JPH11329494A - Electrolytic solution for lithium secondary battery and lithium secondary battery using same - Google Patents

Electrolytic solution for lithium secondary battery and lithium secondary battery using same

Info

Publication number
JPH11329494A
JPH11329494A JP10132829A JP13282998A JPH11329494A JP H11329494 A JPH11329494 A JP H11329494A JP 10132829 A JP10132829 A JP 10132829A JP 13282998 A JP13282998 A JP 13282998A JP H11329494 A JPH11329494 A JP H11329494A
Authority
JP
Japan
Prior art keywords
battery
lithium secondary
secondary battery
electrolyte
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10132829A
Other languages
Japanese (ja)
Other versions
JP3820748B2 (en
Inventor
Shunichi Hamamoto
俊一 浜本
Koji Abe
浩司 安部
Tsutomu Takai
勉 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP13282998A priority Critical patent/JP3820748B2/en
Publication of JPH11329494A publication Critical patent/JPH11329494A/en
Priority to US09/569,185 priority patent/US20030148190A1/en
Application granted granted Critical
Publication of JP3820748B2 publication Critical patent/JP3820748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery excellent in battery characteristics such as cycle characteristics, electrical capacity, and preservation characteristics of the battery. SOLUTION: As this electrolytic solution for a lithium secondary battery, an eletrolytic solution having an electrolyte dissolved in a nonaqueous solvent is provided that contains a vinyl sulfone derivative expressed by the following general formula, (where, R is an alkyl group having the number of carbon atoms of 1 to 12, an alkenyl group having the number of carbon atoms of 1 to 12, or a cycloalkyl group having the number of carbon atoms of 3 to 6.), and a lithium secondary battery using this is also provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池のサイクル特
性や電気容量、保存特性などの電池特性にも優れたリチ
ウム二次電池を提供することができる新規なリチウム二
次電池用電解液、およびそれを用いたリチウム二次電池
に関する。
The present invention relates to a novel electrolyte for a lithium secondary battery which can provide a lithium secondary battery having excellent battery characteristics such as cycle characteristics, electric capacity and storage characteristics of the battery, and The present invention relates to a lithium secondary battery using the same.

【0002】[0002]

【従来の技術】近年、リチウム二次電池は小型電子機器
などの駆動用電源として広く使用されている。リチウム
二次電池は、主に正極、非水電解液および負極から構成
されており、特に、LiCoO2などのリチウム複合酸
化物を正極とし、炭素材料又はリチウム金属を負極とし
たリチウム二次電池が好適に使用されている。そして、
そのリチウム二次電池用の電解液としては、エチレンカ
ーボネート(EC)、プロピレンカーボネート(PC)
などのカーボネート類が好適に使用されている。
2. Description of the Related Art In recent years, lithium secondary batteries have been widely used as power sources for driving small electronic devices and the like. A lithium secondary battery is mainly composed of a positive electrode, a non-aqueous electrolyte, and a negative electrode. In particular, a lithium secondary battery using a lithium composite oxide such as LiCoO 2 as a positive electrode and a carbon material or lithium metal as a negative electrode is used. It is preferably used. And
Examples of the electrolyte for the lithium secondary battery include ethylene carbonate (EC) and propylene carbonate (PC).
Such carbonates are preferably used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、電池の
サイクル特性および電気容量などの電池特性について、
さらに優れた特性を有する二次電池が求められている。
負極として例えば天然黒鉛や人造黒鉛などの高結晶化し
た炭素材料を用いたリチウム二次電池は、炭素材料の剥
離が観察され、現象の程度によって容量が不可逆となる
ことがある。この剥離は、電解液中の溶媒が充電時に分
解することにより起こるものであり、炭素材料と電解液
との界面における溶媒の電気化学的還元に起因するもの
である。中でも、融点が低くて誘電率の高いPCは、低
温においても高い電気伝導を有するが、黒鉛負極を用い
る場合にはPCの分解が起こってリチウム二次電池用に
は使用できないという問題点があった。ECも充放電を
繰り返す間に一部分解が起こり、電池性能の低下が起こ
る。このため、電池のサイクル特性および電気容量など
の電池特性は必ずしも満足なものではないのが現状であ
る。
However, regarding the battery characteristics such as the cycle characteristics and the electric capacity of the battery,
There is a demand for a secondary battery having more excellent characteristics.
In a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as the negative electrode, peeling of the carbon material is observed, and the capacity may be irreversible depending on the degree of the phenomenon. This peeling is caused by the decomposition of the solvent in the electrolyte during charging, and is caused by the electrochemical reduction of the solvent at the interface between the carbon material and the electrolyte. Among them, PC having a low melting point and a high dielectric constant has high electric conductivity even at a low temperature. However, when a graphite negative electrode is used, there is a problem that PC is decomposed and cannot be used for a lithium secondary battery. Was. EC also partially decomposes during repeated charge and discharge, resulting in a decrease in battery performance. Therefore, at present, the battery characteristics such as the cycle characteristics and the electric capacity of the battery are not always satisfactory.

【0004】本発明は、前記のようなリチウム二次電池
用電解液に関する課題を解決し、電池のサイクル特性に
優れ、さらに電気容量や充電状態での保存特性などの電
池特性にも優れたリチウム二次電池を構成することがで
きるリチウム二次電池用の電解液、およびそれを用いた
リチウム二次電池を提供することを目的とする。
The present invention solves the above-mentioned problems relating to the electrolyte solution for a lithium secondary battery, and provides a lithium battery having excellent cycle characteristics of a battery, and excellent battery characteristics such as electric capacity and storage characteristics in a charged state. An object of the present invention is to provide an electrolyte for a lithium secondary battery that can constitute a secondary battery, and a lithium secondary battery using the same.

【0005】[0005]

【課題を解決するための手段】本発明は、非水溶媒に電
解質が溶解されている電解液において、該電解液中に下
記一般式(I)
According to the present invention, there is provided an electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the electrolyte has the following general formula (I):

【0006】[0006]

【化3】 Embedded image

【0007】(式中、Rは、炭素数1〜12のアルキル
基、炭素数1〜12のアルケニル基、炭素数3〜6のシ
クロアルキル基を示す。)で表されるビニルスルホン誘
導体が含有されていることを特徴とするリチウム二次電
池用電解液に関する。
(Wherein R represents an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 1 to 12 carbon atoms, and a cycloalkyl group having 3 to 6 carbon atoms). The present invention relates to an electrolyte solution for a lithium secondary battery.

【0008】正極、負極および非水溶媒に電解質が溶解
されている電解液からなるリチウム二次電池において、
該電解液中に下記一般式(I)
In a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent,
In the electrolyte, the following general formula (I)

【0009】[0009]

【化4】 Embedded image

【0010】(式中、Rは、炭素数1〜12のアルキル
基、炭素数1〜12のアルケニル基、炭素数3〜6のシ
クロアルキル基を示す。)で表されるビニルスルホン誘
導体が含有されていることを特徴とするリチウム二次電
池に関する。
(In the formula, R represents an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 1 to 12 carbon atoms, and a cycloalkyl group having 3 to 6 carbon atoms.) And a lithium secondary battery.

【0011】電解液中に含有される前記ビニルスルホン
誘導体は、炭素材料表面での不働態皮膜形成に寄与して
天然黒鉛や人造黒鉛などの活性で高結晶化した炭素材料
を不働態皮膜で被覆し、電池の正常な反応を損なうこと
なく電解液の分解を抑制する効果を有するものと考えら
れる。
The vinyl sulfone derivative contained in the electrolytic solution contributes to the formation of a passive film on the surface of the carbon material and coats the active and highly crystallized carbon material such as natural graphite or artificial graphite with the passive film. However, it is considered that this has an effect of suppressing the decomposition of the electrolytic solution without impairing the normal reaction of the battery.

【0012】[0012]

【発明の実施の形態】非水溶媒に電解質が溶解されてい
る電解液に含有される化合物において、前記式(I)で
表されるビニルスルホン誘導体におけるRは、メチル
基、エチル基、プロピル基のような炭素数1〜12のア
ルキル基が好ましい。アルキル基はイソプロピル基、イ
ソブチル基のような分枝アルキル基でもよい。また、ビ
ニル基、アリル基のようなアルケニル基、また、シクロ
プロピル基、シクロヘキシル基のような炭素数3〜6の
シクロアルキル基でもよい。
BEST MODE FOR CARRYING OUT THE INVENTION In a compound contained in an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, R in a vinyl sulfone derivative represented by the above formula (I) represents a methyl group, an ethyl group, a propyl group. And an alkyl group having 1 to 12 carbon atoms such as The alkyl group may be a branched alkyl group such as an isopropyl group and an isobutyl group. Further, it may be an alkenyl group such as a vinyl group or an allyl group, or a cycloalkyl group having 3 to 6 carbon atoms such as a cyclopropyl group or a cyclohexyl group.

【0013】前記式(I)で表されるビニルスルホン誘
導体の具体例としては、例えば、ジビニルスルホン〔R
=ビニル基〕、エチルビニルスルホン〔R=エチル
基〕、イソプロピルビニルスルホン〔R=イソプロピル
基〕、シクロヘキシルビニルスルホン〔R=シクロヘキ
シル基〕などが挙げられる。
Specific examples of the vinyl sulfone derivative represented by the above formula (I) include, for example, divinyl sulfone [R
= Vinyl group], ethyl vinyl sulfone [R = ethyl group], isopropyl vinyl sulfone [R = isopropyl group], cyclohexyl vinyl sulfone [R = cyclohexyl group], and the like.

【0014】前記ビニルスルホン誘導体を添加する場合
において、前記式(I)で表されるビニルスルホン誘導
体の含有量は、過度に多いと、電解液の電導度などが変
わり電池性能が低下することがあり、また、過度に少な
いと、十分な皮膜が形成されず、期待した電池性能が得
られないので、電解液の重量に対して0.01〜20重
量%、特に0.1〜10重量%の範囲が好ましい。
In the case where the vinyl sulfone derivative is added, if the content of the vinyl sulfone derivative represented by the formula (I) is excessively large, the conductivity of the electrolytic solution and the like may be changed and battery performance may be deteriorated. If the amount is excessively small, a sufficient film is not formed and the expected battery performance cannot be obtained. Therefore, 0.01 to 20% by weight, particularly 0.1 to 10% by weight based on the weight of the electrolytic solution. Is preferable.

【0015】本発明で使用される非水溶媒としては、高
誘電率溶媒と低粘度溶媒とからなるものが好ましい。高
誘電率溶媒としては、例えば、エチレンカーボネート
(EC)、プロピレンカーボネート(PC)、ブチレン
カーボネート(BC)などの環状カーボネート類が好適
に挙げられる。これらの高誘電率溶媒は、一種類で使用
してもよく、また二種類以上組み合わせて使用してもよ
い。
The non-aqueous solvent used in the present invention is preferably a solvent composed of a high dielectric constant solvent and a low viscosity solvent. Preferred examples of the high dielectric constant solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). These high dielectric constant solvents may be used alone or in combination of two or more.

【0016】低粘度溶媒としては、例えば、ジメチルカ
ーボネート(DMC)、メチルエチルカーボネート(M
EC)、ジエチルカーボネート(DEC)などの鎖状カ
ーボネート類、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン、1,4−ジオキサン、1,2−ジメトキ
シエタン、1,2−ジエトキシエタン、1,2−ジブト
キシエタンなどのエーテル類、γ−ブチロラクトンなど
のラクトン類、アセトニトリルなどのニトリル類、プロ
ピオン酸メチルなどのエステル類、ジメチルホルムアミ
ドなどのアミド類が挙げられる。これらの低粘度溶媒は
一種類で使用してもよく、また二種類以上組み合わせて
使用してもよい。高誘電率溶媒と低粘度溶媒とはそれぞ
れ任意に選択され組み合わせて使用される。なお、前記
の高誘電率溶媒および低粘度溶媒は、容量比(高誘電率
溶媒:低粘度溶媒)で通常1:9〜4:1、好ましくは
1:4〜7:3の割合で使用される。
As the low-viscosity solvent, for example, dimethyl carbonate (DMC), methyl ethyl carbonate (M
EC), chain carbonates such as diethyl carbonate (DEC), tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane And lactones such as γ-butyrolactone, nitriles such as acetonitrile, esters such as methyl propionate, and amides such as dimethylformamide. These low-viscosity solvents may be used alone or in combination of two or more. The high dielectric constant solvent and the low viscosity solvent are arbitrarily selected and used in combination. The high dielectric constant solvent and the low viscosity solvent are used in a volume ratio (high dielectric constant solvent: low viscosity solvent) of usually 1: 9 to 4: 1, preferably 1: 4 to 7: 3. You.

【0017】本発明で使用される電解質としては、例え
ば、LiPF6、LiBF4、LiClO4、LiN(S
2CF32、LiN(SO2252、LiC(SO2
CF33などが挙げられる。これらの電解質は、一種類
で使用してもよく、二種類以上組み合わせて使用しても
よい。これら電解質は、前記の非水溶媒に通常0.1〜
3M、好ましくは0.5〜1.5Mの濃度で溶解されて
使用される。
As the electrolyte used in the present invention, for example, LiPF 6 , LiBF 4 , LiClO 4 , LiN (S
O 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2
CF 3 ) 3 and the like. These electrolytes may be used alone or in combination of two or more. These electrolytes are usually 0.1 to
It is used after being dissolved at a concentration of 3M, preferably 0.5 to 1.5M.

【0018】本発明の電解液は、例えば、前記の高誘電
率溶媒や低粘度溶媒を混合し、これに前記の電解質を溶
解し、前記式(I)で表されるビニルスルホン誘導体を
溶解することにより得られる。
In the electrolyte of the present invention, for example, the above-mentioned high-dielectric solvent or low-viscosity solvent is mixed, the above-mentioned electrolyte is dissolved therein, and the vinyl sulfone derivative represented by the above-mentioned formula (I) is dissolved therein. It can be obtained by:

【0019】本発明の電解液は、二次電池の構成部材、
特にリチウム二次電池の構成部材として好適に使用され
る。二次電池を構成する電解液以外の構成部材について
は特に限定されず、従来使用されている種々の構成部材
を使用できる。
The electrolytic solution of the present invention comprises a constituent member of a secondary battery,
In particular, it is suitably used as a component of a lithium secondary battery. The constituent members other than the electrolytic solution constituting the secondary battery are not particularly limited, and various conventionally used constituent members can be used.

【0020】例えば、正極材料(正極活物質)としては
コバルト、マンガン、ニッケル、クロム、鉄およびバナ
ジウムからなる群より選ばれる少なくとも一種類の金属
とリチウムとの複合金属酸化物が使用される。このよう
な複合金属酸化物としては、例えば、LiCoO2、L
iMn24、LiNiO2などが挙げられる。
For example, a composite metal oxide of lithium and at least one metal selected from the group consisting of cobalt, manganese, nickel, chromium, iron and vanadium is used as the positive electrode material (positive electrode active material). Examples of such a composite metal oxide include LiCoO 2 , L
iMn 2 O 4 , LiNiO 2 and the like can be mentioned.

【0021】正極は、前記の正極材料をアセチレンブラ
ック、カーボンブラックなどの導電剤およびポリテトラ
フルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVDF)などの結着剤と混練して正極合剤とした
後、この正極材料を集電体としてのアルミニウムやステ
ンレス製の箔やラス板に圧延して、50℃〜250℃程
度の温度で2時間程度真空下で加熱処理することにより
作製される。
The positive electrode is prepared by kneading the above positive electrode material with a conductive agent such as acetylene black and carbon black and a binder such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) to form a positive electrode mixture. The positive electrode material is rolled into a foil or lath plate made of aluminum or stainless steel as a current collector and heat-treated under a vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.

【0022】負極(負極活物質)としては、リチウム金
属やリチウム合金、およびリチウムを吸蔵・放出可能な
黒鉛型結晶構造を有する炭素材料〔熱分解炭素類、コー
クス類、グラファイト類(人造黒鉛、天然黒鉛など)、
有機高分子化合物燃焼体、炭素繊維〕や複合スズ酸化物
などの物質が使用される。特に、格子面(002)の面
間隔(d002)が3.35〜3.40Åである黒鉛型結
晶構造を有する炭素材料を使用することが好ましい。な
お、炭素材料のような粉末材料はエチレンプロピレンジ
エンターポリマー(EPDM)、ポリテトラフルオロエ
チレン(PTFE)、ポリフッ化ビニリデン(PVD
F)などの結着剤と混練して負極合剤として使用され
る。
As the negative electrode (negative electrode active material), lithium metal, a lithium alloy, and a carbon material having a graphite type crystal structure capable of occluding and releasing lithium [pyrolytic carbons, cokes, graphites (artificial graphite, natural graphite) Graphite, etc.),
Organic polymer compound combustion body, carbon fiber] and composite tin oxide. In particular, it is preferable to use a carbon material having a graphite-type crystal structure in which the plane spacing (d 002 ) of the lattice plane (002) is 3.35 to 3.40 °. In addition, powder materials such as carbon materials are ethylene propylene diene terpolymer (EPDM), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVD).
It is used as a negative electrode mixture by kneading with a binder such as F).

【0023】リチウム二次電池の構造は特に限定される
ものではなく、正極、負極および単層又は複層のセパレ
ータを有するコイン型電池、さらに、正極、負極および
ロール状のセパレータを有する円筒型電池や角型電池な
どが一例として挙げられる。なお、セパレータとしては
公知のポリオレフィンの微多孔膜、織布、不織布などが
使用される。
The structure of the lithium secondary battery is not particularly limited. A coin-type battery having a positive electrode, a negative electrode, and a single-layer or multi-layer separator, and a cylindrical battery having a positive electrode, a negative electrode, and a roll-shaped separator And a prismatic battery. As the separator, a known microporous polyolefin membrane, woven fabric, nonwoven fabric, or the like is used.

【0024】[0024]

【実施例】次に、実施例および比較例を挙げて、本発明
を具体的に説明するが、これらは本発明を何ら限定する
ものではない。 実施例1 〔電解液の調製〕PC:DMC(容量比)=1:2の非
水溶媒を調製し、これにLiPF6を1Mの濃度になる
ように溶解して電解液を調製した後、さらに添加剤とし
て、ジビニルスルホン〔R=ビニル基〕を電解液に対し
て2.0重量%となるように加えた。
EXAMPLES Next, the present invention will be described in detail with reference to Examples and Comparative Examples, but these do not limit the present invention in any way. Example 1 [Preparation of Electrolyte Solution] A non-aqueous solvent of PC: DMC (volume ratio) = 1: 2 was prepared, and LiPF 6 was dissolved therein to a concentration of 1 M to prepare an electrolyte solution. Further, divinyl sulfone [R = vinyl group] was added as an additive so as to be 2.0% by weight with respect to the electrolytic solution.

【0025】〔リチウム二次電池の作製および電池特性
の測定〕LiCoO2(正極活物質)を80重量%、ア
セチレンブラック(導電剤)を10重量%、ポリフッ化
ビニリデン(結着剤)を10重量%の割合で混合し、こ
れにN−メチルピロリドンを加えてスラリー状にしてア
ルミ箔上に塗布した。その後、これを乾燥し、加圧成形
して正極を調製した。天然黒鉛(負極活物質)を90重
量%、ポリフッ化ビニリデン(結着剤)を10重量%の
割合で混合し、これにN−メチルピロリドンを加えてス
ラリー状にして銅箔上に塗布した。その後、これを乾燥
し、加圧成形して負極を調製した。そして、ポリプロピ
レン微多孔性フィルムのセパレータを用い、上記の電解
液を注入してコイン電池(直径20mm、厚さ3.2mm)
を作製した。このコイン電池を用いて、室温(20℃)
下、0.8mAの定電流及び定電圧で、終止電圧4.2
Vまで5時間充電し、次に0.8mAの定電流下、終止
電圧2.7Vまで放電し、この充放電を繰り返した。初
期充放電容量は、EC−DMC(1/2)を電解液とし
て用いた場合(比較例2)とほぼ同等であり、50サイ
クル後の電池特性を測定したところ、初期放電容量を1
00%としたときの放電容量維持率は86.1%であっ
た。また、低温特性も良好であった。コイン電池の作製
条件および電池特性を表1に示す。
[Preparation of Lithium Secondary Battery and Measurement of Battery Characteristics] LiCoO 2 (cathode active material) was 80% by weight, acetylene black (conductive agent) was 10% by weight, and polyvinylidene fluoride (binder) was 10% by weight. %, And N-methylpyrrolidone was added thereto to form a slurry, which was applied on an aluminum foil. Thereafter, it was dried and molded under pressure to prepare a positive electrode. 90% by weight of natural graphite (negative electrode active material) and 10% by weight of polyvinylidene fluoride (binder) were mixed, and N-methylpyrrolidone was added thereto to form a slurry, which was coated on a copper foil. Thereafter, this was dried and molded under pressure to prepare a negative electrode. Then, using a separator made of a polypropylene microporous film, the above-mentioned electrolytic solution was injected into the coin battery (diameter 20 mm, thickness 3.2 mm).
Was prepared. Room temperature (20 ° C) using this coin battery
Below, at a constant current and a constant voltage of 0.8 mA, a final voltage of 4.2
The battery was charged to V for 5 hours, and then discharged under a constant current of 0.8 mA to a final voltage of 2.7 V. This charge / discharge was repeated. The initial charge / discharge capacity was almost the same as in the case where EC-DMC (1/2) was used as the electrolytic solution (Comparative Example 2), and the battery characteristics after 50 cycles were measured.
The discharge capacity retention ratio when the content was set to 00% was 86.1%. Also, the low-temperature characteristics were good. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0026】実施例2 添加剤として、ジビニルスルホン〔R=ビニル基〕を電
解液に対して0.5重量%使用したほかは実施例1と同
様に電解液を調製してコイン電池を作製し、50サイク
ル後の電池特性を測定したところ、放電容量維持率は8
4.7%であった。コイン電池の作製条件および電池特
性を表1に示す。
Example 2 A coin battery was prepared by preparing an electrolyte in the same manner as in Example 1 except that divinyl sulfone [R = vinyl group] was used as an additive in an amount of 0.5% by weight based on the electrolyte. The battery characteristics after 50 cycles were measured.
It was 4.7%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0027】実施例3 添加剤として、ジビニルスルホン〔R=ビニル基〕を電
解液に対して8.0重量%使用したほかは実施例1と同
様に電解液を調製してコイン電池を作製し、50サイク
ル後の電池特性を測定したところ、放電容量維持率は8
1.1%であった。コイン電池の作製条件および電池特
性を表1に示す。
Example 3 A coin battery was prepared by preparing an electrolyte in the same manner as in Example 1, except that 8.0 wt% of divinyl sulfone [R = vinyl group] was used as an additive to the electrolyte. The battery characteristics after 50 cycles were measured.
1.1%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0028】実施例4 添加剤として、エチルビニルスルホン〔R=エチル基〕
を電解液に対して2.0重量%使用したほかは実施例1
と同様に電解液を調製してコイン電池を作製し、50サ
イクル後の電池特性を測定したところ、放電容量維持率
は85.7%であった。コイン電池の作製条件および電
池特性を表1に示す。
Example 4 Ethyl vinyl sulfone [R = ethyl group] as an additive
Example 1 except that 2.0% by weight was used in the electrolyte.
An electrolytic solution was prepared in the same manner as in the above to prepare a coin battery, and the battery characteristics after 50 cycles were measured. As a result, the discharge capacity retention ratio was 85.7%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0029】比較例1 PC:DMC(容量比)=1:2の非水溶媒を調製し、
これにLiPF6を1Mの濃度になるように溶解した。
このとき添加剤は全く添加しなかった。この電解液を使
用して実施例1と同様にコイン電池を作製し、電池特性
を測定したところ、初回充電時にPCの分解が起こり全
く放電できなかった。初回充電後の電池を解体して観察
した結果、黒鉛負極に剥離が認められた。コイン電池の
作製条件および電池特性を表1に示す。
Comparative Example 1 A non-aqueous solvent of PC: DMC (volume ratio) = 1: 2 was prepared.
LiPF 6 was dissolved therein to a concentration of 1M.
At this time, no additives were added. Using this electrolytic solution, a coin battery was fabricated in the same manner as in Example 1, and the battery characteristics were measured. As a result, PC was decomposed at the time of the first charge, and no discharge was possible. As a result of disassembling and observing the battery after the first charge, peeling was observed in the graphite negative electrode. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0030】実施例5 EC:DMC(容量比)=1:2の非水溶媒を調製し、
これにLiPF6を1Mの濃度になるように溶解して電
解液を調製した後、さらに添加剤として、ジビニルスル
ホン〔R=ビニル基〕を電解液に対して2.0重量%と
なるように加えた。この電解液を使用して実施例1と同
様にコイン電池を作製し、電池特性を測定したところ、
初期充放電容量は、EC−DMC(1/2)のみを電解
液として用いた場合(比較例2)とほぼ同等であり、5
0サイクル後の電池特性を測定したところ、初期放電容
量を100%としたときの放電容量維持率は91.1%
であった。また、低温特性も良好であった。コイン電池
の作製条件および電池特性を表1に示す。
Example 5 A non-aqueous solvent of EC: DMC (volume ratio) = 1: 2 was prepared.
LiPF 6 was dissolved therein to a concentration of 1M to prepare an electrolytic solution, and then divinyl sulfone [R = vinyl group] was further added as an additive so that the amount of the electrolytic solution was 2.0% by weight based on the electrolytic solution. added. Using this electrolyte solution, a coin battery was prepared in the same manner as in Example 1, and the battery characteristics were measured.
The initial charge / discharge capacity was almost the same as that when only EC-DMC (1/2) was used as the electrolytic solution (Comparative Example 2).
When the battery characteristics after 0 cycles were measured, the discharge capacity retention ratio was 91.1% when the initial discharge capacity was 100%.
Met. Also, the low-temperature characteristics were good. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0031】実施例6 添加剤として、エチルビニルスルホン〔R=エチル基〕
を電解液に対して2.0重量%使用し、DMCの代わり
にMECを使用したほかは実施例5と同様に電解液を調
製してコイン電池を作製し、50サイクル後の電池特性
を測定したところ、放電容量維持率は90.4%であっ
た。コイン電池の作製条件および電池特性を表1に示
す。
Example 6 Ethyl vinyl sulfone [R = ethyl group] as an additive
Was used in an amount of 2.0% by weight based on the electrolyte solution, and a coin battery was prepared in the same manner as in Example 5 except that MEC was used instead of DMC, and the battery characteristics after 50 cycles were measured. As a result, the discharge capacity retention ratio was 90.4%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0032】実施例7 正極活物質として、LiCoO2に代えてLiMn24
を使用し、添加剤として、ジビニルスルホン〔R=ビニ
ル基〕を電解液に対して3.0重量%使用したほかは実
施例5と同様に電解液を調製してコイン電池を作製し、
50サイクル後の電池特性を測定したところ、放電容量
維持率は89.3%であった。コイン電池の作製条件お
よび電池特性を表1に示す。
Example 7 As a positive electrode active material, LiMn 2 O 4 was used instead of LiCoO 2.
And a coin battery was prepared in the same manner as in Example 5 except that divinyl sulfone [R = vinyl group] was used as an additive in an amount of 3.0% by weight based on the electrolyte.
When the battery characteristics after 50 cycles were measured, the discharge capacity retention ratio was 89.3%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0033】比較例2 EC:DMC(容量比)=1:2の非水溶媒を調製し、
これにLiPF6を1Mの濃度になるように溶解した。
このとき添加剤は全く添加しなかった。この電解液を使
用して実施例1と同様にコイン電池を作製し、電池特性
を測定した。初期放電容量に対し、50サイクル後の放
電容量維持率は83.8%であった。コイン電池の作製
条件および電池特性を表1に示す。
Comparative Example 2 A non-aqueous solvent of EC: DMC (volume ratio) = 1: 2 was prepared.
LiPF 6 was dissolved therein to a concentration of 1M.
At this time, no additives were added. Using this electrolytic solution, a coin battery was produced in the same manner as in Example 1, and the battery characteristics were measured. The discharge capacity retention rate after 50 cycles with respect to the initial discharge capacity was 83.8%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0034】[0034]

【表1】 [Table 1]

【0035】なお、本発明は記載の実施例に限定され
ず、発明の趣旨から容易に類推可能な様々な組み合わせ
が可能である。特に、上記実施例の溶媒の組み合わせは
限定されるものではない。更には、上記実施例はコイン
電池に関するものであるが、本発明は円筒形、角柱形の
電池にも適用される。
It should be noted that the present invention is not limited to the embodiments described above, and various combinations that can be easily analogized from the gist of the invention are possible. In particular, the combinations of the solvents in the above examples are not limited. Further, while the above embodiments relate to coin batteries, the present invention is also applicable to cylindrical and prismatic batteries.

【0036】[0036]

【発明の効果】本発明によれば、電池のサイクル特性、
電気容量、保存特性などの電池特性に優れたリチウム二
次電池を提供することができる。
According to the present invention, the cycle characteristics of the battery,
A lithium secondary battery having excellent battery characteristics such as electric capacity and storage characteristics can be provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非水溶媒に電解質が溶解されている電解
液において、該電解液中に下記一般式(I) 【化1】 (式中、Rは、炭素数1〜12のアルキル基、炭素数1
〜12のアルケニル基、炭素数3〜6のシクロアルキル
基を示す。)で表されるビニルスルホン誘導体が含有さ
れていることを特徴とするリチウム二次電池用電解液。
1. An electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the electrolyte has the following general formula (I): (Wherein R is an alkyl group having 1 to 12 carbon atoms, 1 carbon atom
And alkenyl groups of 12 to 12 and cycloalkyl groups having 3 to 6 carbon atoms. An electrolyte solution for a lithium secondary battery, comprising the vinyl sulfone derivative represented by the formula (1).
【請求項2】 正極、負極および非水溶媒に電解質が溶
解されている電解液からなるリチウム二次電池におい
て、該電解液中に下記一般式(I) 【化2】 (式中、Rは、炭素数1〜12のアルキル基、炭素数1
〜12のアルケニル基、炭素数3〜6のシクロアルキル
基を示す。)で表されるビニルスルホン誘導体が含有さ
れていることを特徴とするリチウム二次電池。
2. A lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the electrolyte has the following general formula (I): (Wherein R is an alkyl group having 1 to 12 carbon atoms, 1 carbon atom
And alkenyl groups of 12 to 12 and cycloalkyl groups having 3 to 6 carbon atoms. A lithium secondary battery comprising a vinyl sulfone derivative represented by the formula (1).
JP13282998A 1998-05-15 1998-05-15 Electrolyte for lithium secondary battery and lithium secondary battery using the same Expired - Lifetime JP3820748B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13282998A JP3820748B2 (en) 1998-05-15 1998-05-15 Electrolyte for lithium secondary battery and lithium secondary battery using the same
US09/569,185 US20030148190A1 (en) 1998-05-15 2000-05-11 Non-aqueous electrolyte and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13282998A JP3820748B2 (en) 1998-05-15 1998-05-15 Electrolyte for lithium secondary battery and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH11329494A true JPH11329494A (en) 1999-11-30
JP3820748B2 JP3820748B2 (en) 2006-09-13

Family

ID=15090522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13282998A Expired - Lifetime JP3820748B2 (en) 1998-05-15 1998-05-15 Electrolyte for lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3820748B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158035A (en) * 2000-11-20 2002-05-31 Mitsui Chemicals Inc Non-aqueous electrolyte and secondary battery using the same
KR100428615B1 (en) * 2000-01-21 2004-04-30 삼성에스디아이 주식회사 A electrolyte for a lithium secondary battery
JP2004179146A (en) * 2002-07-15 2004-06-24 Ube Ind Ltd Nonaqueous electrolyte solution and lithium cell using the same
KR100450199B1 (en) * 2001-05-11 2004-09-24 삼성에스디아이 주식회사 A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR100472511B1 (en) * 2002-10-29 2005-03-10 삼성에스디아이 주식회사 Lithium secondary battery without protection circuit module
JP2007273395A (en) * 2006-03-31 2007-10-18 Sony Corp Battery
US7306880B2 (en) * 2002-11-20 2007-12-11 Samsung Sdi Co., Ltd. Electrolyte for a lithium ion battery and a lithium ion battery comprising the same
US7425388B2 (en) 2002-09-06 2008-09-16 Samsung Sdi Co., Ltd. Electrolyte for a lithium battery and a lithium battery comprising the same
KR101013650B1 (en) * 2007-08-16 2011-02-10 주식회사 엘지화학 Nonaqueous electrolyte lithium secondary battery
US7976988B2 (en) * 1999-07-13 2011-07-12 Ube Industries, Ltd. Non-aqueous electrolyte and lithium secondary battery using the same
US8252465B2 (en) 2001-01-19 2012-08-28 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2013051207A (en) * 2002-07-15 2013-03-14 Ube Ind Ltd Nonaqueous electrolyte and lithium battery using the same
WO2019180945A1 (en) 2018-03-23 2019-09-26 富山薬品工業株式会社 Electrolyte for power storage devices and nonaqueous electrolyte solution
JPWO2018211896A1 (en) * 2017-05-15 2020-03-19 コニカミノルタ株式会社 Vinyl sulfone compound, electrolyte for lithium ion battery and lithium ion battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7976988B2 (en) * 1999-07-13 2011-07-12 Ube Industries, Ltd. Non-aqueous electrolyte and lithium secondary battery using the same
KR100428615B1 (en) * 2000-01-21 2004-04-30 삼성에스디아이 주식회사 A electrolyte for a lithium secondary battery
JP2002158035A (en) * 2000-11-20 2002-05-31 Mitsui Chemicals Inc Non-aqueous electrolyte and secondary battery using the same
US8252465B2 (en) 2001-01-19 2012-08-28 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR100450199B1 (en) * 2001-05-11 2004-09-24 삼성에스디아이 주식회사 A non-aqueous electrolyte and a lithium secondary battery comprising the same
US10050307B2 (en) 2002-07-15 2018-08-14 Ube Industries, Ltd. Non-aqueous electrolytic solution and lithium battery
JP4609751B2 (en) * 2002-07-15 2011-01-12 宇部興産株式会社 Lithium secondary battery
US9742033B2 (en) 2002-07-15 2017-08-22 Ube Industries, Ltd. Non-aqueous electrolytic solution and lithium battery
JP2004179146A (en) * 2002-07-15 2004-06-24 Ube Ind Ltd Nonaqueous electrolyte solution and lithium cell using the same
JP2013051207A (en) * 2002-07-15 2013-03-14 Ube Ind Ltd Nonaqueous electrolyte and lithium battery using the same
JP2014150070A (en) * 2002-07-15 2014-08-21 Ube Ind Ltd Nonaqueous electrolyte and lithium battery using the same
US7425388B2 (en) 2002-09-06 2008-09-16 Samsung Sdi Co., Ltd. Electrolyte for a lithium battery and a lithium battery comprising the same
KR100472511B1 (en) * 2002-10-29 2005-03-10 삼성에스디아이 주식회사 Lithium secondary battery without protection circuit module
US7306880B2 (en) * 2002-11-20 2007-12-11 Samsung Sdi Co., Ltd. Electrolyte for a lithium ion battery and a lithium ion battery comprising the same
JP2007273395A (en) * 2006-03-31 2007-10-18 Sony Corp Battery
US9825327B2 (en) 2007-08-16 2017-11-21 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
KR101013650B1 (en) * 2007-08-16 2011-02-10 주식회사 엘지화학 Nonaqueous electrolyte lithium secondary battery
JPWO2018211896A1 (en) * 2017-05-15 2020-03-19 コニカミノルタ株式会社 Vinyl sulfone compound, electrolyte for lithium ion battery and lithium ion battery
WO2019180945A1 (en) 2018-03-23 2019-09-26 富山薬品工業株式会社 Electrolyte for power storage devices and nonaqueous electrolyte solution
US11830982B2 (en) 2018-03-23 2023-11-28 Tomiyama Pure Chemical Industries, Ltd. Electrolyte for power storage devices and nonaqueous electrolyte solution

Also Published As

Publication number Publication date
JP3820748B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JP3815087B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3558007B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4320914B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3911870B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2001313072A (en) Electrolyte for lithium secondary cell and lithium secondary cell using it
JP4710116B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3823712B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3633269B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3663897B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4045644B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP3610948B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4075416B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4042082B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3633268B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4114259B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4134414B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP5110057B2 (en) Lithium secondary battery
JP2000133305A (en) Non-aqueous electrolyte and lithium secondary battery using it
JP3945004B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3610898B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4432397B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term