JPH11329795A - Drift tube and manufacture thereof - Google Patents

Drift tube and manufacture thereof

Info

Publication number
JPH11329795A
JPH11329795A JP12734698A JP12734698A JPH11329795A JP H11329795 A JPH11329795 A JP H11329795A JP 12734698 A JP12734698 A JP 12734698A JP 12734698 A JP12734698 A JP 12734698A JP H11329795 A JPH11329795 A JP H11329795A
Authority
JP
Japan
Prior art keywords
cooling water
drift tube
cell
groove
water passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12734698A
Other languages
Japanese (ja)
Inventor
Keisuke Tajiri
桂介 田尻
Zenzaburo Kabetani
善三郎 壁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12734698A priority Critical patent/JPH11329795A/en
Publication of JPH11329795A publication Critical patent/JPH11329795A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance cooling effect of a drift tube, which is an inner electrode of an accelerator which accelerates a proton, and allow a continuous operation of the accelerator. SOLUTION: A drift tube comprises two system cooling water passages 4a and 4b having a screw hole 6, which connects a joint for supplying and draining cooling water. The cooling water passages 4a and 4b supply cooling water for channels 7a and 7b for the cooling water passages 4a and 4b formed on a surface of a cell base material 2, respectively. The cooling water cools the whole periphery of a cell and drains from an exit of the cooling water passages 4a and 4b. During an operation of the drift tube, high-frequency power is fed and a proton 31 is accelerated into a passage 30 to flow induced current on a cell surface. The cell surface is heated as the frequency of the induced current is high. A first electrocasting layer is formed on the surface of the cell base material 2 made of stainless. A channel is formed on the first electrocasting layer and the channel is covered with a second electrocasting layer. The cooling water passages 4a and 4b, and the channels 7a and 7b for the cooling water passages 4a and 4b are formed. A channel can be formed in the vicinity of the surface and the surface is cooled effectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は陽子加速器の内部電
極であるドリフトチューブ及びそのドリフトチューブの
製造方法に関し、ドリフトチューブの表面を効果的に冷
却するようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drift tube which is an internal electrode of a proton accelerator and a method for manufacturing the drift tube, and to effectively cool the surface of the drift tube.

【0002】[0002]

【従来の技術】ドリフトチューブはセル内部に磁石を有
し、マイクロ波によって電極間に電場を誘起して陽子を
加速するものである。図6はこのような従来のドリフト
チューブの構成を示し、(a)はドリフトチューブの側
面図、(b)はその正面図である。図6において、20
はセル基材であり、内部にリード線21と冷却水通路2
2が設けられている。冷却水通路22には冷却水出入口
23が設けられ、ここから冷却水が供給され、冷却水通
路22を通って冷却水ジャケット24に導かれ、セル2
5の周囲の冷却水ジャケット24を通り、セルを冷却し
て冷却水通路22の出口側を通り、冷却水出入口23か
ら流出する。セル25の内部の中心部には加速された陽
子31が通る通路30が設けられており、陽子31が加
速され、その周囲には電磁石1が配置されている。
2. Description of the Related Art A drift tube has a magnet inside a cell and induces an electric field between electrodes by microwaves to accelerate protons. FIG. 6 shows the configuration of such a conventional drift tube. FIG. 6A is a side view of the drift tube, and FIG. 6B is a front view thereof. In FIG.
Is a cell base material, and has a lead wire 21 and a cooling water passage 2 therein.
2 are provided. The cooling water passage 22 is provided with a cooling water inlet / outlet 23, from which cooling water is supplied, guided to the cooling water jacket 24 through the cooling water passage 22, and
After passing through the cooling water jacket 24 around the cooling water 5, the cell is cooled, passes through the outlet side of the cooling water passage 22, and flows out of the cooling water inlet / outlet 23. A passage 30 through which the accelerated protons 31 pass is provided at a central portion inside the cell 25, the protons 31 are accelerated, and the electromagnet 1 is arranged around the accelerated protons.

【0003】ドリフトチューブはアルバレ型陽子加速器
タンク内に装備される内部電極である。タンク内に高周
波電力が投入されると、ドリフトチューブ間に交番電界
が発生し、加速位相の場合に陽子はこの電極間で加速さ
れ、減速位相の時は電界のたたないドリフトチューブ内
を等速で通過する。陽子同志のクローン力による発散を
防ぐため四重極の電磁石1を内蔵する。
[0003] The drift tube is an internal electrode provided in the Alvaret-type proton accelerator tank. When high-frequency power is applied to the tank, an alternating electric field is generated between the drift tubes. In the acceleration phase, protons are accelerated between the electrodes, and in the deceleration phase, the protons flow in the drift tube where there is no electric field. Passing fast. A quadrupole electromagnet 1 is incorporated to prevent divergence due to the cloning force of protons.

【0004】ドリフトチューブ表面には高周波による誘
起電流が流れ、ジュール熱が発生する。その熱によりド
リフトチューブが膨張するとタンクの共振周波数が変わ
り、高周波電力投入が困難になるため、上記のように冷
却水ジャケット24内に冷却水を通し、セル25を冷却
している。
A high frequency induced current flows on the surface of the drift tube to generate Joule heat. When the drift tube expands due to the heat, the resonance frequency of the tank changes and it becomes difficult to supply high frequency power. Therefore, the cooling water is passed through the cooling water jacket 24 to cool the cell 25 as described above.

【0005】[0005]

【発明が解決しようとする課題】前述のように従来のド
リフトチューブは、セル25内の冷却水ジャケット24
により伝熱で冷却する構造である。ドリフトチューブ表
面には高周波による誘起電流が流れ、ジュール熱が発生
し、この誘起電流は高周波電力により誘起されるので、
ごく表面近傍に流れ、セル25の表面が主に加熱され
る。このために従来の冷却水ジャケット24による伝熱
冷却では運転時の表面電流による発熱に対する冷却が不
充分であり、高負荷での運転ができなかった。従って現
状利用されているものは1%以下の負荷の低いパルス運
転を行う加速器に限られており、高負荷運転ができる加
速器の開発が望まれていた。
As described above, the conventional drift tube is provided with a cooling water jacket 24 in a cell 25.
This is a structure that cools by heat transfer. An induced current due to high frequency flows on the surface of the drift tube, generating Joule heat, and this induced current is induced by high frequency power,
It flows very close to the surface, and the surface of the cell 25 is mainly heated. Therefore, in the conventional heat transfer cooling using the cooling water jacket 24, the cooling against the heat generated by the surface current during the operation is insufficient, and the operation at a high load cannot be performed. Therefore, those currently used are limited to accelerators that perform a pulse operation with a low load of 1% or less, and development of an accelerator that can operate at a high load has been desired.

【0006】そこで本発明は、加速器のドリフトチュー
ブ表面を冷却できるドリフトチューブ及び表面に冷却溝
を自在に加工して冷却通路を形成する事を可能とする方
法を提供し、高負荷運転の陽子加速器の製作を可能とす
ることを課題としてなされたものである。
Accordingly, the present invention provides a drift tube capable of cooling the surface of a drift tube of an accelerator and a method for forming a cooling passage by freely forming a cooling groove in the surface, and a proton accelerator operating at a high load. The object of the present invention is to enable the production of

【0007】[0007]

【課題を解決するための手段】本発明は前述の課題を解
決するために次の(1)〜(3)の手段を提供する。
The present invention provides the following means (1) to (3) to solve the above-mentioned problems.

【0008】(1)陽子を加速する加速器のドリフトチ
ューブにおいて、ドリフトチューブのセル基材表面近傍
に冷却水通路を設け、ドリフトチューブの熱膨張を防ぐ
ことを特徴とするドリフトチューブ。
(1) A drift tube of an accelerator for accelerating protons, wherein a cooling water passage is provided near a surface of a cell substrate of the drift tube to prevent thermal expansion of the drift tube.

