水酸化アルミニウムの
含有量を表1にあわせて示した。)を用いた他は、実施
例1〜4に準拠して発泡粒子を得、この発泡粒子を同様
にして成型した。得られた発泡粒子、発泡成型体等の性
状を表1、表2にあわせて示す。尚、比較例3で得られ
た発泡成型体は発泡粒子相互の融着性が悪く、その結
果、機械的強度が不充分なものであった。
Comparative Examples 1 to 3 Resin particles containing aluminum hydroxide in the amounts shown in Table 1 in place of zinc borate (Comparative Example 3 was not included. The average weight of the resin particles and the water content in the resin particles) Except for using the aluminum oxide content in Table 1, the foamed particles were obtained in accordance with Examples 1 to 4, and the foamed particles were molded in the same manner. Tables 1 and 2 show the properties of the obtained expanded particles, expanded molded articles, and the like. In addition, the foam molded article obtained in Comparative Example 3 was poor in the fusion property between the foamed particles, and as a result, the mechanical strength was insufficient.

【0064】[0064]

【発明の効果】以上説明したように本発明の発泡粒子
は、特定の無機物を含有させて得たものであることによ
り、得られた発泡粒子群内の個々の発泡粒子相互の真密
度のバラツキが小さく、真密度の均一な発泡粒子群とな
る。また発泡粒子製造用樹脂粒子の重量の調整によって
容易に発泡粒子重量のバラツキも小さいものとすること
ができ、発泡粒子群内における発泡粒子重量のバラツキ
も小さくすることができる。このため本発明の発泡粒子
は、特定範囲の密度、重量等の発泡粒子を分級する等の
煩雑な作業を行うことなく、そのまま成型に用いても、
透水性、吸音性、断熱性、機械的強度等の性能の、成型
体の部分部分におけるバラツキのない優れた性状の、連
通した空隙を有する発泡成型体を得ることができ、高発
泡の成型体を得る場合であっても、成型体の空隙率にバ
ラツキが生じる虞れがなく、透水性、断熱性、吸音性等
の物性の優れた、連通した空隙を有する発泡成型体を得
ることができ、低発泡の成型体を得る場合であっても発
泡粒子相互の融着性に優れ、機械的強度、更には透水
性、吸音性、断熱性等の物性に優れた連通した空隙を有
する発泡成型体を得ることができる。
As described above, since the expanded particles of the present invention contain a specific inorganic substance, the true density of each expanded particle in the obtained expanded particle group varies. Are small and a uniform density of foamed particles is obtained. Further, by adjusting the weight of the resin particles for producing expanded particles, the variation in the weight of the expanded particles can be easily reduced, and the variation in the weight of the expanded particles in the expanded particle group can also be reduced. For this reason, the foamed particles of the present invention, without performing a complicated operation such as classifying the foamed particles of a specific range of density, weight, etc., even when used for molding as it is,
It is possible to obtain a foamed molded article having an interconnected void having excellent properties such as water permeability, sound absorbing properties, heat insulating properties, and mechanical strength, and having no variation in a portion of the molded article, and a highly foamed molded article. Even in the case of obtaining, there is no possibility that the porosity of the molded body will vary, and it is possible to obtain a foamed molded article having excellent physical properties such as water permeability, heat insulation, and sound absorption, and having interconnected voids. Even when a low-foamed molded product is obtained, foam molding having excellent fusibility of foamed particles, excellent mechanical strength, and excellent communication properties such as water permeability, sound absorption, heat insulation, etc. You can get the body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】筒形形状の発泡粒子の種々の形状の具体例を示
す斜視図である。
FIG. 1 is a perspective view showing specific examples of various shapes of tubular foamed particles.

【図2】発泡粒子のDSC曲線の一例を示すグラフであ
る。
FIG. 2 is a graph showing an example of a DSC curve of expanded particles.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年7月17日[Submission date] July 17, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】本発明の製造方法により得られる発泡成型
体は、好ましくは連通した空隙の空隙率が10%以上で
あり、且つ密度が0.06g/cm以上のものであ
る。空隙率が10%未満の場合、排水性、吸音性等に劣
るものとなる虞れがある。一方、空隙率が高すぎると、
成型体の強度が低下する虞れがあるため、空隙率は10
〜45%であることが好ましい。また密度が0.06g
/cm未満の場合、発泡粒子相互の融着性は良好であ
るが、発泡粒子自体の密度が小さいため、その発泡粒子
群より得られる成型体の圧縮強度が不充分となる虞れが
ある。逆に成型体の密度が極度に高過ぎると、充分な空
隙率を確保することが困難となる虞れがあるため、密度
は0.06〜0.60g/cmであることが好まし
い。
The foam molded article obtained by the production method of the present invention preferably has a porosity of communicating voids of 10% or more and a density of 0.06 g / cm 3 or more. When the porosity is less than 10%, there is a possibility that the drainage property, the sound absorbing property, and the like are inferior. On the other hand, if the porosity is too high,
Since the strength of the molded body may be reduced, the porosity is 10
It is preferably about 45%. The density is 0.06g
If it is less than / cm 3, the fusion property between the foamed particles is good, but the density of the foamed particles themselves is small, so that the compression strength of a molded product obtained from the foamed particle group may be insufficient. . Conversely, if the density of the molded body is too high, it may be difficult to ensure a sufficient porosity, and therefore the density is preferably 0.06 to 0.60 g / cm 3 .

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】[0023]

【数2】 空間率(%)=〔(真密度−嵩密度)÷真密度〕×100 ・・・(2)[Equation 2] Space ratio (%) = [(true density−bulk density) ÷ true density] × 100 (2)

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】[0023]

【数2】 空間率(%)=〔(真密度−嵩密度)÷真密度〕×100 ・・・(2)[Equation 2] Space ratio (%) = [(true density−bulk density) ÷ true density] × 100 (2)

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図2】 FIG. 2

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08L 23/08 C08L 23/08 B29K 23:00 105:04 C08L 23:08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C08L 23/08 C08L 23/08 B29K 23:00 105: 04 C08L 23:08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ホウ酸金属塩(但し、アルカリ金属塩は
除く。)を0.005〜1重量%含有することを特徴と
する貫通穴を有する筒状のポリオレフィン系樹脂発泡粒
子。
1. Cylindrical expanded polyolefin resin particles having through holes, characterized by containing 0.005 to 1% by weight of a metal borate (excluding an alkali metal salt).
【請求項2】 発泡粒子の真密度が0.03〜0.75
g/cm3 であることを特徴とする請求項1記載の貫通
穴を有する筒状のポリオレフィン系樹脂発泡粒子。
2. The true density of the expanded particles is 0.03 to 0.75.
2. The expanded polyolefin resin particles having a through hole according to claim 1, wherein the g / cm 3 is g / cm 3 .
【請求項3】 発泡粒子重量の標準偏差:Swが0.2
mg以下であり、且つ発泡粒子の真密度の標準偏差:S
dが0.05g/cm3 以下の貫通穴を有する筒状のポ
リオレフィン系樹脂発泡粒子群を金型内に充填し、加熱
することにより該粒子群を相互に融着せしめることを特
徴とする連通した空隙を有するポリオレフィン系樹脂発
泡成型体の製造方法。
3. The standard deviation of the weight of the expanded particles: Sw is 0.2.
mg or less and the standard deviation of the true density of the expanded particles: S
Communication is characterized in that a group of expanded polyolefin-based resin particles having a through hole with d of 0.05 g / cm 3 or less are filled in a mold, and the particles are fused to each other by heating. For producing a polyolefin-based resin foam molded article having voids formed therein.
【請求項4】 発泡成型体の密度が0.06g/cm3
以上であることを特徴とする請求項3記載の連通した空
隙を有するポリオレフィン系樹脂発泡成型体の製造方
法。
4. A foam molded article having a density of 0.06 g / cm 3
The method for producing a foamed polyolefin-based resin article having communicating voids according to claim 3, characterized in that:
JP16772198A 1998-06-01 1998-06-01 Cylindrical polyolefin resin foam particles having through holes and a method for producing a polyolefin resin foam molded body having continuous voids Expired - Fee Related JP4023911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16772198A JP4023911B2 (en) 1998-06-01 1998-06-01 Cylindrical polyolefin resin foam particles having through holes and a method for producing a polyolefin resin foam molded body having continuous voids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16772198A JP4023911B2 (en) 1998-06-01 1998-06-01 Cylindrical polyolefin resin foam particles having through holes and a method for producing a polyolefin resin foam molded body having continuous voids

Publications (2)

Publication Number Publication Date
JPH11343361A true JPH11343361A (en) 1999-12-14
JP4023911B2 JP4023911B2 (en) 2007-12-19

Family

ID=15854957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16772198A Expired - Fee Related JP4023911B2 (en) 1998-06-01 1998-06-01 Cylindrical polyolefin resin foam particles having through holes and a method for producing a polyolefin resin foam molded body having continuous voids

Country Status (1)

Country Link
JP (1) JP4023911B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155161A (en) * 2000-11-21 2002-05-28 Hitachi Chem Co Ltd Foamable resin particle, production method thereof, and molded foam
JP2002248645A (en) * 2000-12-21 2002-09-03 Jsp Corp Method for manufacturing thermoplastic resin foamed small piece molded object
JP2014040507A (en) * 2012-08-21 2014-03-06 Jsp Corp Polyolefinic resin foam particles and molded artifact of the same
WO2018088551A1 (en) * 2016-11-14 2018-05-17 株式会社ジェイエスピー Foam particle moulded article, sole cushion, and method for producing foam particles
JP2018080227A (en) * 2016-11-14 2018-05-24 株式会社ジェイエスピー Manufacturing method of foamed particles
JP2018080226A (en) * 2016-11-14 2018-05-24 株式会社ジェイエスピー Foam particle molding and cushion for shoe soles
JP2018131620A (en) * 2017-02-13 2018-08-23 旭化成株式会社 Resin foamed particle and resin foam molded body
JP2018131276A (en) * 2017-02-13 2018-08-23 三井化学東セロ株式会社 Winding drum for electric wire
CN114957772A (en) * 2021-02-19 2022-08-30 株式会社Jsp Expanded beads and method for producing same
WO2023084881A1 (en) * 2021-11-11 2023-05-19 株式会社ジェイエスピー Method for manufacturing polypropylene-based resin foamed particle molded article

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155161A (en) * 2000-11-21 2002-05-28 Hitachi Chem Co Ltd Foamable resin particle, production method thereof, and molded foam
JP2002248645A (en) * 2000-12-21 2002-09-03 Jsp Corp Method for manufacturing thermoplastic resin foamed small piece molded object
JP2014040507A (en) * 2012-08-21 2014-03-06 Jsp Corp Polyolefinic resin foam particles and molded artifact of the same
EP3540005A4 (en) * 2016-11-14 2020-07-01 JSP Corporation Foam particle moulded article, sole cushion, and method for producing foam particles
JP2018080227A (en) * 2016-11-14 2018-05-24 株式会社ジェイエスピー Manufacturing method of foamed particles
JP2018080226A (en) * 2016-11-14 2018-05-24 株式会社ジェイエスピー Foam particle molding and cushion for shoe soles
KR20190078583A (en) * 2016-11-14 2019-07-04 가부시키가이샤 제이에스피 A foamed molded article, a cushion for a shoe window and a method for producing expanded particles
WO2018088551A1 (en) * 2016-11-14 2018-05-17 株式会社ジェイエスピー Foam particle moulded article, sole cushion, and method for producing foam particles
US11795286B2 (en) 2016-11-14 2023-10-24 Jsp Corporation Foam particle moulded article, sole cushion, and method for producing foam particles
JP2018131620A (en) * 2017-02-13 2018-08-23 旭化成株式会社 Resin foamed particle and resin foam molded body
JP2018131276A (en) * 2017-02-13 2018-08-23 三井化学東セロ株式会社 Winding drum for electric wire
CN114957772A (en) * 2021-02-19 2022-08-30 株式会社Jsp Expanded beads and method for producing same
CN114957772B (en) * 2021-02-19 2024-01-09 株式会社Jsp Expanded beads and method for producing same
WO2023084881A1 (en) * 2021-11-11 2023-05-19 株式会社ジェイエスピー Method for manufacturing polypropylene-based resin foamed particle molded article

Also Published As

Publication number Publication date
JP4023911B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
JP5107692B2 (en) Polypropylene-based resin foamed particles and molded article of the foamed particles
JP5498162B2 (en) Polypropylene resin foamed particles and molded articles thereof
JP6757668B2 (en) Polypropylene resin foam particles, polypropylene resin in-mold foam molded article and its manufacturing method
JP6519813B2 (en) Expanded particles and their compacts
JP6767980B2 (en) Polypropylene resin foamed particles, polypropylene resin foamed particles manufacturing method, polypropylene resin foamed molded product manufacturing method, polypropylene resin foamed molded product
JP3441165B2 (en) Flame retardant polyolefin resin foam particles
TWI691534B (en) Thermoplastic resin foaming particle
JP5314411B2 (en) Method for producing polypropylene resin expanded particle molded body, and molded body
KR20160107163A (en) Propylene-based resin foam particle and foam particle molded body
JP2004068016A (en) Method for manufacturing foamed polypropylene resin particle, and formed polypropylene resin particle
JPWO2002100929A1 (en) Method for producing expanded polypropylene resin particles
WO2013137411A1 (en) Polypropylene resin foam particles, in-mold foam molded body comprising polypropylene resin foam particles, and method for producing same
JP4023911B2 (en) Cylindrical polyolefin resin foam particles having through holes and a method for producing a polyolefin resin foam molded body having continuous voids
JPH07137063A (en) Molded body of foamed polymer chips having gap
JPH08108441A (en) Polyolefinic resin foamed molding having communicating gap and production thereof
JPWO2007004524A1 (en) Foam board for heat insulating building material and method for manufacturing the same
WO2016098698A1 (en) Polypropylene resin foamed particles
JP5253119B2 (en) Method for producing thermoplastic resin expanded particles
JPWO2018084245A1 (en) Foamed particles and foamed particle molded body
WO2018052125A1 (en) Expanded beads and molded object thereof
EP0646622B1 (en) Plastic foam material composed of thermoplastic resin and silane-modified thermoplastic resin and method for making same
JP5358106B2 (en) Polypropylene resin pre-expanded particles
JP2018070735A (en) Foamed particle and method for producing foamed particle molding
JP5670816B2 (en) Method for producing polyolefin resin expanded particles
JP2022167218A (en) Multilayer foamed particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees