JPH11326248A - Method for evaluating quality of coal - Google Patents

Method for evaluating quality of coal

Info

Publication number
JPH11326248A
JPH11326248A JP10140553A JP14055398A JPH11326248A JP H11326248 A JPH11326248 A JP H11326248A JP 10140553 A JP10140553 A JP 10140553A JP 14055398 A JP14055398 A JP 14055398A JP H11326248 A JPH11326248 A JP H11326248A
Authority
JP
Japan
Prior art keywords
coal
relaxation time
coke drum
transverse relaxation
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10140553A
Other languages
Japanese (ja)
Inventor
Kouji Saito
藤 公 児 齋
Shin Matsuura
浦 慎 松
Kenji Kato
藤 健 次 加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10140553A priority Critical patent/JPH11326248A/en
Publication of JPH11326248A publication Critical patent/JPH11326248A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coal quality-evaluation method for coping with a wide range of coal types ranging from caking coal to noncaking coal, achieve nonheating measurement, and is capable of quantitative evaluation. SOLUTION: In an evaluation method, an echo signal to the nuclear magnetic resonance absorption spectrum of a hydrogen nucleus without pretreating coal, the distribution state of a constituent that has relatively a long constituent and short constituent of transverse relaxation time that exists in coal as a micro imaging image being obtained by giving a proper magnetic field inclination simultaneously while giving a proper multiple pulse to the signal is visualized, the average amount of presence of a constituent that can be melted easily and its distribution are evaluated, and the strength of a coke drum after carbonization of loaded coal is estimated according to the relationship with the coke drum strength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉炭を予熱して室
炉式コークス炉で乾留して冶金用コークスを製造する際
の石炭品質評価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the quality of coal when preheating coal powder and carbonizing in a coke oven to produce metallurgical coke.

【0002】[0002]

【従来の技術】従来の高炉用コークス製造に使用する原
料炭には、粘結性が強い石炭(以下、粘結炭という)を
多量に必要としていた。近年、高価な粘結炭の代わりに
安価な非微粘結炭の利用が図られている。コークスの生
産性を大幅に向上させるとともに原料炭の多様化を図る
方法として、例えば、特開平8−209150号公報に
記載の本出願人による方法がある。この方法は、原料炭
の粘結炭と非微粘結炭とを別々に250−350℃まで
予熱した後、サイクロン粗粉炭と微粉炭を分級し、次い
で、非微粘結炭の微粉炭を該当する非微粘結炭の軟化開
始温度以上から最高流動温度以下まで急速加熱し、前記
非微粘結炭の微粉を熱間成形した後、粘結炭及び前記非
微粘結炭の粗粉炭と混合してコークス炉へ装入し乾留す
る方法である。このプロセスは非微粘結炭の使用割合が
50%になり、非微粘結炭の多量使用にも適応できる。
このような非微粘結炭を多量に使用する技術において
は、それに適した新しい石炭品質評価手段が必要とな
る。
2. Description of the Related Art Conventionally, a raw coal used in the production of coke for a blast furnace requires a large amount of coal having strong caking properties (hereinafter referred to as caking coal). In recent years, inexpensive non-coking coal has been used instead of expensive coking coal. As a method of greatly improving coke productivity and diversifying coking coal, there is, for example, a method of the present applicant described in JP-A-8-209150. In this method, the coking coal of the raw coal and the non-coking coal are separately preheated to 250-350 ° C., and then the cyclone coarse coal and pulverized coal are classified. After rapidly heating from the softening start temperature of the corresponding non-fine caking coal to the maximum flow temperature or less and hot-forming the fine powder of the non-micro caking coal, the coarse coal of the caking coal and the non-micro caking coal And then charged into a coke oven and carbonized. This process uses 50% of non-slightly caking coal, and can be applied to a large amount of non-slightly caking coal.
In such a technology that uses a large amount of non-coking coal, a new coal quality evaluation means suitable for it is required.

【0003】コークスの製造に最も重要な石炭の性質
は、乾留時に石炭が溶融するときの粘結性である。この
原料炭の粘結性を評価するための代表的な試験方法とし
て、下記の(1) プラストメーター法,(2) ボタン法,
(3) ロガ法,(4) NMR法などが挙げられる。 (1)プラストメーター法 プラストメーター法の代表例であるギーセラープラスト
メーター法は、以下ののような手順で行われる。まず、
撹拌棒をセットしたレトルト中に石炭試料を装填し、そ
の後金属浴中で規定の昇温速度で加熱する。この際撹拌
棒に一定のトルクを与えておくと、石炭の軟化とともに
撹拌棒が回転する。この回転挙動により軟化開始温度、
最高流動度及び固化温度を測定する試験方法である。こ
の試験方法では、非微粘結炭を対象とした場合、それら
が元来軟化溶融時の粘結性が低いため、溶融しにくく、
結果として撹拌棒の回転数が小さくなり検出精度が低下
するという欠点がある。
[0003] One of the most important properties of coal for producing coke is the cohesiveness of the coal as it melts during carbonization. Typical test methods for evaluating the cohesiveness of this coking coal include the following (1) plastometer method, (2) button method,
(3) Logger method and (4) NMR method. (1) Plastometer method The Gieseller plastometer method, which is a typical example of the plastometer method, is performed in the following procedure. First,
The coal sample is loaded into a retort equipped with a stir bar, and then heated at a specified heating rate in a metal bath. At this time, if a certain torque is given to the stirring rod, the stirring rod rotates together with the softening of the coal. The softening start temperature,
This is a test method for measuring the maximum fluidity and the solidification temperature. In this test method, when non-slightly caking coals are targeted, they are inherently low in caking during softening and melting, so they are difficult to melt,
As a result, there is a disadvantage that the rotation speed of the stirring rod is reduced and the detection accuracy is reduced.

