JPH11343197A - Seed diamond ponder excellent in adhesion to artificial diamond film forming face - Google Patents

Seed diamond ponder excellent in adhesion to artificial diamond film forming face

Info

Publication number
JPH11343197A
JPH11343197A JP10282227A JP28222798A JPH11343197A JP H11343197 A JPH11343197 A JP H11343197A JP 10282227 A JP10282227 A JP 10282227A JP 28222798 A JP28222798 A JP 28222798A JP H11343197 A JPH11343197 A JP H11343197A
Authority
JP
Japan
Prior art keywords
group
thickness
substrate
diamond
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10282227A
Other languages
Japanese (ja)
Other versions
JP3460594B2 (en
Inventor
Yoshinori Adachi
美紀 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP28222798A priority Critical patent/JP3460594B2/en
Publication of JPH11343197A publication Critical patent/JPH11343197A/en
Application granted granted Critical
Publication of JP3460594B2 publication Critical patent/JP3460594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a seed diamond powder excellent in adhesion to an artificial diamond film forming face. SOLUTION: Polar groups comprising one or more among a hydroxyl group (OH), a carbonyl group (C=O), an aldehyde group (CHO) and a carboxyl group (COOH) and apolar groups comprising one or more among an alkyl group (Cn H2n+1 ), a phenyl group (C6 H5 ), a vinyl group (CH=CH2 ), an acetyl group (CH3 CO), an alkoxyl group (OCn H2n+1 ) and a methacrylic group (CH2 =CCH3 ) are bonded to the surface of a seed diamond powder and distributed in a coexistent state to obtain the objective seed diamond powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、人工ダイヤモン
ド膜形成面に対する付着性にすぐれ、これによって高密
度付着が可能となることから、人工ダイヤモンド膜の成
膜速度が著しく向上するようになる種ダイヤモンド粉末
(以下、種ダイヤ粉と云う)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seed diamond which has excellent adhesion to an artificial diamond film forming surface and enables high-density adhesion. It relates to powder (hereinafter referred to as seed diamond powder).

【0002】[0002]

【従来の技術】従来、例えば厚さ:380μm程度のS
i枠体の上面にメンブレン膜として人工ダイヤモンド膜
を1〜3μmの厚さに気相合成法にて蒸着してなるX線
リソグラフィ用マスクが知られており、これが半導体装
置の集積回路の形成に用いられることも良く知られると
ころである。また、上記マスクの製造においては、Si
ウエハー(これが人工ダイヤモンド膜形成後のエッチン
グ処理によって上記Si枠体となる)の上面への人工ダ
イヤモンド膜形成に先だって、例えば2000nm以下
の粒径を有する種ダイヤ粉をメチルアルコール溶液中に
0.6g/lの割合で分散させてなる分散液中に前記S
iウエハーを浸漬して、その表面に前記種ダイヤ粉を付
着させる前処理が行われている。さらに、上記種ダイヤ
粉が、原料粉末として、例えば2000nm以下の粒径
をもった人工合成ダイヤモンド粉末を用い、例えば特開
平9−2511号公報に記載されるように、これの表面
不純物を除去する目的で硫酸や硝酸、さらに硝酸カリウ
ムやクロム酸などで洗浄処理することにより調整され、
かつこの結果の種ダイヤ粉の表面には、水酸基(OH)
やカルボニル基(C=O)などで構成された極性基が結
合分布することも知られている。
2. Description of the Related Art Conventionally, for example, S having a thickness of about 380 μm
An X-ray lithography mask formed by vapor-depositing an artificial diamond film as a membrane film to a thickness of 1 to 3 μm as a membrane film on the upper surface of an i-frame is known, and is used for forming an integrated circuit of a semiconductor device. It is well known that it is used. In the manufacture of the mask, Si
Prior to the formation of the artificial diamond film on the upper surface of the wafer (which becomes the above-described Si frame by the etching process after the formation of the artificial diamond film), for example, 0.6 g of seed diamond powder having a particle size of 2000 nm or less in a methyl alcohol solution. / L in a dispersion obtained by dispersing
A pretreatment is performed in which the i-wafer is immersed and the seed diamond powder is attached to the surface thereof. Further, the seed diamond powder uses, as a raw material powder, an artificial synthetic diamond powder having a particle size of, for example, 2000 nm or less, and removes surface impurities from the synthetic diamond powder, for example, as described in JP-A-9-2511. It is adjusted by washing with sulfuric acid or nitric acid, potassium nitrate or chromic acid for the purpose,
In addition, the surface of the resulting seed diamond powder has hydroxyl (OH)
It is also known that a polar group composed of a carbonyl group or a carbonyl group (C = O) distributes bonds.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の半導体装
置の大容量化に伴い、これの集積回路の形成に用いられ
る上記マスクも大型化し、したがって人工ダイヤモンド
膜の蒸着面積も大面積化することになるが、上記の従来
種ダイヤ粉の場合、人工ダイヤモンド膜形成面に対する
付着強度が十分でないために、人工ダイヤモンド膜形成
面の大面積化に比例して付着密度は著しく低下し、この
ため人工ダイヤモンド膜の形成にはそれだけ長持間を要
するようになり、これは形成後の人工ダイヤモンド膜の
平坦度や膜自体の特性に悪影響を及ぼすことから、望ま
しいことではない。
On the other hand, with the recent increase in the capacity of semiconductor devices, the size of the mask used for forming the integrated circuit has been increased, and accordingly, the deposition area of the artificial diamond film has also been increased. However, in the case of the above-mentioned conventional diamond powder, the adhesion density on the surface on which the artificial diamond film is formed is insufficient, and the adhesion density is significantly reduced in proportion to the increase in the area of the surface on which the artificial diamond film is formed. The formation of the diamond film requires a longer time, which is not desirable because it adversely affects the flatness of the artificial diamond film after formation and the characteristics of the film itself.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、人工ダイヤモンド膜形成面に対
する付着性のすぐれた種ダイヤ粉を開発すべく研究を行
った結果、ダイヤモンド粉末の表面に、過酸化水素/ア
ンモニア水溶液や硫酸/過酸化水素水溶液、さらにアセ
トアルデヒド水溶液や酢酸水溶液などの処理液中で所定
時間撹拌処理して、水酸基(OH)やカルボニル基(C
=O)、さらにアルデヒド基(CHO)やカルボキシル
基(COOH)などで構成された極性基を表面結合さ
せ、さらにポリオキシエチレンアルキルエーテル含有溶
液やトリフェニルシラノール含有溶液、さらにトリメト
キシビニルシラン含有溶液やトリエトキシメタクリルシ
ラン含有溶液などの処理液中で所定時間撹拌処理して、
アルキル基(Cn2n+1 )、フェニル基(C65 )、
ビニル基(CH=CH2 )、アセチル基(CH3
O)、アルコキシル基(OCn2n+1 )、およびメタク
リル基(CH2 =CCH3)のうちの1種または2種以
上で構成された非極性基を表面結合させると、この結果
の極性基と非極性基とが表面結合して共存分布する種ダ
イヤ粉は、前記極性基と非極性基の共存作用で人工ダイ
ヤモンド膜形成面に対する付着性のすぐれたものとな
り、高密度で付着して、ダイヤ核として作用することか
ら、人工ダイヤモンド膜の成膜速度はきわめて速いもの
となり、これによって表面平坦度および特性のすぐれた
人工ダイヤモンド膜の形成が可能となるという研究結果
が得られたのである。
Means for Solving the Problems Accordingly, the present inventors have
From the above viewpoints, we conducted research to develop seed diamond powder with excellent adhesion to the surface on which the artificial diamond film was formed. As a result, a hydrogen peroxide / ammonia aqueous solution or sulfuric acid / hydrogen peroxide aqueous solution was applied to the surface of the diamond powder. And a stirring treatment in a treatment solution such as an aqueous solution of acetaldehyde or acetic acid for a predetermined time to form a hydroxyl group (OH) or a carbonyl group (C
= O), and a polar group composed of an aldehyde group (CHO) or a carboxyl group (COOH) is bonded to the surface, and a solution containing polyoxyethylene alkyl ether, a solution containing triphenylsilanol, a solution containing trimethoxyvinylsilane, Stir for a predetermined time in a processing solution such as a solution containing triethoxymethacrylsilane,
An alkyl group (C n H 2n + 1 ), a phenyl group (C 6 H 5 ),
Vinyl group (CH = CH 2 ), acetyl group (CH 3 C
O), an alkoxyl group (OC n H 2n + 1 ), and a non-polar group composed of one or more of a methacryl group (CH 2 CCCH 3 ) are surface-bonded. The seed diamond powder in which the group and the non-polar group are surface-bonded and co-distributed is excellent in adhesiveness to the artificial diamond film forming surface due to the coexistence of the polar group and the non-polar group, and adheres at a high density. Since the diamond nuclei acted as diamond nuclei, the deposition rate of the artificial diamond film was extremely high, and the research results showed that it was possible to form an artificial diamond film with excellent surface flatness and characteristics. .

【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、ダイヤモンド粉末の表面に、水
酸基(OH)、カルボニル基(C=O)、アルデヒド基
(CHO)、およびカルボキシル基(COOH)のうち
の1種または2種以上で構成された極性基と、アルキル
基(Cn2n+1 )、フェニル基(C65 )、ビニル基
(CH=CH2 )、アセチル基(CH3 CO)、アルコ
キシル基(OCn2n+ 1 )、およびメタクリル基(CH
2 =CCH3 )のうちの1種または2種以上で構成され
た非極性基とが表面結合して共存分布する、人工ダイヤ
モンド膜形成面に対する付着性のすぐれた種ダイヤ粉に
特徴を有するものである、
The present invention has been made based on the results of the above-mentioned research, and includes a method for forming a hydroxyl group (OH), a carbonyl group (C ア ル デ ヒ ド O), an aldehyde group (CHO), and a carboxyl group ( and one or a polar group which is composed of two or more of COOH), alkyl group (C n H 2n + 1) , a phenyl group (C 6 H 5), a vinyl group (CH = CH 2), acetyl (CH 3 CO), an alkoxyl group (OC n H 2n + 1 ), and a methacryl group (CH
2 = CCH 3 ), which is characterized in that it is a seed diamond powder having excellent adhesion to the surface on which an artificial diamond film is formed, wherein the non-polar group composed of one or two or more of the above is coexisting and distributed. Is,

【0006】また、この発明の種ダイヤ粉は、市販の2
000nm以下、望ましくは5〜200nmの平均粒径
を有するクラスターダイヤモンド粉末を用い、これを望
ましくは、例えば温度:250℃の硫酸10%−硝酸1
0%含有水溶液(容量%)中に2時間保持後、水洗の条
件で処理して、粉末表面の不純物を除去した状態で、表
1に例示されるように、まず極性基表面結合処理液中で
所定時間撹拌処理して、表面に水酸基(OH)、カルボ
ニル基(C=O)、アルデヒド基(CHO)、およびカ
ルボキシル基(COOH)のうちの1種または2種以上
で構成された極性基を表面結合させ、ついで、このよう
に極性基を表面結合させた状態で、同じく表1に示され
るように、非極性基表面結合処理液中で所定時間撹拌処
理して、表面にアルキル基(Cn2n+1 )、フェニル基
(C65 )、ビニル基(CH=CH2 )、アセチル基
(CH3 CO)、アルコキシル基(OCn2n+1 )、お
よびメタクリル基(CH2 =CCH3 )のうちの1種ま
たは2種以上で構成された非極性基を表面結合し、もっ
て前記極性基と非極性基とを共存分布させることにより
製造される。なお、この場合、反対に非極性基を表面結
合し、この後で極性基を表面結合しても、また前記極性
基表面結合処理液と非極性基表面結合処理液の混合処理
液を用いて、前記極性基と非極性基とを同時に表面結合
させて種ダイヤ粉を製造してもよい。
The seed diamond powder of the present invention is commercially available 2
A cluster diamond powder having an average particle diameter of 000 nm or less, preferably 5 to 200 nm is used.
After holding in an aqueous solution containing 0% (volume%) for 2 hours, and then treating under a condition of washing with water to remove impurities on the surface of the powder, first, as illustrated in Table 1, the solution was first treated with a polar group surface binding solution. For a predetermined period of time to form a polar group comprising one or more of a hydroxyl group (OH), a carbonyl group (C = O), an aldehyde group (CHO), and a carboxyl group (COOH) on the surface. Is surface-bonded. Then, in the state where the polar groups are surface-bonded as described above, similarly, as shown in Table 1, a stirring treatment is performed for a predetermined time in a non-polar group surface-binding treatment solution, so that an alkyl group ( C n H 2n + 1), a phenyl group (C 6 H 5), a vinyl group (CH = CH 2), acetyl group (CH 3 CO), an alkoxyl group (OC n H 2n + 1) , and methacrylic group (CH up of 2 = CCH 3) 1 or two or more of Has been a non-polar group surface-bound, is prepared by co distribution and non-polar groups and the polar groups have. In this case, conversely, even if the non-polar group is surface-bonded, and then the polar group is surface-bonded, it is also possible to use the mixed processing solution of the polar group surface-binding treatment solution and the non-polar group surface-binding treatment solution. Alternatively, the polar group and the non-polar group may be simultaneously surface-bonded to produce a seed diamond powder.

【0007】[0007]

【発明の実施の形態】つぎに、この発明の種ダイヤ粉を
実施例により具体的に説明する。原料粉末として、表
2、3に示される平均粒径をもった市販のクラスターダ
イヤモンド粉末(以下、原料ダイヤ粉と云う)を用意
し、これらの原料ダイヤ粉を、表面の不純物を除去した
状態で、それぞれ表1に示される表面結合基に対応する
処理液およびこれらの処理液の2種以上の混合処理液中
で撹拌しながら、まず表2、3に示される条件で処理し
て極性基を表面結合し、ついで同じく表2、3に示され
る条件で処理して非極性基を表面結合することにより本
発明種ダイヤ粉1〜33をそれぞれ製造した。また、比
較の目的で、表4に示される通り非極性基の表面結合を
行わない以外は同一の条件で比較種ダイヤ粉1〜10を
それぞれ製造した。この結果得られた各種の種ダイヤ粉
について、フーリエ変換赤外分光法により分析したとこ
ろ、本発明種ダイヤ粉1〜33は、いずれにも極性基と
非極性基のピークが確認され、これに対して比較種ダイ
ヤ粉1〜10には極性基しか確認されなかった。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the seed diamond powder of the present invention will be specifically described with reference to examples. As a raw material powder, a commercially available cluster diamond powder having an average particle size shown in Tables 2 and 3 (hereinafter, referred to as a raw material diamond powder) was prepared, and the raw material diamond powder was removed in a state where impurities on the surface were removed. First, while stirring in a treating solution corresponding to the surface-bonding group shown in Table 1 and a mixture of two or more kinds of these treating solutions, first treating under the conditions shown in Tables 2 and 3 to remove the polar group Surface-bonded and then treated under the same conditions as shown in Tables 2 and 3 to surface-bond nonpolar groups, thereby producing diamond powders 1 to 33 of the present invention. For comparison purposes, as shown in Table 4, comparative diamond powders 1 to 10 were produced under the same conditions except that surface bonding of nonpolar groups was not performed. When the various types of seed diamond powder obtained as a result were analyzed by Fourier transform infrared spectroscopy, peaks of a polar group and a non-polar group were confirmed in all of the seed diamond powders 1 to 33 of the present invention. In contrast, only polar groups were confirmed in comparative diamond powders 1 to 10.

【0008】また、人工ダイヤモンド膜形成用基板とし
て、(1)直径:100mm×厚さ:380μmの寸法
をもった円形のSi薄板(以下、基板1と云う)、
(2)直径:100mm×厚さ:1mmの寸法をもった
円形の石英薄板(以下、基板2と云う)、(3)直径:
100mm×厚さ:1mmの寸法および約500℃の軟
化点をもった円形のほう酸系ガラス薄板(以下、基板3
と云う)、(4)直径:100mm×厚さ:1mmの寸
法をを有し、表面部に厚さ:50μmの熱酸化層を形成
した円形のSi薄板(以下、基板4と云う)、(5)直
径:100mm×厚さ:1mmの寸法を有し、全表面を
高周波プラズマ法により形成した厚さ:2μmの酸化亜
鉛膜で被覆してなる円形のほう酸系ガラス薄板(以下、
基板5と云う)、(6)直径:100mm×厚さ:50
0μmの寸法を有し、全表面をリアクティブスパッタリ
ング法により形成した厚さ:2μmの酸化マグネシウム
膜で被覆してなる円形のSi薄板(以下、基板6と云
う)、(7)直径:100mm×厚さ:500μmの寸
法を有し、全表面をリアクティブスパッタリング法によ
り形成した厚さ:1μmの酸化インジウム−酸化錫膜で
被覆してなる円形のSi薄板(以下、基板7と云う)、
(8)直径:100mm×厚さ:1mmの寸法をもった
円形の酸化ジルコニウム薄板(以下、基板8と云う)、
(9)平面:50mm×50mm、厚さ:1mmの寸法
をもった正方形の酸化アルミニウム薄板(以下、基板9
と云う)、(10)直径:100mm×厚さ:1mmの
寸法を有し、全表面をCVD法(化学蒸着法)により形
成した厚さ:5μmの酸化アルミニウム膜で被覆してな
る円形の超硬合金(WC−6重量%Co)薄板(以下、
基板10と云う)、(11)直径:100mm×厚さ:
1mmの寸法を有し、全表面を高周波イオンプレーティ
ング法により形成した厚さ:3μmの酸化チタン膜で被
覆してなる円形のSi薄板(以下、基板11と云う)、
(12)直径:100mm×厚さ:1mmの寸法をもっ
た円形の炭化けい素薄板(以下、基板12と云う)、
(13)直径:100mm×厚さ:1mmの寸法を有
し、全表面をCVD法により形成した厚さ:2μmの窒
化チタン膜で被覆してなる円形の超硬合金(WC−6重
量%Co)薄板(以下、基板13と云う)、(14)直
径:100mm×厚さ:1mmの寸法をもった円形の超
硬合金(WC−6重量%Co)薄板(以下、基板14と
云う)、(15)直径:100mm×厚さ:1mmの寸
法を有し、全表面を高周波イオンプレーティング法によ
り形成した厚さ:2μmの窒化アルミニウム膜で被覆し
てなる円形のサファイア薄板(以下、基板15と云
う)、(16)直径:100mm×厚さ:1mmの寸法
をもった円形のサイアロン薄板(以下、基板16と云
う)、(17)平面:50mm×50mm、厚さ:1m
mの寸法をもった正方形の炭化ジルコニウム薄板(以
下、基板17と云う)、(18)直径:100mm×厚
さ:1mmの寸法を有し、全表面をCVD法により形成
した厚さ:1μmの炭化チタン膜で被覆してなる円形の
超硬合金(WC−6重量%Co)薄板(以下、基板18
と云う、(19)直径:100mm×厚さ:1mmの寸
法を有し、全表面をCVD法により形成した厚さ:1μ
mの炭窒化チタン膜で被覆してなる円形の超硬合金(W
C−6重量%Co)薄板(以下、基板19と云う)、、
(20)直径:100mm×厚さ:1mmの寸法をもっ
た円形の窒化けい素薄板(以下、基板20と云う)、
(21)直径:100mm×厚さ:1mmの寸法をもっ
た円形の窒化ジルコニウム薄板(以下、基板21と云
う)、(22)直径:100mm×厚さ:1mmの寸法
をもった円形のPt薄板(以下、基板22と云う)、
(23)直径:100mm×厚さ:1mmの寸法をもっ
た円形のCu薄板(以下、基板23と云う)、(24)
直径:100mm×厚さ:1mmの寸法をもった円形の
Al薄板(以下、基板24と云う)、(25)直径:1
00mm×厚さ:1mmの寸法を有し、全表面を真空蒸
着法により形成した厚さ:0.2μmのAu膜で被覆し
てなる円形のSi薄板(以下、基板25と云う)、(2
6)直径:100mm×厚さ:1mmの寸法をもった円
形のNi薄板(以下、基板26と云う)、(27)直
径:100mm×厚さ:1mmの寸法を有し、全表面を
CVD法により形成した厚さ:2μmのTi膜で被覆し
てなる円形のSi薄板(以下、基板27と云う)、(2
8)直径:100mm×厚さ:1mmの寸法を有し、全
表面を電着法により形成した厚さ:0.5μmのTi膜
で被覆してなる円形のCo薄板(以下、基板28と云
う)、(29)直径:100mm×厚さ:1mmの寸法
をもった円形のMo薄板(以下、基板29と云う)、
(30)直径:100mm×厚さ:1mmの寸法を有
し、全表面をスパッタ法により形成した厚さ:1μmの
Pd膜で被覆してなる円形のCu薄板(以下、基板30
と云う)、(31)直径:100mm×厚さ:1mmの
寸法を有し、全表面を真空蒸着法により形成した厚さ:
0.5μmのAg膜で被覆してなる円形のSi薄板(以
下、基板31と云う)、以上の基板1〜31をそれぞれ
用意した。
Further, as a substrate for forming an artificial diamond film, (1) a circular Si thin plate having a size of diameter: 100 mm × thickness: 380 μm (hereinafter referred to as substrate 1);
(2) a circular quartz thin plate having a size of 100 mm × thickness: 1 mm (hereinafter, referred to as substrate 2); (3) diameter:
100 mm × thickness: A circular borate-based glass thin plate having a dimension of 1 mm and a softening point of about 500 ° C.
(4) a circular Si thin plate (hereinafter, referred to as a substrate 4) having a size of diameter: 100 mm × thickness: 1 mm and having a thermal oxide layer having a thickness of 50 μm formed on the surface thereof; 5) A circular borate-based glass sheet (hereinafter, referred to as a “thickness: 100 mm × thickness: 1 mm”) covered with a zinc oxide film having a thickness of 2 μm formed on the entire surface by a high-frequency plasma method.
(Referred to as substrate 5), (6) diameter: 100 mm x thickness: 50
A circular Si thin plate (hereinafter, referred to as a substrate 6) having a size of 0 μm and coated on its entire surface with a magnesium oxide film having a thickness of 2 μm formed by a reactive sputtering method, (7) diameter: 100 mm × A circular Si thin plate (hereinafter, referred to as a substrate 7) having a thickness of 500 μm, and having a thickness of 1 μm formed by a reactive sputtering method and covering the entire surface with an indium oxide-tin oxide film;
(8) a circular zirconium oxide thin plate having a size of diameter: 100 mm x thickness: 1 mm (hereinafter referred to as a substrate 8);
(9) A square aluminum oxide thin plate having a size of plane: 50 mm × 50 mm, thickness: 1 mm (hereinafter referred to as substrate 9)
(10) Diameter: 100 mm × Thickness: 1 mm, and a super-circular shape having the entire surface covered with an aluminum oxide film having a thickness of 5 μm formed by CVD (chemical vapor deposition). Hard alloy (WC-6wt% Co) thin plate (hereinafter, referred to as
(Referred to as substrate 10), (11) diameter: 100 mm x thickness:
A circular Si thin plate (hereinafter, referred to as a substrate 11) having a dimension of 1 mm, and a whole surface formed by a high-frequency ion plating method and coated with a titanium oxide film having a thickness of 3 μm;
(12) a circular silicon carbide thin plate having a size of diameter: 100 mm x thickness: 1 mm (hereinafter referred to as a substrate 12);
(13) Circular cemented carbide (WC-6 wt% Co) having dimensions of 100 mm in diameter × 1 mm in thickness and covered with a 2 μm thick titanium nitride film formed by CVD on the entire surface ) A thin plate (hereinafter referred to as a substrate 13), (14) a circular cemented carbide (WC-6% by weight Co) thin plate (hereinafter referred to as a substrate 14) having a diameter of 100 mm x a thickness of 1 mm; (15) A circular sapphire thin plate (hereinafter, referred to as a substrate 15) having a size of diameter: 100 mm × thickness: 1 mm, and having the entire surface covered with a 2 μm thick aluminum nitride film formed by a high-frequency ion plating method. (16) Circular sialon thin plate (hereinafter referred to as substrate 16) having dimensions of diameter: 100 mm x thickness: 1 mm, (17) plane: 50 mm x 50 mm, thickness: 1 m
(18) Diameter: 100 mm × thickness: 1 mm, thickness: 1 μm, all surfaces formed by CVD method Circular cemented carbide (WC-6 wt% Co) thin plate coated with a titanium carbide film (hereinafter referred to as substrate 18
(19) It has a size of diameter: 100 mm × thickness: 1 mm, and has a thickness of 1 μm in which the entire surface is formed by the CVD method.
m round titanium carbide nitride (W)
C-6 weight% Co) thin plate (hereinafter referred to as substrate 19),
(20) a circular silicon nitride thin plate having a size of diameter: 100 mm × thickness: 1 mm (hereinafter, referred to as a substrate 20);
(21) Circular zirconium nitride thin plate (hereinafter, referred to as substrate 21) having a size of diameter: 100 mm × thickness: 1 mm, (22) Circular Pt thin plate having a size of diameter: 100 mm × thickness: 1 mm (Hereinafter, referred to as substrate 22),
(23) a circular Cu thin plate having a size of diameter: 100 mm x thickness: 1 mm (hereinafter referred to as a substrate 23);
Diameter: 100 mm × thickness: 1 mm circular Al thin plate (hereinafter referred to as substrate 24), (25) Diameter: 1
A circular Si thin plate (hereinafter, referred to as a substrate 25) having a size of 00 mm × thickness: 1 mm, and having an entire surface covered with a 0.2 μm thick Au film formed by a vacuum evaporation method;
6) a circular Ni thin plate (hereinafter, referred to as a substrate 26) having a diameter of 100 mm × thickness: 1 mm; (27) a diameter of 100 mm × thickness: 1 mm; A thin Si plate (hereinafter referred to as a substrate 27) coated with a 2 μm thick Ti film,
8) A circular Co thin plate having a size of diameter: 100 mm × thickness: 1 mm and covered with a Ti film having a thickness of 0.5 μm formed on the entire surface by an electrodeposition method (hereinafter referred to as a substrate 28) ), (29) a circular Mo thin plate having a size of diameter: 100 mm x thickness: 1 mm (hereinafter referred to as a substrate 29);
(30) A circular Cu thin plate (hereinafter, referred to as a substrate 30) having a size of diameter: 100 mm × thickness: 1 mm, and whose entire surface is covered with a Pd film having a thickness of 1 μm formed by sputtering.
(31) a diameter of 100 mm × thickness: 1 mm, and a thickness formed by vacuum evaporation on the entire surface:
A circular Si thin plate (hereinafter, referred to as a substrate 31) coated with a 0.5 μm Ag film and the above substrates 1 to 31 were prepared.