【0009】(2)陽子を加速する加速器のドリフトチ
ューブにおいて、前記ドリフトチューブのセル基材に溝
加工を施し;加工した同溝にワックス等の溶融可能な簡
易溶融材を充填し;さらに前記セル基材表面に銅電鋳を
施して溝表面を塞いで同溝に蓋をした後;同溝内の前記
簡易溶融材を湯、又は溶剤により除去して冷却水通路を
形成することを特徴とするドリフトチューブの製造方
法。
(2) In a drift tube of an accelerator for accelerating protons, a groove is formed in a cell base material of the drift tube; the processed groove is filled with a meltable simple melting material such as wax; After subjecting the surface of the base material to copper electroforming to cover the groove surface and cover the groove; removing the simple molten material in the groove with hot water or a solvent to form a cooling water passage. Drift tube manufacturing method.

【0010】(3)上記(2)に記載の製造方法にて製
造されたドリフトチューブ。ドリフトチューブでは加速
器タンク内に装備される内部電極であり、タンク内に高
周波電力が投入されると、ドリフトチューブ間に交番電
界が発生し、陽子が電極間で加速される。ドリフトチュ
ーブ表面には高周波による誘起電流が流れ、ジュール熱
が発生するが、その熱によりドリフトチューブが膨張す
るとタンクの共振周波数が変化し、高周波電力の投入が
むずかしくなるので、ドリフトチューブを冷却する必要
がある。この誘起電流は周波数が高い程表面近傍に流れ
るため、冷却用通路もセル基材表面に近い程効果的とな
る。
(3) A drift tube manufactured by the manufacturing method according to the above (2). The drift tube is an internal electrode provided in the accelerator tank. When high-frequency power is applied to the tank, an alternating electric field is generated between the drift tubes, and protons are accelerated between the electrodes. The induced current due to high frequency flows on the surface of the drift tube, and Joule heat is generated.When the heat expands the drift tube, the resonance frequency of the tank changes and it becomes difficult to supply high frequency power, so it is necessary to cool the drift tube. There is. Since the induced current flows nearer the surface as the frequency is higher, the cooling passage becomes more effective as it is closer to the surface of the cell substrate.

【0011】本発明の(1)のドリフトチューブは、そ
のためにセル基材表面近傍に冷却水通路を設けているの
でセルの表面が効果的に冷却され、ドリフトチューブの
膨張を抑え、共振周波数の変動を少くするので高負荷運
転の陽子加速器の製作を可能とするものである。又、
(2)の製造方法によれば、ドリフトチューブに電鋳加
工を施すことにより溝を形成するので、セル基材表面近
傍に溝加工による冷却水通路が容易に形成可能となり、
表面の加熱を効果的に冷却できるドリフトチューブを製
造することができる。
In the drift tube (1) of the present invention, a cooling water passage is provided near the surface of the cell substrate, so that the cell surface is effectively cooled, expansion of the drift tube is suppressed, and resonance frequency is reduced. Since the fluctuation is reduced, it is possible to manufacture a proton accelerator operating at a high load. or,
According to the manufacturing method (2), since the grooves are formed by subjecting the drift tube to electroforming, a cooling water passage can be easily formed in the vicinity of the surface of the cell base material by the groove processing.
A drift tube that can effectively cool surface heating can be manufactured.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて具体的に説明する。図1は本発明の実
施の一形態に係るドリフトチューブの全体の構成を示
し、(a)は側面図、(b)は正面図である。図におい
て、1は電磁石であり、2はセル基材である。セル基材
2は強度を持たせるためにステンレス製で構成されてい
る。セル基材2の表面には銅電鋳層5が形成されてい
る。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 shows the entire configuration of a drift tube according to an embodiment of the present invention, in which (a) is a side view and (b) is a front view. In the figure, 1 is an electromagnet and 2 is a cell substrate. The cell base material 2 is made of stainless steel to have strength. A copper electroformed layer 5 is formed on the surface of the cell base material 2.

【0013】この銅電鋳層5の内部には冷却水通路4
a,4bが形成されている。冷却水通路4a,4bの先
端部にはそれぞれネジ穴6が加工されており、このネジ
穴6に図示省略の継手が接続されて冷却水供給源及び冷
却水排水系統に連結する。
Inside the copper electroformed layer 5, a cooling water passage 4 is provided.
a, 4b are formed. Screw holes 6 are formed at the distal ends of the cooling water passages 4a and 4b, respectively, and joints (not shown) are connected to the screw holes 6 to connect to a cooling water supply source and a cooling water drainage system.

【0014】冷却水通路は(a)に示すように4a,4
bの2系統からなり、それぞれ冷却水通路用溝7a,7
bに連通している。冷却水通路用溝7a,7bは、
(b)図に示すように7aの系統について説明すると、
電磁石1の周囲壁面においては7a−1,7a−3が配
置され、通路30方向の両側面においては陽子31が通
る通路30の周囲の壁面に沿って円形状の溝7a−2が
設けられており、これら冷却水通路用溝7a−1,7a
−2,7a−3はそれぞれ連通して冷却水通路4aに接
続している。なお、冷却水通路用溝7bについても7a
と同様であるので説明は省略する。
The cooling water passages 4a, 4a
b, the cooling water passage grooves 7a and 7 respectively.
b. The cooling water passage grooves 7a and 7b
(B) As shown in FIG.
7a-1 and 7a-3 are arranged on the peripheral wall surface of the electromagnet 1, and circular grooves 7a-2 are provided on both side surfaces in the direction of the passage 30 along the wall surface around the passage 30 through which the protons 31 pass. These cooling water passage grooves 7a-1, 7a
-2 and 7a-3 communicate with each other and are connected to the cooling water passage 4a. Note that the cooling water passage groove 7b is also
Therefore, the description is omitted.

【0015】図2は図1における断面を示し、(a)が
A−A断面図、(b)がB−B断面図である。図2
(a)において、前述のようにセル基材2の内部には冷
却水通路4aと4bが2系統設けられており、それぞれ
冷却水の供給と流出の通路となっている。中心部にはリ
ード線21が挿通されている。
FIGS. 2A and 2B show cross sections in FIG. 1, wherein FIG. 2A is a cross-sectional view taken along line AA and FIG. 2B is a cross-sectional view taken along line BB. FIG.
2A, two systems of cooling water passages 4a and 4b are provided inside the cell base material 2 as described above, and serve as passages for supply and outflow of cooling water, respectively. A lead wire 21 is inserted through the center.

【0016】図2(b)において図1で説明したよう
に、電磁石1のセル基材2の周囲壁面にはそれぞれ冷却
水通路用溝7a−1が3系統、7b−1がそれぞれ3系
統設けられており、通路31を中心として対向する両側
面には円形状の冷却水通路用溝7a−2が3系統、7b
−2も3系統設けられている。
As described with reference to FIG. 2 (b) in FIG. 1, three systems of cooling water passage grooves 7a-1 and three systems of 7b-1 are provided on the peripheral wall surface of the cell substrate 2 of the electromagnet 1 respectively. There are three circular cooling water passage grooves 7a-2 on both sides facing each other with the passage 31 as a center.
-2 is also provided in three systems.

【0017】次に冷却水通路4a,4bを設けたドリフ
トチューブの主要な製造工程を説明する。図3は冷却水
通路用溝が加工されていない前のドリフトチューブを示
し、(a)は側面図、(b)は正面図である。図におい
て電磁石1はステンレス製のセル基材2の内部に収納さ
れている。セル基材2は構成部品の継ぎ目を溶接組立さ
れた一体物で構成されている。
Next, main steps of manufacturing a drift tube provided with the cooling water passages 4a and 4b will be described. FIGS. 3A and 3B show the drift tube before the cooling water passage groove is processed, in which FIG. 3A is a side view and FIG. 3B is a front view. In the figure, an electromagnet 1 is housed inside a cell base material 2 made of stainless steel. The cell base material 2 is formed of an integral body obtained by welding and assembling seams of the component parts.

【0018】図4は図3の状態のセル基材2の表面に電
鋳層を形成させたドリフトチューブを示し、同じく
(a)は側面図、(b)は正面図である。図において、
セル基材2の表面には図示省略するが下地メッキ〔(ニ
ッケルストライク)+(ブロンズメッキ)〕を施し、そ
の上に冷却水通路4a,4bの加工を施すための銅から
なる一次電鋳層3を形成させる。一次電鋳層3には後述
するように冷却水通路4a,4bが加工される。
FIG. 4 shows a drift tube in which an electroformed layer is formed on the surface of the cell substrate 2 in the state shown in FIG. 3, wherein (a) is a side view and (b) is a front view. In the figure,
Although not shown, the surface of the cell substrate 2 is provided with a base plating ((nickel strike) + (bronze plating)), and a primary electroformed layer made of copper for processing the cooling water passages 4a and 4b thereon. 3 is formed. The cooling water passages 4a and 4b are formed in the primary electroformed layer 3 as described later.

【0019】又、冷却水通路用溝7a,7bも同様に、
セル基材2の表面に上記と同じ下地メッキを施し、その
上に冷却水通路用溝7a,7bを施すための一次電鋳層
3を形成し、一次電鋳層3の上に機械加工により溝形成
がなされる。
Similarly, the cooling water passage grooves 7a and 7b also
The same base plating as described above is applied to the surface of the cell base material 2, the primary electroformed layer 3 for providing the cooling water passage grooves 7 a, 7 b is formed thereon, and the primary electroformed layer 3 is machined on the primary electroformed layer 3. A groove is formed.

【0020】図5は冷却水通路4a,4bや冷却水通路
用溝7a,7bの加工順序を示す図であり、説明の都合
上冷却水通路用溝7a,7bの例を示している。図にお
いて、(a)はセル基材2表面に形成された一次電鋳層
3に機械加工により冷却水通路用溝7a,7bを設けた
ものである。
FIG. 5 is a view showing the processing order of the cooling water passages 4a and 4b and the cooling water passage grooves 7a and 7b, and shows an example of the cooling water passage grooves 7a and 7b for convenience of explanation. In the figure, (a) shows that the primary electroformed layer 3 formed on the surface of the cell base material 2 is provided with grooves 7a and 7b for cooling water passages by machining.

【0021】(b)は加工された冷却水通路用溝7a,
7bにワックス8を充填したものであり、その後(c)
に示すようにワックス8の表面に銀粉9を塗布する。次
に、(d)に示すように表面に二次電鋳層10を施して
ワックス8を充填した冷却水通路用溝7a,7bに蓋を
した状態とする。(e)はその後、冷却水通路用溝7
a,7b内のワックス8を除去し、冷却水通路用溝7
a,7bが形成された状態を示している。
(B) shows the processed cooling water passage grooves 7a,
7b filled with wax 8, and then (c)
Silver powder 9 is applied to the surface of wax 8 as shown in FIG. Next, as shown in (d), the secondary electroformed layer 10 is applied to the surface, and the cooling water passage grooves 7a and 7b filled with the wax 8 are covered. (E) Then, the cooling water passage groove 7
a, 7b, the wax 8 in the cooling water passage groove 7 is removed.
a and 7b are formed.

【0022】上記に説明のワックス8の除去は次の要領
で実施する。即ち、上記の図5(d)の状態において二
次電鋳層10を施した後は図1に示す状態となり、冷却
水通路4a,4bの出入口にネジ穴6を加工し、このネ
ジ穴6に継手を接続し、加熱した湯、アルカリ脱脂液、
有機溶剤を順次冷却水通路4a,4bに流入させ、これ
ら液を冷却水通路4a,4bから冷却水通路用溝7a,
7bに供給し、ワックス8を溶解させて冷却水通路4
a,4bの出口から流出させて冷却水通路4a,4bと
冷却水通路用溝7a,7bを完成させる。
The removal of the wax 8 described above is performed in the following manner. That is, after the secondary electroformed layer 10 is applied in the state shown in FIG. 5D, the state shown in FIG. 1 is obtained, and the screw holes 6 are formed at the entrances and exits of the cooling water passages 4a and 4b. To the joints, heated water, alkaline degreasing solution,
The organic solvent is sequentially flowed into the cooling water passages 4a and 4b, and these liquids flow from the cooling water passages 4a and 4b to the cooling water passage grooves 7a and 4b.
7b to dissolve the wax 8 and cool the cooling water passage 4
The cooling water passages 4a, 4b and the grooves 7a, 7b for cooling water passages are completed by flowing out from the outlets a, 4b.

【0023】上記の構成のドリフトチューブを加速器タ
ンク内に装備し、タンク内に高周波電力を投入し、運転
すると、ドリフトチューブ表面には高周波による誘起電
流が流れ、ジュール熱が発生する。その熱によりドリフ
トチューブが膨張するとタンクの共振周波数が変わり、
高周波電力投入が困難になる。
When the drift tube having the above configuration is installed in the accelerator tank, high-frequency power is supplied to the tank, and the tank is operated, a high-frequency induced current flows on the surface of the drift tube to generate Joule heat. When the drift tube expands due to the heat, the resonance frequency of the tank changes,
High-frequency power supply becomes difficult.

【0024】そのために冷却水出入口23より冷却水を
供給すると冷却水は、2系統の冷却水通路4a,4bか
ら冷却水通路用溝7a,7bに流れ、図1(b)の矢印
で示すようにセル基材2の表面に形成された冷却水通路
用溝7a−1,7a−2,7a−3及び7b−1,7b
−2,7b−3に流れてセル表面全体を冷却し、冷却水
通路4a,4bの冷却水出入口23から外部へ流出す
る。
For this purpose, when cooling water is supplied from the cooling water inlet / outlet 23, the cooling water flows from the two cooling water passages 4a, 4b to the cooling water passage grooves 7a, 7b, as indicated by arrows in FIG. And cooling water passage grooves 7a-1, 7a-2, 7a-3 and 7b-1, 7b formed on the surface of the cell base material 2
-2, 7b-3 to cool the entire cell surface and flow out of the cooling water passages 4a, 4b from the cooling water inlet / outlet 23.

【0025】高周波電力により発生する誘起電流は周波
数に依存し、セルのごく表面近傍(数μm )のみを流れ
るため表面が主に加熱されるが、本実施の形態のドリフ
トチューブによれば、冷却水通路4a,4b、冷却水通
路用溝7a,7bはセル基材2の表面にこれら通路4
a,4bや溝7a,7bを形成することができるので、
セル表面を効果的に冷却でき、高負荷運転の陽子加速器
製作が可能となる。
The induced current generated by the high-frequency power depends on the frequency and flows only near the surface of the cell (several μm), so that the surface is mainly heated. However, according to the drift tube of the present embodiment, cooling is performed. The water passages 4a and 4b and the cooling water passage grooves 7a and 7b
a, 4b and grooves 7a, 7b can be formed,
The cell surface can be cooled effectively, making it possible to manufacture proton accelerators with high load operation.

【0026】[0026]

【発明の効果】本発明の(1)のドリフトチューブは、
陽子を加速する加速器のドリフトチューブにおいて、ド
リフトチューブのセル基材表面近傍に冷却水通路を設
け、ドリフトチューブの熱膨張を防ぐことを特徴として
いる。又、(2)のドリフトチューブの製造方法は、ド
リフトチューブのセル基材に溝加工を施し;加工した同
溝にワックス等の溶融可能な簡易溶融材を充填し;さら
に前記セル基材表面に銅電鋳を施して溝表面を塞いで同
溝に蓋をした後;同溝内の前記簡易溶融材を湯、又は溶
剤により除去して冷却水通路を形成することを特徴とし
ている。又、(3)は上記(2)の製造方法で製造され
るドリフトチューブを特徴としている。上記(1)のド
リフトチューブはセル基材表面に冷却水通路が形成され
ており、又、(2)の製造方法ではセル基材表面に溝を
形成することによりセル基材表面に冷却水通路を形成す
ることができるので、セル表面が効果的に冷却すること
ができ、又このような(2)の方法によりセル基材表面
に冷却水通路を備えたドリフトチューブが製造できるの
で、従来のように低負荷のパルス運転を行う加速器では
なく高負荷運転のできる陽子加速器の製作が可能とな
る。
The drift tube of (1) of the present invention is:
In a drift tube of an accelerator for accelerating protons, a cooling water passage is provided near a surface of a cell base material of the drift tube to prevent thermal expansion of the drift tube. Further, the method for manufacturing a drift tube of (2) is that a groove is formed in the cell base material of the drift tube; the processed groove is filled with a meltable simple melting material such as wax; After copper electroforming is performed to cover the groove surface and cover the groove; the simple molten material in the groove is removed with hot water or a solvent to form a cooling water passage. (3) features a drift tube manufactured by the manufacturing method of (2). In the drift tube of (1), a cooling water passage is formed on the surface of the cell base material, and in the manufacturing method of (2), a groove is formed on the surface of the cell base material to form a cooling water passage on the surface of the cell base material. Can be formed, the cell surface can be effectively cooled, and the drift tube having a cooling water passage on the surface of the cell substrate can be manufactured by the method (2). Thus, it is possible to manufacture a proton accelerator capable of high-load operation instead of an accelerator performing low-load pulse operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係るドリフトチューブ
の構成を示し、(a)は側面図、(b)は正面図であ
る。
FIG. 1 shows a configuration of a drift tube according to an embodiment of the present invention, wherein (a) is a side view and (b) is a front view.

【図2】図1における断面を示し、(a)はA−A断面
図、(b)はB−B断面図である。
FIGS. 2A and 2B are cross-sectional views of FIG. 1, wherein FIG. 2A is a cross-sectional view taken along the line AA and FIG.

【図3】本発明の実施の一形態に係るドリフトチューブ
の銅電鋳を施す前のセル基材を示し、(a)は側面図、
(b)は正面図である。
3A and 3B show a cell base material before copper electroforming of a drift tube according to an embodiment of the present invention, and FIG.
(B) is a front view.

【図4】本発明の実施の一形態に係るドリフトチューブ
のセル基材に銅電鋳層を施した状態を示し、(a)は側
面図、(b)は正面図である。
FIGS. 4A and 4B show a state in which a copper base material is applied to a cell base material of a drift tube according to an embodiment of the present invention, wherein FIG. 4A is a side view and FIG.

【図5】本発明の実施の一形態に係る冷却水通路用溝の
加工順序を示す図で、(a)は一次電鋳層への溝加工、
(b)は溝のワックス充填、(c)はワックス上への銀
粉塗布、(d)は二次電鋳層の形成、(e)はワックス
を除去した各状態を示す。
5A and 5B are diagrams showing a processing order of a groove for a cooling water passage according to an embodiment of the present invention, wherein FIG. 5A shows groove processing on a primary electroformed layer;
(B) shows the filling of the groove with wax, (c) shows the application of silver powder on the wax, (d) shows the formation of the secondary electroformed layer, and (e) shows the state in which the wax has been removed.

【図6】従来のドリフトチューブの構成を示し、(a)
は側面図、(b)は正面図である。
FIG. 6 shows a configuration of a conventional drift tube, and (a)
Is a side view, and (b) is a front view.

【符号の説明】[Explanation of symbols]

1 電磁石 2 セル基材 3 一次電鋳層 4a,4b 冷却水通路 5 銅電鋳層 6 ネジ穴 7a,7b 冷却水通路用溝 7a−1,7a−2,7a−3 冷却水通路用溝 7b−1,7b−2,7b−3 冷却水通路用溝 10 二次電鋳層 30 通路 31 陽子 DESCRIPTION OF SYMBOLS 1 Electromagnet 2 Cell base material 3 Primary electroformed layer 4a, 4b Cooling water passage 5 Copper electroformed layer 6 Screw hole 7a, 7b Cooling water passage groove 7a-1, 7a-2, 7a-3 Cooling water passage groove 7b -1, 7b-2, 7b-3 Groove for cooling water passage 10 Secondary electroformed layer 30 Passage 31 Proton

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 陽子を加速する加速器のドリフトチュー
ブにおいて、ドリフトチューブのセル基材表面近傍に冷
却水通路を設け、ドリフトチューブの熱膨張を防ぐこと
を特徴とするドリフトチューブ。
1. A drift tube for an accelerator for accelerating protons, wherein a cooling water passage is provided near the surface of a cell substrate of the drift tube to prevent thermal expansion of the drift tube.
【請求項2】 陽子を加速する加速器のドリフトチュー
ブにおいて、前記ドリフトチューブのセル基材に溝加工
を施し;加工した同溝にワックス等の溶融可能な簡易溶
融材を充填し;さらに前記セル基材表面に銅電鋳を施し
て溝表面を塞いで同溝に蓋をした後;同溝内の前記簡易
溶融材を湯、又は溶剤により除去して冷却水通路を形成
することを特徴とするドリフトチューブの製造方法。
2. A drift tube of an accelerator for accelerating protons, wherein a groove is formed in a cell base material of the drift tube; the processed groove is filled with a fusible simple material such as wax; After the surface of the material is subjected to copper electroforming to cover the groove surface and cover the groove; the simple molten material in the groove is removed with hot water or a solvent to form a cooling water passage. Drift tube manufacturing method.
【請求項3】 前記請求項2に記載の製造方法にて製造
されたドリフトチューブ。
3. A drift tube manufactured by the manufacturing method according to claim 2.
JP12734698A 1998-05-11 1998-05-11 Drift tube and manufacture thereof Withdrawn JPH11329795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12734698A JPH11329795A (en) 1998-05-11 1998-05-11 Drift tube and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12734698A JPH11329795A (en) 1998-05-11 1998-05-11 Drift tube and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11329795A true JPH11329795A (en) 1999-11-30

Family

ID=14957664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12734698A Withdrawn JPH11329795A (en) 1998-05-11 1998-05-11 Drift tube and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11329795A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225551A (en) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp H-mode type drift tube linear accelerator
EP2734016A1 (en) 2012-11-14 2014-05-21 Mitsubishi Heavy Industries, Ltd. Drift tube manufacturing method and drift tube
US8836247B2 (en) 2010-07-12 2014-09-16 Mitsubishi Electric Corporation Drift-tube linear accelerator
CN109640508A (en) * 2019-01-28 2019-04-16 清华大学 A kind of vertical magnetic mode shift pipe linear accelerator of the focusing interdigital of separation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225551A (en) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp H-mode type drift tube linear accelerator
US8836247B2 (en) 2010-07-12 2014-09-16 Mitsubishi Electric Corporation Drift-tube linear accelerator
EP2734016A1 (en) 2012-11-14 2014-05-21 Mitsubishi Heavy Industries, Ltd. Drift tube manufacturing method and drift tube
US9029796B2 (en) 2012-11-14 2015-05-12 Mitsubishi Heavy Industries, Ltd. Drift tube manufacturing method and drift tube
CN109640508A (en) * 2019-01-28 2019-04-16 清华大学 A kind of vertical magnetic mode shift pipe linear accelerator of the focusing interdigital of separation

Similar Documents

Publication Publication Date Title
US9071112B2 (en) Squirrel-cage rotor and production method thereof
US9276442B2 (en) Stator element with cooling element arranged on the backside of the yoke
US4031422A (en) Gas cooled flux shield for dynamoelectric machine
KR20160012105A (en) Heat sink for a linear motor
JPH11329795A (en) Drift tube and manufacture thereof
US4691130A (en) Process for the generation plasma and an MHD generator
US6348757B1 (en) Reinforced supraconductive material, supraconductive cavity, and methods for making same
CN105324496A (en) Inductor for single-shot induction heating of complex workpieces
JPH04162974A (en) Method and equipment for laser beam welding
JPH05148678A (en) Production of gas circulating body
US4033398A (en) Methods of manufacturing laminated metal strip bearing materials
US5021741A (en) Cast charged particle drift tube
US4993620A (en) Solder-electroformed joint for particle beam drift tubes
US20190006154A1 (en) Toroidal Plasma Chamber
RU2347106C2 (en) Electric jet thruster and method for manufacture and thermal treatment of bimetallic magnetic conductors
JP4560755B2 (en) Induction motor rotor manufacturing method
JP2977846B2 (en) Inverter driven rotary electric machine
JPH08138893A (en) Manufacture of superconductive high frequency accelerating cavity
JP2003244912A (en) Induction generator and manufacturing method for rotor thereof
JPH1085970A (en) Laser welding method
JP3417468B2 (en) Indirectly cooled multipole electromagnet
US11976367B2 (en) Dual phase magnetic material component and method of its formation
JP3783335B2 (en) Levitation melting device
JPH118094A (en) Electrode for plasma arc
JPH02267215A (en) High frequency heating coil and surface quenching apparatus using the coil

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802