【0004】(2)ボタン法 ボタン法は、るつぼ膨張指数とも呼ばれ、250ミクロン以
下の石炭試料を所定のるつぼに入れて、加熱し生成した
残査であるコークスボタンを標準輪郭と比較して、石炭
の粘結性を簡易評価する方法である。この手法はコーク
スドラム強度を支配する粘結性と膨張率を同時に評価で
きる特徴があるが、定量性に乏しく、特に非微粘結炭は
膨張率が低いために、適用が不可能である。
(2) Button method The button method is also called a crucible expansion index. A coal sample of 250 microns or less is put into a predetermined crucible, and a coke button, which is a residue generated by heating, is compared with a standard contour. This is a method for simply evaluating the caking properties of coal. This method has the characteristic that the caking property and the expansion rate, which govern the coke drum strength, can be evaluated at the same time. However, it is poor in quantitativeness, and in particular, non-slightly caking coal is inapplicable due to its low expansion rate.

【0005】(3)ロガ法 ロガ法は、石炭を既定条件下で、標準無煙炭と一緒に8
50℃の炉で15分乾留したときに、標準無煙炭と溶融
接着できる能力を加熱残留物の強さで表した指数であ
る。この方法は、粘結性の高い石炭に対して用いた場合
には過剰流動が起こり、検出精度が低くなるという欠点
があり、広範囲の炭種に対して有効ではない。
(3) Loga method The loga method is a method for producing coal under standard conditions together with standard anthracite.
It is an index expressing the ability to be melt-bonded to standard anthracite in the oven at 50 ° C. for 15 minutes by the strength of the heated residue. This method is disadvantageous in that when it is used for highly caking coal, excessive flow occurs and detection accuracy is reduced, and is not effective for a wide range of coal types.

【0006】(4)NMR法 特開平9−328685号公報には、石炭に重水素置換
された溶媒を膨潤させたのち、水素核の核磁気共鳴吸収
スペクトルを測定し、石炭中の全水素の存在量を定量
し、その中の水素結合に関与している水素の存在量比を
算出することで、その量比とコークスドラム強度の関係
から得られるコークス化特性によって石炭の品質を評価
することを特徴とする石炭品質評価方法が開示されてい
る。
(4) NMR method Japanese Patent Application Laid-Open No. 9-328865 discloses that after a solvent in which coal has been replaced with deuterium is swelled, a nuclear magnetic resonance absorption spectrum of a hydrogen nucleus is measured and the total hydrogen in the coal is measured. By quantifying the abundance and calculating the abundance ratio of hydrogen involved in hydrogen bonding, the quality of coal is evaluated based on the coking characteristics obtained from the relationship between the abundance ratio and the coke drum strength. A coal quality evaluation method characterized by the following is disclosed.

【0007】また特開平10−19814号公報には、
石炭を重水素置換された溶媒に膨潤させたのち、水素核
の核磁気共鳴吸収スペクトルを測定し、石炭中の横緩和
時間の相対的に長い成分と短い成分の量を求め、その量
比とコークスドラム強度の関係から、装入石炭の乾留後
のコークスドラム強度を推定することを特徴とする石炭
品質評価方法、および石炭を重水素置換されたピリジン
等の溶媒に膨潤させたのち、水素核の核磁気共鳴吸収ス
ペクトルのエコー信号を測定し、その信号に対して適当
な磁場勾配を与えることで得られるマイクロイメージン
グ像で石炭中に存在する横緩和時間の相対的に長い成分
の分布状態等を可視化して、溶融し易い成分存在量や分
布を評価し、コークスドラム強度との関係から装入石炭
の乾留後のコークスドラム強度を推定することを特徴と
する石炭品質評価方法が開示されている。
Japanese Patent Application Laid-Open No. Hei 10-19814 discloses that
After swelling the coal in a deuterated solvent, the nuclear magnetic resonance absorption spectrum of the hydrogen nuclei is measured to determine the amount of relatively long and short transverse relaxation time components in the coal. From the relationship of coke drum strength, coal quality evaluation method characterized by estimating coke drum strength after carbonization of charged coal, and after swelling coal in a solvent such as deuterium-substituted pyridine, hydrogen nucleus Measurement of the echo signal of the nuclear magnetic resonance absorption spectrum of, and applying the appropriate magnetic field gradient to the signal, the distribution state of the component with relatively long transverse relaxation time existing in the coal is shown in the micro-imaging image. Coal quality evaluation characterized by visualizing coal and evaluating the abundance and distribution of easily meltable components and estimating the coke drum strength after carbonization of the charged coal from the relationship with the coke drum strength The law has been disclosed.

【0008】これらの方法に代表されるNMR法は、非
常に有用な情報を与えるが、重水素溶媒での24時間以
上の蒸気膨潤等の前処理が必要であり、簡便性に欠けて
いた。また溶媒が石炭に浸透した結果、その分子構造に
微妙な影響を与えていた。更に石炭を構成する横緩和時
間の比較的長い成分のみの情報しか与えず、横緩和時間
の比較的短い成分に関する情報は得られなかった。
The NMR method represented by these methods gives very useful information, but requires pretreatment such as vapor swelling with a deuterium solvent for 24 hours or more, and lacks simplicity. In addition, the solvent penetrated the coal, which had a subtle effect on its molecular structure. Further, only information on components having relatively long transverse relaxation times constituting coal was given, and information on components having relatively short transverse relaxation times was not obtained.

【0009】[0009]

【発明が解決しようとする課題】粘結性は試料の昇温速
度と密接な関係にあることが明らかにされているが、従
来の上記の試験方法では試料を一定速度で加熱あるいは
急速加熱しており、乾留中に昇温速度が変化する実炉と
は条件が異なるため、正確に評価できないばかりか、加
熱条件が粘結性の発現そのものに影響を及ぼす事も考え
られる。
It has been clarified that the caking property is closely related to the rate of temperature rise of the sample. However, in the above-described conventional test method, the sample is heated at a constant rate or rapidly heated. Since the conditions are different from those of an actual furnace in which the heating rate changes during carbonization, it is not only possible to accurately evaluate the conditions, but also that the heating conditions may affect the development of caking itself.

【0010】また、粘結性がどの程度発現するかは、石
炭組織成分中のビグリニットやエグジニットのような活
性成分の存在割合に依存することが知られている。そこ
で、石炭組織成分を定量することで粘結性の評価が可能
になるが、石炭組織成分の判別は偏光顕微鏡観察によっ
て得られるため、その定量精度には問題がある。
[0010] It is known that the extent to which the caking property is developed depends on the ratio of active ingredients such as biglinite and exginite in the constituents of coal. Therefore, the caking property can be evaluated by quantifying the coal structure component. However, since the determination of the coal structure component can be obtained by observation with a polarizing microscope, there is a problem in the quantification accuracy.

【0011】このため、粘結炭から非微粘結炭までの広
い範囲の炭種に対応ができ、非加熱測定が可能であり、
且つ定量的に評価できる石炭品質評価法の開発が必要と
されている。
[0011] Therefore, it is possible to cope with a wide range of coal types from caking coal to non-coking coal, and non-heating measurement is possible.
There is a need to develop a coal quality evaluation method that can be quantitatively evaluated.

【0012】本発明の目的は、粘結炭から非微粘結炭ま
での広い範囲の炭種に対応ができ、非加熱測定が可能で
あり、且つ定量的に評価できる新しい石炭品質評価法を
提供することである。
An object of the present invention is to provide a new coal quality evaluation method which can cope with a wide range of coal types from caking coal to non-coking coal, can measure without heating, and can evaluate quantitatively. To provide.

【0013】[0013]

【課題を解決するための手段】本発明は、下記の事項を
その特徴としている。石炭を前処理をせずに、水素核の
核磁気共鳴吸収スペクトルのエコー信号を測定し、その
信号に対して適当な多重パルスを与えながら同時に適当
な磁場勾配を与えることで得られるマイクロイメージン
グ像で石炭中に存在する横緩和時間の比較的長い成分の
分布状態を可視化して、溶融し易い成分の平均存在量と
その分布を評価し、コークスドラム強度との関係から、
装入石炭の乾留後のコークスドラム強度を推定すること
を特徴とする石炭品質評価方法。
The present invention has the following features. A micro-imaging image obtained by measuring the echo signal of the nuclear magnetic resonance absorption spectrum of the hydrogen nucleus without pre-treating the coal and applying an appropriate magnetic field gradient while applying an appropriate multiple pulse to the signal By visualizing the distribution of components with relatively long transverse relaxation times present in the coal, the average abundance and distribution of components that are easy to melt are evaluated, and from the relationship with coke drum strength,
A coal quality evaluation method characterized by estimating the coke drum strength of a charged coal after carbonization.

【0014】[0014]

【発明の実施の形態】以下に、本発明の具体的な内容に
ついて説明する。本発明者らは、図1に示す炭化室内に
おける石炭乾留過程を用いて、石炭の新たな品質評価方
法の可能性を検討した。図1において、1は燃焼室,2
は珪石レンガ壁,3はコークス層,4は軟化溶融層,5
は石炭層を各々示す。石炭は燃焼室から珪石レンガ壁を
通じて加熱され、軟化溶融層を形成し、その後再固化し
てコークスとなる。本発明者らは、図1に示すような石
炭乾留過程を前提として、石炭の新たな品質評価方法の
可能性を検討した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The specific contents of the present invention will be described below. The present inventors studied the possibility of a new coal quality evaluation method using the coal carbonization process in the carbonization chamber shown in FIG. In FIG. 1, 1 is a combustion chamber, 2
Is a silica brick wall, 3 is a coke layer, 4 is a softened molten layer, 5
Indicates a coal bed. The coal is heated from the combustion chamber through the silica brick wall to form a softened molten layer, which is then re-solidified into coke. The present inventors have studied the possibility of a new coal quality evaluation method on the premise of a coal carbonization process as shown in FIG.

【0015】例えば、表1に示す性質の石炭について、
前処理をせずに石炭の水素核のNMRスペクトルに、数
マイクロ秒の短く且つ数百パットの強いパルスを一定周
期で繰り返し与える多重パルス法と同時に直線的な傾斜
磁場勾配を組み合わせることで測定を行う。この組み合
わせで、従来溶媒等での事前処理をしなければ不可能で
あった強い双極子相互作用を持つ石炭の線幅の先鋭化が
可能となり、NMRマイクロイメージング画像を得るこ
とが可能となる。なお、表1に示すコークス強度とは、
JIS2151に記されているコークスドラム強度(D
I15015)をいう。
For example, for coal having the properties shown in Table 1,
Without pre-treatment, the NMR spectrum of the hydrogen nucleus of coal is measured by combining a multi-pulse method that repeatedly applies a short pulse of several microseconds and a strong pulse of several hundred pats at a constant period and a linear gradient magnetic field gradient. Do. With this combination, it becomes possible to sharpen the line width of coal having a strong dipole interaction, which would otherwise be impossible without prior treatment with a solvent or the like, and it is possible to obtain an NMR microimaging image. The coke strength shown in Table 1 is
Coke drum strength described in JIS2151 (D
I15015).

【0016】[0016]

【表1】 [Table 1]

【0017】マイクロイメージング手法は、NMR(核
磁気共鳴)を用いた分析法である。物質は同一の核であ
っても分子内での様々な環境の違いから、核が磁気共鳴
を起こす共鳴周波数が異なることが知られており、その
共鳴周波数が化学シフトと呼ばれている。NMRの多く
の手法の中でNMRマイクロイメージング法は、磁場勾
配を与え、試料が感ずる磁場強度の差をある化学シフト
に出現した吸収線として捉え、その情報を位置情報に変
換し、空間的な存在分布について可視化している。NM
Rマイクロイメージング法の特徴は、(1)形態学的な
情報とともに物理的及び化学的情報が得られる、(2)
非破壊である、(3)任意の方向の断層像及び立体配置
像を得られる等着目する物質の空間的な分布に関して、
可視化情報を得ることができる点である。このマイクロ
イメージング法にて、イメージ像を測定し、石炭の構造
解析を行った。
The micro-imaging technique is an analysis method using NMR (nuclear magnetic resonance). It is known that even if a substance is the same nucleus, the resonance frequency at which the nucleus causes magnetic resonance differs due to various environmental differences in the molecule, and the resonance frequency is called a chemical shift. Among many methods of NMR, the NMR microimaging method gives a magnetic field gradient, captures a difference in magnetic field strength sensed by a sample as an absorption line that appears in a certain chemical shift, converts that information into positional information, The existence distribution is visualized. NM
The features of the R microimaging method are (1) physical and chemical information can be obtained together with morphological information, (2)
Non-destructive, (3) spatial distribution of the substance of interest, such as the ability to obtain tomographic images and configuration images in arbitrary directions,
The point is that visualization information can be obtained. The image image was measured by this micro-imaging method, and the structural analysis of the coal was performed.

【0018】粘結性の発現とは、加熱された石炭の分子
運動が活発になる状態であり、NMRイメージング像か
ら得られる横緩和時間の分布と石炭粒内での平均値によ
り、石炭分子の運動性量を定量的に評価できることが明
らかとなった。このことから本発明者らは、NMRイメ
ージングから得た横緩和時間の長い成分と、短い成分の
比の平均値を用いれば石炭品質の評価に利用できるのを
見い出した。更に、横緩和時間の長い成分と短い成分の
石炭粒内分布を明らかにし、それらが溶融成分が多いか
否か、その分布が均一か否かという石炭の品質の評価に
利用できることを見い出した。
The expression of caking is a state in which the molecular motion of the heated coal becomes active, and the distribution of the transverse relaxation time obtained from the NMR imaging image and the average value within the coal grain indicate that the coal molecule has It became clear that the amount of motor activity can be quantitatively evaluated. From this, the present inventors have found that using the average value of the ratio of the component having a long transverse relaxation time to the component having a short transverse relaxation time obtained from NMR imaging can be used for evaluating coal quality. Furthermore, we clarified the intragranular distribution of the components with long and short transverse relaxation times and found that they can be used to evaluate the quality of coal, whether or not there are many molten components and whether or not the distribution is uniform.

【0019】本明細書において、横緩和時間とは、NM
Rイメージング測定の結果得られる最小画素内に存在す
る石炭自身に由来する水素核NMRスペクトル吸収の半
値幅(吸収の高さの半分の位置における吸収の幅を意味
する)から導き出されるものであり、石炭のバルクとし
ての運動性を表す。この時、水素核磁気共鳴から得られ
た吸収を半値幅の広い吸収(横緩和時間が短い成分)
と、狭い吸収(横緩和時間が長い成分)に波形分離し、
その面積をそれぞれの成分量とした。本測定時には得ら
れる吸収を先鋭化させ明確なイメージング像にすること
で、横緩和時間の長い成分と短い成分の差異を明確にす
る。このため、適当な多重パルスを与えるマジックエコ
ー法(F.Weigand,D.E.Demco,B.Bluemich and H.W.Spies
s, J.Magn.Reson.A120(1996)190) が非常に有効であ
り、従来のイメージング技術と併用した。同様の効果
は、漏洩磁場を利用するSTRAFI法(A.A.Samoilen
ko,D.Y.Artemov, and L.A.Sibeldina,JETP Lett.48(198
8) 348)でも確認されている。
In this specification, the lateral relaxation time is NM
Derived from the half-width of the absorption spectrum of the hydrogen nuclei derived from the coal itself present in the smallest pixel obtained as a result of the R imaging measurement (meaning the absorption width at half the height of the absorption); Indicates the mobility of coal as bulk. At this time, the absorption obtained from hydrogen nuclear magnetic resonance is converted to absorption with a wide half width (a component with a short transverse relaxation time).
And the waveform is separated into narrow absorption (component with a long transverse relaxation time)
The area was defined as the amount of each component. At the time of the main measurement, the difference between the component having a long transverse relaxation time and the component having a short transverse relaxation time is clarified by sharpening the obtained absorption to form a clear imaging image. For this reason, the magic echo method (F. Weigand, DEDemco, B. Bluemich and HWSpies
s, J. Magn. Reson. A120 (1996) 190) was very effective and was used in conjunction with conventional imaging techniques. A similar effect is obtained by the STRAFI method (AASamoilen
ko, DYArtemov, and LASibeldina, JETP Lett.48 (198
8) Confirmed in 348).

【0020】測定のためには、図2のように試料を磁場
中に置き、測定時間の間は固定する必要がある。設置及
び固定方法として、ガラスの試料管に試料を静置させた
り、観測する液体と同じ核で核磁気共鳴を起こさせない
ようなテフロン等のスポンジ,木,プラスチック等に挟
んだり、直接試料を磁場中に糸や導線等で吊るすなどの
方法がある。試料の大きさは、装置の制限にもよるが、
最大直径25mmであり、それ以下であれば形状には依
存しない。
For measurement, it is necessary to place the sample in a magnetic field as shown in FIG. 2 and to fix the sample during the measurement time. As a setting and fixing method, the sample is allowed to stand still in a glass sample tube, sandwiched between a sponge such as Teflon, wood, plastic, etc. that does not cause nuclear magnetic resonance with the same nucleus as the liquid to be observed, or the sample is directly subjected to a magnetic field. There is a method such as hanging with a thread or a conducting wire inside. The size of the sample depends on the limitations of the device,
The maximum diameter is 25 mm, and if it is less than that, it does not depend on the shape.

【0021】ここでは、全く事前処理をしない石炭を数
マイクロ秒の短く且つ数百パットの強いパルスを一定周
期で繰り返し与える多重パルス法と同時に、直線的な傾
斜磁場勾配を組み合わせることで、強い双極子相互作用
を持つ石炭の線幅の先鋭化が、溶媒等での事前処理をせ
ずに可能となる。これにより、NMRマイクロイメージ
ング画像を得ることが可能となる。この核磁気共鳴法で
直接観測することで、吸収線のイメージを可視化するこ
とにより、横緩和時間の長い成分と短い成分を評価する
ものである。非破壊で且つ高分解能を達成するので、従
来法では溶媒を膨潤させなければ評価できなかった溶融
に関与する成分を、溶媒を使用することなしに非破壊に
評価することが狙いであり、NMR顕微鏡という意味で
溶媒レスNMRマイクロイメージング法と称する。
Here, a strong dipole is obtained by combining a non-pretreated coal with a multipulse method of repeatedly applying a short pulse of several microseconds and a strong pulse of several hundred pats at a constant period, and a linear gradient gradient. The sharpening of the line width of coal having child interaction becomes possible without prior treatment with a solvent or the like. This makes it possible to obtain an NMR micro-imaging image. By directly observing with the nuclear magnetic resonance method, the image of the absorption line is visualized to evaluate the components having long and short transverse relaxation times. Since it achieves non-destructive and high resolution, it is aimed at non-destructively evaluating components involved in melting, which could not be evaluated without swelling the solvent in the conventional method, without using a solvent. It is called a solventless NMR microimaging method in the sense of a microscope.

【0022】測定の手法としては、前述した多重パルス
を使用するマジックエコー法と2次元スピンエコー法,
マルチスライススピンエコー法,3次元スピンエコー法
を組み合わせた方法やSTRAFI状態での2次元スピ
ンエコー法,マルチスライススピンエコー法,3次元ス
ピンエコー法などがあり、得たい情報に応じて使い分け
ることができる。2次元スライスエコー法は、ある断面
での空隙の分布等を明確にできる。マルチスライススピ
ンエコー法は、連続して、ある厚さ間隔での複数断面に
おける線幅の狭い成分の分布やそのつながり等を得るこ
とができる。また3次元スピンエコー法は、石炭中の横
緩和時間の長い成分と短い成分に関するデータを3次元
的に取り込み、任意な位置断面における分布の情報,つ
ながり等について多くの知見を得ることができる。
As a measuring method, the above-described magic echo method using multiple pulses, a two-dimensional spin echo method,
There are a multi-slice spin echo method, a method combining the three-dimensional spin echo method, a two-dimensional spin echo method in the STRAFI state, a multi-slice spin echo method, a three-dimensional spin echo method, and the like. it can. The two-dimensional slice echo method can clarify the distribution of voids in a certain cross section. In the multi-slice spin echo method, it is possible to continuously obtain a distribution of components having a small line width in a plurality of cross sections at a certain thickness interval, a connection thereof, and the like. In addition, the three-dimensional spin echo method three-dimensionally captures data on components having long and short transverse relaxation times in coal, and can obtain a great deal of knowledge about distribution information, connection, and the like at an arbitrary position cross section.

【0023】本発明者らは、炭化度の異なる代表的な5
種類の石炭について、溶媒レスNMRマイクロイメージ
ング法によって測定し、得られたイメージ像の画素毎
に、横緩和時間を計算し、各画素毎に横緩和時間の相対
的に長い成分と短い成分の比を得た。そしてすべての画
素の平均値の横緩和時間において、相対的に長い成分と
短い成分の比とコークスドラム強度との関係について調
査した。その結果、両者の間には明確な関係があること
が分った。
[0023] The present inventors have proposed a typical 5 carbonized material having different degrees of carbonization.
For each type of coal, it was measured by the solventless NMR microimaging method, the transverse relaxation time was calculated for each pixel of the obtained image, and the ratio of the relatively long and short components of the transverse relaxation time was calculated for each pixel. I got Then, in the lateral relaxation time of the average value of all the pixels, the relationship between the ratio of the relatively long component and the short component and the coke drum strength was investigated. As a result, it was found that there was a clear relationship between the two.

【0024】図3は、炭化度の異なる代表的な5種類の
石炭の横緩和時間の長い成分と短い成分の比と、コーク
スドラムの強度との関係を示す。また、図4は、表1に
示す石炭の同一炭種での急速加熱処理の条件を変えて処
理した石炭について横緩和時間の長い成分と短い成分の
比と、コークスドラムの強度との関係を示す。各図から
分るように、横緩和時間の長い成分と短い成分の比の平
均値と、コークスドラム強度の間には明確な関係があ
り、横緩和時間の長い成分の存在量が大きくなればなる
ほど、コークスドラム強度は強くなる。すなわち、横緩
和時間の長い成分の増加は、石炭のバルクの運動性の大
きい成分の増加を意味しており、粘結性が増加してコー
クスドラム強度が増加する。
FIG. 3 shows the relationship between the ratio of the component having a long transverse relaxation time to the component having a short transverse relaxation time and the strength of a coke drum of five typical types of coals having different degrees of carbonization. FIG. 4 shows the relationship between the ratio of the component having a long transverse relaxation time to the component having a short transverse relaxation time and the coke drum strength for coal treated by changing the conditions of rapid heating treatment of the same type of coal shown in Table 1. Show. As can be seen from each figure, there is a clear relationship between the average value of the ratio of the component having a long transverse relaxation time to the component having a short transverse relaxation time and the coke drum strength. Indeed, the coke drum strength increases. That is, an increase in the component having a long transverse relaxation time means an increase in the component having a large mobility in the bulk of the coal, which increases the cohesiveness and the coke drum strength.

【0025】この関係を活用して横緩和時間の長い成分
と短い成分の比を、石炭の品質評価に利用することが可
能となる。具体的には、コークスドラム強度が既知であ
る石炭をイメージング法で測定した横緩和時間について
長い成分と短い成分の比をあらかじめ求め、コークスド
ラム強度と横緩和時間の長い成分と短い成分の比の検量
線を作成しておき、NMRイメージング法で評価しよう
とする石炭の横緩和時間の長い成分と短い成分の比を測
定し、そのコークスドラム強度との関係を得ることで、
石炭品質を評価できる。さらに、急速加熱処理を行った
石炭の横緩和時間の長い成分と短い成分の比を求め、あ
らかじめ求めた検量線から、コークス化後のコークスド
ラム強度を推定し、急速加熱を行わない原炭と比較を行
うことで、急速加熱による石炭品質改善効果を評価でき
る。本発明の方法では石炭を事前に溶媒等で前処理して
いないので、溶媒の影響を排除した定量性の高い評価が
可能である。
By utilizing this relationship, the ratio of the component having a long transverse relaxation time to the component having a short transverse relaxation time can be used for quality evaluation of coal. Specifically, the ratio of the long component to the short component is determined in advance for the transverse relaxation time of coal whose coke drum strength is known by the imaging method, and the ratio of the ratio of the long component to the short component of the coke drum strength and the transverse relaxation time is determined. By preparing a calibration curve, measuring the ratio between the long and short components of the transverse relaxation time of the coal to be evaluated by the NMR imaging method, and obtaining the relationship with the coke drum strength,
Coal quality can be evaluated. In addition, the ratio of long and short transverse relaxation time components of the coal subjected to rapid heating is calculated, and the strength of the coke drum after coking is estimated from the calibration curve obtained in advance. By performing the comparison, the effect of improving coal quality by rapid heating can be evaluated. In the method of the present invention, since coal is not pretreated with a solvent or the like in advance, highly quantitative evaluation excluding the influence of the solvent is possible.

【0026】また本発明者は、表1に示すような石炭に
ついて、まず溶媒レスNMRマイクロイメージング法に
より横緩和時間を測定し、横緩和時間の長い成分の存在
分布を得た。次に前述した方法で、NMRマイクロイメ
ージング法の測定に用いた石炭をそのまま乾留してコー
クス化し、JIS法に従ってコークスドラム強度を測定
し、両者の関係について調査した。その結果、図5に一
例を示すように、横緩和時間の長い成分(白く表示され
ている部分)が均一に分布しているほどコークスドラム
強度が増加していることが分った。横緩和時間の長い成
分が均一に存在していることは、運動性が高い部分が均
一に存在していることになり、粘結性の高い部分同志の
接着確率が高くなることになり、結果としてコークスド
ラム強度が増加する。なお、図5(a)はコークスドラ
ム強度81、図5(b)はコークスドラム強度74、図
5(c)はコークスドラム強度71、図5(d)はコー
クスドラム強度67、図5(e)はコークスドラム強度
62である。
The present inventor first measured the transverse relaxation time of the coal as shown in Table 1 by a solventless NMR microimaging method, and obtained the existence distribution of components having a long transverse relaxation time. Next, the coal used for the measurement by the NMR micro-imaging method was directly carbonized and coked by the method described above, and the coke drum strength was measured according to the JIS method, and the relationship between the two was investigated. As a result, as shown in an example in FIG. 5, it was found that the coke drum strength increased as the components having a longer lateral relaxation time (portions displayed in white) were more uniformly distributed. The fact that the components having a long transverse relaxation time are present uniformly means that the parts having high mobility are present uniformly, and the probability of adhesion between the parts having high cohesion is increased. As the coke drum strength increases. 5A is a coke drum strength 81, FIG. 5B is a coke drum strength 74, FIG. 5C is a coke drum strength 71, FIG. 5D is a coke drum strength 67, and FIG. ) Is the coke drum strength 62.

【0027】また、種々の炭種の石炭について横緩和時
間を測定し、得られた画像に対して、外側部・中側部・
内側部の3部分に均等分割し、横緩和時間の長い成分の
相対的な存在量とその石炭をそのまま乾留して得られた
コークスドラム強度との関係を、図7に示す。
Further, the transverse relaxation time was measured for coals of various types of coal, and the obtained images were compared with the outer part, the middle part, and the outer part.
FIG. 7 shows the relationship between the relative abundance of the component having a long transverse relaxation time and the coke drum strength obtained by carbonizing the coal as it is by equally dividing it into three portions on the inner side.

【0028】図7から明らかなように、外側部における
横緩和時間の長い成分の相対的な存在量と、コークスド
ラム強度との間には相関がある。この関係を活用して、
コークスドラム強度が未知な種々の石炭に対して、乾留
をすることなく、NMRマイクロイメージングで測定す
ることによって得られる横緩和時間の長い成分の分布で
石炭の品質評価に利用することが可能となる。特に分級
する前の粒径サイズの異なる石炭に対して、非常に精度
が高く有効である。具体的には、コークスドラム強度が
既知の石炭の横緩和時間の長い成分の外側部での相対的
な存在量(石炭単位面積あたりの存在量に換算)をあら
かじめ求め、評価しようとする石炭の横緩和時間の長い
成分の外側部の相対的な存在量とコークスドラム強度と
の相対関係を得ることで、石炭品質を評価できる。
As apparent from FIG. 7, there is a correlation between the relative abundance of the component having a long lateral relaxation time in the outer portion and the coke drum strength. Leveraging this relationship,
Various coals with unknown coke drum strength can be used for coal quality evaluation with the distribution of components with long transverse relaxation time obtained by measuring by NMR micro-imaging without carbonization. . In particular, it is highly accurate and effective for coal having different particle size before classification. Specifically, the relative abundance (converted to the abundance per unit area of coal) of the outer portion of the component having a long transverse relaxation time of the coal whose coke drum strength is known is determined in advance, and the coal to be evaluated is evaluated. Coal quality can be evaluated by obtaining the relative relationship between the relative abundance of the outer part of the component having a long lateral relaxation time and the coke drum strength.

【0029】また、予備処理として急速加熱処理を行っ
た石炭をコークス化のための乾留をすることなしに、N
MRマイクロイメージング測定することで横緩和時間の
長い成分の存在分布を得る。さらに、急速加熱を行わな
い原炭の分布と比較を行うことで、急速加熱による石炭
品質改善効果を評価できる。
Further, the coal which has been subjected to the rapid heating treatment as a pretreatment is subjected to N
The existence distribution of the component having a long transverse relaxation time is obtained by performing the MR microimaging measurement. Furthermore, by comparing the distribution of raw coal that is not subjected to rapid heating, the effect of improving coal quality by rapid heating can be evaluated.

【0030】[0030]

【実施例】次に、本発明を実施例によりさらに説明す
る。本発明はこれに限定されるものではない。表1に示
す性質の石炭に対して、3水準に急速加熱処理を行い、
NMRマイクロイメージング測定を実施後、前記石炭を
装入密度0.8t/m、1100℃一定の加熱温度で
20時間乾留し、コークスを製造した。
Next, the present invention will be further described with reference to examples. The present invention is not limited to this. The coal of the properties shown in Table 1 is subjected to a rapid heating treatment to three levels,
After performing the NMR microimaging measurement, the coal was carbonized at a charge density of 0.8 t / m 3 and a constant heating temperature of 1100 ° C. for 20 hours to produce coke.

【0031】マイクロイメージングの測定手法は、マジ
ックエコー3次元スピンエコー法を用い、90度、18
0度、180度、90度、の各パルスを数ミリ秒の間隔
で多重に照射することを繰り返しながら、x,y,z方
向に対してそれぞれ磁場勾配として30,30,20ga
uss/cmを掛けた。繰り返し時間は0.5秒とし、エコー
時間は2msecであった。また各x,y,zに対してのデ
ータポイントは、それぞれ128,64,32とした。
各断面に対する積算回数は、16回であった。測定時間
に要した時間は、約28時間であった。
The measuring method of micro-imaging uses a magic echo three-dimensional spin echo method, and is 90 degrees, 18 degrees.
While repeatedly irradiating each pulse of 0 degrees, 180 degrees, and 90 degrees at intervals of several milliseconds, a magnetic field gradient of 30, 30, 20 ga is applied in the x, y, and z directions.
multiplied by uss / cm. The repetition time was 0.5 seconds and the echo time was 2 msec. The data points for each of x, y, and z were 128, 64, and 32, respectively.
The number of integrations for each section was 16 times. The time required for the measurement time was about 28 hours.

【0032】測定終了後、得られたデータをx,y,z
に対してそれぞれゼロフィリングすることで128,1
28,128のデータとした。それらのデータをブロー
ドニングファクターを6Hz,エクスポーネンシャル関
数を窓関数として、x,y,zの各方向にフーリエ変換
し、NMRマイクロイメージング像とした。任意の位置
について2次元スライスを切り出した結果を、図6に示
した。白い部分が線幅の狭い成分(緩和時間の長い成
分)の存在位置を表している。このことから、溶融しや
すい成分の存在や分布の均一度がわかる。横緩和時間の
長い成分と短い成分の定量は、上記測定後フーリエ変換
する前に、得られたFID信号を2つの信号(横緩和時
間が長い成分が線幅の狭い成分に当たり、横緩和時間が
短い成分が線幅の広い成分にあたる)に波形分離し、そ
れぞれをフーリエ変換して横緩和時間の長い成分と短い
成分の吸収面積の比を数値化した。なお、図6(a)は
急速加熱温度350℃、図6(b)は急速加熱温度40
0℃、図6(c)は急速加熱温度500℃である。
After the measurement is completed, the obtained data is represented by x, y, z
To 128,1 by zero-filling
28 and 128 data. These data were subjected to Fourier transform in each of the x, y, and z directions using a broadening factor of 6 Hz and an exponential function as a window function to obtain an NMR microimaging image. FIG. 6 shows a result obtained by cutting out a two-dimensional slice at an arbitrary position. The white portion indicates the location of a component having a narrow line width (a component having a long relaxation time). From this, it can be seen the existence and uniformity of distribution of easily meltable components. The quantification of the component having a long transverse relaxation time and the component having a short transverse relaxation time are performed by subjecting the obtained FID signal to two signals (a component having a long transverse relaxation time corresponds to a component having a small line width and a transverse relaxation time before the Fourier transform is performed). The short component corresponds to a component having a wide line width), and the respective components are subjected to Fourier transform to quantify the ratio of the absorption area between the component having a long transverse relaxation time and the component having a short transverse relaxation time. FIG. 6A shows a rapid heating temperature of 350 ° C., and FIG.
0 ° C., and FIG. 6C shows the rapid heating temperature of 500 ° C.

【0033】3水準で急速加熱処理した石炭を、本発明
の方法で測定し、横緩和時間の長い成分量と短い成分量
の比の平均値を算出した結果を、表2に示す。従来法で
は検知できなかった非微粘結炭の品質向上が評価でき
る。すなわち、図4に示すように、急速加熱処理での石
炭に及ぼす影響をコークスを乾留することなしに、コー
クスドラム強度の推定が良好に評価できた。
Table 2 shows the results of measuring the coal subjected to the rapid heating treatment at three levels by the method of the present invention and calculating the average value of the ratio of the amount of the component having a long transverse relaxation time to the amount of the component having a short transverse relaxation time. It is possible to evaluate the quality improvement of non-fine caking coal which could not be detected by the conventional method. That is, as shown in FIG. 4, the estimation of the coke drum strength could be favorably evaluated without effecting the effect of the rapid heating treatment on coal without carbonizing the coke.

【0034】[0034]

【表2】 [Table 2]

【0035】また図7を用いての結果を、表3に示す。
石炭の急速加熱処理での影響を乾留することなく、特に
粒径に及ぼす影響を加味しながら良好にコークスドラム
強度の推定ができた。
Table 3 shows the results obtained by using FIG.
The coke drum strength was successfully estimated without carbonizing the effects of the rapid heating of coal, especially considering the effect on the particle size.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【発明の効果】本発明によれば、幅広い種類の石炭に対
して、精度高く品質を評価でき、石炭評価精度の向上、
コークス製造コストの削減につながる。
According to the present invention, the quality of a wide variety of types of coal can be evaluated with high accuracy, and the coal evaluation accuracy can be improved.
This leads to reduced coke production costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】炭化室内における石炭乾留過程を示す図であ
る。
FIG. 1 is a diagram showing a coal carbonization process in a carbonization chamber.

【図2】NMRマイクロイメージング測定での試料状況
を示す図である。
FIG. 2 is a diagram showing a sample state in NMR microimaging measurement.

【図3】炭化度の異なる各種石炭の横緩和時間の長い成
分と短い成分の比と、コースクドラム強度とを関係を示
すグラフである。
FIG. 3 is a graph showing a relationship between a ratio of a component having a long lateral relaxation time to a component having a short lateral relaxation time and a caustic drum strength of various coals having different carbonization degrees.

【図4】同一炭種における急速加熱処理効果を及ぼす横
緩和時間の長い成分と短い成分の比と、コークスドラム
強度の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the ratio of a component having a long transverse relaxation time and a component having a short transverse relaxation time that exerts a rapid heating effect for the same coal type, and the coke drum strength.

【図5】コークドラム強度の異なる各種試料のマイクロ
イメージングで得られた顕微鏡写真であり、(a)ドラ
ム強度81、(b)ドラム強度74、(c)ドラム強度
71、(d)ドラム強度67、(e)ドラム強度62で
ある。
FIGS. 5A and 5B are micrographs obtained by microimaging of various samples having different coke drum intensities, wherein (a) drum intensity 81, (b) drum intensity 74, (c) drum intensity 71, and (d) drum intensity 67. , (E) drum strength 62.

【図6】急速加熱温度の異なる各種試料のマイクロイメ
ージングで得られた顕微鏡写真であり、(a)急速加熱
350℃、(b)急速加熱400℃、(c)急速加熱5
00℃である。
FIGS. 6A and 6B are micrographs obtained by microimaging of various samples having different rapid heating temperatures, wherein (a) 350 ° C. rapid heating, (b) 400 ° C. rapid heating, and (c) rapid heating 5
00 ° C.

【図7】炭化度の異なる各種石炭の横緩和時間の長い成
分の相対的な存在量とコークスドラム強度との関係を示
すグラフである。
FIG. 7 is a graph showing the relationship between the relative abundance of components having a long lateral relaxation time and the coke drum strength of various coals having different degrees of carbonization.

【符号の説明】[Explanation of symbols]

1 燃焼室 2 珪石レンガ壁 3 コークス層 4 軟化溶融層 5 石炭層 6 試料 7 NMR試料管 8 磁場勾配コイル 9 NMRプローブ 10 温度調整エアー 11 磁場勾配冷却エアー DESCRIPTION OF SYMBOLS 1 Combustion chamber 2 Silica brick wall 3 Coke layer 4 Softening and melting layer 5 Coal layer 6 Sample 7 NMR sample tube 8 Magnetic field gradient coil 9 NMR probe 10 Temperature control air 11 Magnetic field gradient cooling air

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】石炭を前処理をせずに、水素核の核磁気共
鳴吸収スペクトルのエコー信号を測定し、その信号に対
して適当な多重パルスを与えながら同時に適当な磁場勾
配を与えることで得られるマイクロイメージング像で石
炭中に存在する横緩和時間の相対的に長い成分と短い成
分の分布状態を可視化して、溶融し易い成分の平均存在
量とその分布を評価し、コークスドラム強度との関係か
ら装入石炭の乾留後のコークスドラム強度を推定するこ
とを特徴とする石炭品質評価方法。
The present invention provides a method for measuring an echo signal of a nuclear magnetic resonance absorption spectrum of a hydrogen nucleus without pretreating coal and applying an appropriate magnetic field gradient while applying an appropriate multiple pulse to the signal. Visualize the distribution of relatively long and short transverse relaxation components present in the coal in the obtained micro-imaging image, evaluate the average abundance and distribution of components that are easy to melt, and evaluate the coke drum strength and A coal quality evaluation method characterized by estimating the coke drum strength after carbonization of charged coal from the relationship
JP10140553A 1998-05-07 1998-05-07 Method for evaluating quality of coal Pending JPH11326248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10140553A JPH11326248A (en) 1998-05-07 1998-05-07 Method for evaluating quality of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10140553A JPH11326248A (en) 1998-05-07 1998-05-07 Method for evaluating quality of coal

Publications (1)

Publication Number Publication Date
JPH11326248A true JPH11326248A (en) 1999-11-26

Family

ID=15271361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10140553A Pending JPH11326248A (en) 1998-05-07 1998-05-07 Method for evaluating quality of coal

Country Status (1)

Country Link
JP (1) JPH11326248A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077123A1 (en) * 2001-03-16 2002-10-03 Nippon Steel Corporation Method for producing coke for blast furnace having high strength
WO2002098793A1 (en) * 2001-05-30 2002-12-12 Nippon Steel Corporation Activated carbon and method for production thereof
CN107219244A (en) * 2017-06-12 2017-09-29 华东理工大学 A kind of quantitative analysis method of utilization solid state nmr carbon spectrum detection texture of coal parameter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077123A1 (en) * 2001-03-16 2002-10-03 Nippon Steel Corporation Method for producing coke for blast furnace having high strength
WO2002098793A1 (en) * 2001-05-30 2002-12-12 Nippon Steel Corporation Activated carbon and method for production thereof
CN107219244A (en) * 2017-06-12 2017-09-29 华东理工大学 A kind of quantitative analysis method of utilization solid state nmr carbon spectrum detection texture of coal parameter
CN107219244B (en) * 2017-06-12 2019-02-26 华东理工大学 A kind of quantitative analysis method for composing detection texture of coal parameter using solid state nmr carbon

Similar Documents

Publication Publication Date Title
Ma et al. Trabecular bone imaging using a 3D adiabatic inversion recovery prepared ultrashort TE Cones sequence at 3T
JP3892666B2 (en) Coal quality evaluation method
US8072213B2 (en) NMR measurement method
CN104156569A (en) Large-section nodular cast iron melt mass stokehole control method
JPH11326248A (en) Method for evaluating quality of coal
Le Botlan et al. Spin-spin relaxation time determination of intermediate states in heterogeneous products from free induction decay NMR signals
DE10059854A1 (en) Image generation method for representation of discontinuities in mechanical test pieces for space, air and automobile industries, using ultrasound burst phase thermography, having reduced interference effects
Schawe Comments on isothermal crystallization kinetics of polymers: Polypropylene at high supercooling
JP2001324460A (en) Quality evaluation method for coal
Danley et al. DSC resolution and dynamic response improvements obtained by a new heat flow measurement technique
JPH09328685A (en) Quality evaluation of coal
US4803428A (en) Method and apparatus for non-destructive material testing, particularly for determination of thickness of coating layers on a base material by measuring electrical conductivity or magnetic permeability at the finished specimen
CN105675637A (en) Method for enhancing X-ray diffraction intensity of surface oxide layer of steel
JP4132710B2 (en) Blast furnace coke strength estimation method
JP2000088778A (en) Evaluation method for quality of coal
KR100579670B1 (en) Method for producing coke for blast furnace having high strength
JP2000321226A (en) Method for evaluating quality of coal
Khasanova et al. Low-field NMR method for analysis of heavy oils without extraction of asphaltenes
Schmachtl et al. Crystallization process control during directional solidification in a high-temperature-gradient furnace by guided ultrasonic waves and real-time signal evaluation
JP4293951B2 (en) Coke pore structure visualization method
JPH09241649A (en) Appraisal of coal quality
Wang et al. Magic angle effect on diffusion tensor imaging in ligament and brain
JPH1019814A (en) Method for evaluating quality of coal
Saito et al. Solid state NMR studies for a new carbonization process with high temperature preheating
Matyuk et al. Modern state of nondestructive testing of mechanical properties and stamping ability of steel sheets in a manufacturing technological flow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070406