【0009】ついで、上記の各種の種ダイヤ粉および基
板を用い、以下に示す条件で人工ダイヤモンド膜を形成
する本発明種ダイヤ粉適用例1〜59および比較種ダイ
ヤ粉適用例1〜46をそれぞれ実施した。まず、上記の
各種の種ダイヤ粉をそれぞれ表5〜8に示される割合で
メチルアルコール溶液中に分散させた分散液を調製し、
以下に示す条件、すなわち、(ァ)上記分散液中に、上
記基板1〜31のうちのいずれかの基板を同じく表5〜
8に示される組み合わせ(以下同じ)で浸漬し、浸漬し
て1分経過後に引き上げ、イソプロピルアルコール中で
5分間リンスした後、自然乾燥(以下、付着条件アと云
う)、(イ)上記分散液中に、上記基板を浸漬し、超音
波をかけた状態で10分間保持した後に引き上げ、同じ
く超音波をかけた状態でイソプロピルアルコール中で5
分間リンスした後、自然乾燥(以下、付着条件イと云
う)、(ウ)上記分散液中に、上記基板と純Al板を浸
漬し、前記基板を陽極、前記純Al板を陰極とし、これ
ら両電極間の間隔を30mmとして24Vの電圧を印加
し、この状態を5分間保持した後に引き上げ、イソプロ
ピルアルコール中で5分間リンスした後、自然乾燥(以
下、付着条件ウと云う)、(エ)上記分散液を、0.3
mmの穴径をもったスプレーから噴霧して上記基板の表
面にまんべんなく吹き付けた後、直ちに(乾燥しないう
ちに)イソプロピルアルコール中で5分間リンスし、自
然乾燥(以下、付着条件エと云う)、以上(ァ)〜
(エ)のうちのいずれかの条件で上記基板の表面に上記
の各種の種ダイヤ粉をそれぞれ付着させ、これを人工ダ
イヤモンド膜形成用化学蒸着装置であるマイクロ波プラ
ズマ装置に装入し、 反応ガス組成:CH4 /H2 =1/100、 雰囲気圧力:30torr、 基板温度:800℃(ただし、基板3および5は500
℃、基板24は650℃)、 時間:5分、 の条件で人工ダイヤモンド核の合成を行い、その形成密
度を測定し、さらに引き続いて同一の条件で人工ダイヤ
モンド膜の形成を行い、その膜厚が2μmに至るまでの
合成時間を測定した。これらの測定結果を表5〜8に示
した。
Next, using the above-described various types of diamond powder and the substrate, the following examples 1 to 59 of the type diamond powder of the present invention and Comparative Examples 1 to 46, which form an artificial diamond film under the following conditions, were used. Carried out. First, a dispersion was prepared by dispersing the above various seed diamond powders in a methyl alcohol solution at the ratios shown in Tables 5 to 8, respectively.
The following conditions, that is, (a) in the dispersion, any one of the substrates 1 to 31 was similarly set in Table 5
8 (the same applies hereinafter), immersed and pulled up after 1 minute, rinsed in isopropyl alcohol for 5 minutes, air-dried (hereinafter referred to as adhesion condition a), (a) the dispersion The substrate was immersed in the solution, held for 10 minutes in a state where ultrasonic waves were applied, and then lifted up.
After rinsing for minutes, air drying (hereinafter, referred to as adhesion condition a), (c) immersing the substrate and the pure Al plate in the dispersion, the substrate as an anode, and the pure Al plate as a cathode, A voltage of 24 V was applied with the distance between the two electrodes being 30 mm, and this state was maintained for 5 minutes, pulled up, rinsed in isopropyl alcohol for 5 minutes, and then naturally dried (hereinafter referred to as adhesion condition C), (d). 0.3 g of the dispersion
After spraying from a spray having a hole diameter of mm and spraying evenly on the surface of the substrate, immediately rinse (without drying) in isopropyl alcohol for 5 minutes, and naturally dry (hereinafter referred to as adhesion condition d). That ’s it (a)
(D) Under any of the conditions described above, the above-mentioned various kinds of diamond powders are respectively adhered to the surface of the substrate, and these are charged into a microwave plasma apparatus which is a chemical vapor deposition apparatus for forming an artificial diamond film, and the reaction is performed. Gas composition: CH 4 / H 2 = 1/100, atmospheric pressure: 30 torr, substrate temperature: 800 ° C. (however, substrates 3 and 5 are 500
Temperature, the substrate 24 is 650 ° C.), the time is: 5 minutes, the synthetic diamond nucleus is synthesized, the formation density is measured, and subsequently, the artificial diamond film is formed under the same conditions, Was measured to reach 2 μm. Tables 5 to 8 show the results of these measurements.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】[0012]

【表3】 [Table 3]

【0013】[0013]

【表4】 [Table 4]

【0014】[0014]

【表5】 [Table 5]

【0015】[0015]

【表6】 [Table 6]

【0016】[0016]

【表7】 [Table 7]

【0017】[0017]

【表8】 [Table 8]

【0018】[0018]

【発明の効果】表2〜8に示される結果から、本発明種
ダイヤ粉1〜33は、いずれも通常の人工ダイヤモンド
膜形成基板表面に対しては勿論のこと、従来人工ダイヤ
モンド膜の形成がきわめて困難であった基板表面にも表
面結合した極性基と非極性基の共存作用で高い密度で付
着し、この結果高い密度での人工ダイヤモンド核の形成
が行われるようになることから、速い成膜速度での人工
ダイヤモンド膜の形成が可能となるのに対して、極性基
の表面結合しかない比較種ダイヤ粉1〜10は、いずれ
も基板表面に対する付着性に劣ることから、人工ダイヤ
モンド核の高い密度での形成は行われず、相対的に成膜
速度の遅いものになっていることが明らかである。上述
のように、この発明の種ダイヤ粉は、基体表面に対する
付着性の高いものであるから、成膜面積の大型化にも高
い密度での人工ダイヤモンド核の形成が可能となるばか
りでなく、上記実施例にも示される通り基体表面の材質
的制約(影響)を受けないことから、人工ダイヤモンド
膜の形成が半導体装置に限らず、その他の技術分野での
適用も可能となるなどすぐれた汎用性をもつものであ
る。
According to the results shown in Tables 2 to 8, the diamond powders 1 to 33 of the present invention can be used not only on the surface of a substrate on which an artificial diamond film is formed, but also on the surface of a conventional artificial diamond film. Since the polar and non-polar groups bonded to the surface were extremely difficult to adhere to the substrate surface at high density, artificial diamond nuclei could be formed at high density, resulting in rapid growth. While it is possible to form an artificial diamond film at a film speed, comparative diamond powders 1 to 10 having only a polar group surface bond have poor adhesion to the substrate surface. It is apparent that the film was not formed at a high density and the film forming speed was relatively low. As described above, the seed diamond powder of the present invention has high adhesion to the substrate surface, so that not only the formation of an artificial diamond nucleus at a high density can be achieved even when the film formation area is increased, As shown in the above embodiment, since there is no material restriction (influence) on the surface of the substrate, the formation of an artificial diamond film is not limited to a semiconductor device, and it can be applied to other technical fields. It has nature.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ダイヤモンド粉末の表面に、水酸基(O
H)、カルボニル基(C=O)、アルデヒド基(CH
O)、およびカルボキシル基(COOH)のうちの1種
または2種以上で構成された極性基と、アルキル基(C
n2n+1 )、フェニル基(C65 )、ビニル基(CH
=CH2 )、アセチル基(CH3 CO)、アルコキシル
基(OCn2n+1)、およびメタクリル基(CH2 =C
CH3 )のうちの1種または2種以上で構成された非極
性基とが表面結合して共存分布することを特徴とする人
工ダイヤモンド膜形成面に対する付着性のすぐれた種ダ
イヤモンド粉末。
1. The method according to claim 1, wherein the surface of the diamond powder has a hydroxyl group (O
H), carbonyl group (C = O), aldehyde group (CH
O) and a polar group composed of one or more of a carboxyl group (COOH) and an alkyl group (C
n H 2n + 1 ), phenyl group (C 6 H 5 ), vinyl group (CH
CHCH 2 ), acetyl group (CH 3 CO), alkoxyl group (OC n H 2n + 1 ), and methacryl group (CH 2 CC
CH 3 ) is a seed diamond powder having excellent adhesion to an artificial diamond film-forming surface, wherein the non-polar group is composed of one or more of CH 3 ) and is coexistently distributed by surface bonding.
JP28222798A 1997-10-09 1998-10-05 Seed diamond powder with excellent adhesion to artificial diamond film formation surface Expired - Fee Related JP3460594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28222798A JP3460594B2 (en) 1997-10-09 1998-10-05 Seed diamond powder with excellent adhesion to artificial diamond film formation surface

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP27737597 1997-10-09
JP9-277375 1997-10-09
JP8367598 1998-03-30
JP10-83675 1998-03-30
JP28222798A JP3460594B2 (en) 1997-10-09 1998-10-05 Seed diamond powder with excellent adhesion to artificial diamond film formation surface

Publications (2)

Publication Number Publication Date
JPH11343197A true JPH11343197A (en) 1999-12-14
JP3460594B2 JP3460594B2 (en) 2003-10-27

Family

ID=27304296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28222798A Expired - Fee Related JP3460594B2 (en) 1997-10-09 1998-10-05 Seed diamond powder with excellent adhesion to artificial diamond film formation surface

Country Status (1)

Country Link
JP (1) JP3460594B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238411A (en) * 2006-03-10 2007-09-20 Naoki Komatsu Nanodiamond
JP2009214051A (en) * 2008-03-11 2009-09-24 Tokyo Univ Of Science Diamond solid acid, and solid acid catalyst and solid electrolyte consisting of the diamond solid acid
JP2010248023A (en) * 2009-04-13 2010-11-04 Daicel Chem Ind Ltd Surface-modified nanodiamond and producing method thereof
JP2010248586A (en) * 2009-04-17 2010-11-04 Japan Vilene Co Ltd Diamond coating structure and method for manufacturing the same
JP2011132117A (en) * 2009-11-26 2011-07-07 Nippon Kayaku Co Ltd Polymerizable nano-diamond and method for producing the same
JP2017214244A (en) * 2016-05-31 2017-12-07 学校法人東京理科大学 Manufacturing method of surface modified nanodiamond and surface modified nanodiamond
JPWO2017159253A1 (en) * 2016-03-18 2019-01-24 株式会社ダイセル Curable resin composition and optical member
WO2021039521A1 (en) * 2019-08-30 2021-03-04 株式会社ダイセル Method for producing surface-modified nanodiamonds

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238304A (en) * 1988-07-29 1990-02-07 Ishizuka Kenkyusho:Kk Improved abrasive grain of fine diamond and production thereof
JPH02120219A (en) * 1988-10-31 1990-05-08 Sumitomo Metal Mining Co Ltd Synthesis of diamond powder
JPH0925110A (en) * 1995-07-10 1997-01-28 Ishizuka Kenkyusho:Kk Fine hydrophilic diamond particles and their production
JPH11180797A (en) * 1997-12-24 1999-07-06 Sharp Corp Production of base body for forming diamond

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238304A (en) * 1988-07-29 1990-02-07 Ishizuka Kenkyusho:Kk Improved abrasive grain of fine diamond and production thereof
JPH02120219A (en) * 1988-10-31 1990-05-08 Sumitomo Metal Mining Co Ltd Synthesis of diamond powder
JPH0925110A (en) * 1995-07-10 1997-01-28 Ishizuka Kenkyusho:Kk Fine hydrophilic diamond particles and their production
JPH11180797A (en) * 1997-12-24 1999-07-06 Sharp Corp Production of base body for forming diamond

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238411A (en) * 2006-03-10 2007-09-20 Naoki Komatsu Nanodiamond
JP2009214051A (en) * 2008-03-11 2009-09-24 Tokyo Univ Of Science Diamond solid acid, and solid acid catalyst and solid electrolyte consisting of the diamond solid acid
JP2010248023A (en) * 2009-04-13 2010-11-04 Daicel Chem Ind Ltd Surface-modified nanodiamond and producing method thereof
JP2010248586A (en) * 2009-04-17 2010-11-04 Japan Vilene Co Ltd Diamond coating structure and method for manufacturing the same
JP2011132117A (en) * 2009-11-26 2011-07-07 Nippon Kayaku Co Ltd Polymerizable nano-diamond and method for producing the same
JPWO2017159253A1 (en) * 2016-03-18 2019-01-24 株式会社ダイセル Curable resin composition and optical member
JP2017214244A (en) * 2016-05-31 2017-12-07 学校法人東京理科大学 Manufacturing method of surface modified nanodiamond and surface modified nanodiamond
WO2021039521A1 (en) * 2019-08-30 2021-03-04 株式会社ダイセル Method for producing surface-modified nanodiamonds

Also Published As

Publication number Publication date
JP3460594B2 (en) 2003-10-27

Similar Documents

Publication Publication Date Title
US6544599B1 (en) Process and apparatus for applying charged particles to a substrate, process for forming a layer on a substrate, products made therefrom
JP2536927B2 (en) Method for producing polycrystalline diamond film
JPS599921A (en) Film for x-ray mask and method of producing same
CN101319372A (en) Method for low temperature controllable preparation of zinc oxide nano line and application thereof
WO2019131874A1 (en) Method for producing chain-like particle dispersion, and dispersion of chain-like particles
JP3460594B2 (en) Seed diamond powder with excellent adhesion to artificial diamond film formation surface
TWI248469B (en) Manufacturing method of zinc oxide nanowires
Szłyk et al. AuI and AgI complexes with tertiary phosphines and perfluorinated carboxylates as precursors for CVD of gold and silver
TW201908701A (en) Carrier for raman spectroscopy and method of manufacturing the same
CN111009496A (en) Semiconductor substrate with high thermal conductivity and preparation method thereof
US6159604A (en) Seed diamond powder excellent in adhesion to synthetic diamond film forming surface and dispersed solution thereof
CN106637079B (en) A kind of buffer layer and preparation method thereof of secondary film
JPH08291299A (en) Cleaning or etching gas
JPH10505879A (en) Diamond film deposition method on electroless plated nickel layer
JPS63277593A (en) Elements coated with diamond and its production
JP3271389B2 (en) How to use electrostatic chuck
JPH04157157A (en) Production of artificial diamond coated material
KR100717336B1 (en) A plating method of metal layer by a galvanic displacement
CN112458432B (en) Nb growth by atomic layer deposition technologyxMethod for forming C film
JPS60100660A (en) Surface-coated hard material
JP5965235B2 (en) Semiconductor substrate having metal plating film and method for producing the same
CN112442675B (en) Preparation method of nano manganese carbide material
Zhang et al. Surface sol–gel synthesis of silica films on polyimide substrate
CN109750266B (en) Method for regulating and controlling growth of boron nitride crystals in boron-carbon-nitrogen film
JPS62247064A (en) Growing method for metallic film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees